1
|
Ozir MA, Nordin MH, Hashim SE, Adzahar S, Ahmad MA, Ng KS, Wan Hitam WH. Leber Hereditary Optic Neuropathy With Significant Visual Recovery: An MT-ND6 Mutation in a Malay Patient. Cureus 2024; 16:e71210. [PMID: 39525159 PMCID: PMC11550097 DOI: 10.7759/cureus.71210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a rare maternally inherited mitochondrial disorder that predominantly affects young men, leading to optic nerve degeneration and subsequent vision loss. The rarity of LHON and its clinical similarity to optic neuritis complicates diagnosis, necessitating genetic testing to confirm specific point mutations and predict visual outcomes. We report a rare case of an 18-year-old Malay male with m.14484T>C/MT-ND6 mutation of LHON, who demonstrated remarkable spontaneous visual recovery over a three-year follow-up period. This report highlights the pivotal role of genetic testing in diagnosing LHON, explores the variability in visual outcomes associated with different mutations, and underscores the potential for spontaneous recovery in specific mutation variants. Early diagnosis, genetic counseling, and supportive management are critical for optimizing outcomes and improving quality of life.
Collapse
Affiliation(s)
- Muhammad Arif Ozir
- Department of Ophthalmology, Hospital Sultan Zainal Abidin, Kuala Terengganu, MYS
| | - Mohammad Hudzaifah Nordin
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, MYS
- Department of Ophthalmology, Hospital Sultan Zainal Abidin, Kuala Terengganu, MYS
| | - Syaratul Emma Hashim
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, MYS
- Department of Ophthalmology, Hospital Sultan Zainal Abidin, Kuala Terengganu, MYS
| | - Sumaiyah Adzahar
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, MYS
- Department of Pathology, Hospital Sultan Zainal Abidin, Kuala Terengganu, MYS
| | | | - Kwang Sheng Ng
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Wan-Hazabbah Wan Hitam
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| |
Collapse
|
2
|
Peng SY, Chen CY, Chen H, Yang YP, Wang ML, Tsai FT, Chien CS, Weng PY, Tsai ET, Wang IC, Hsu CC, Lin TC, Hwang DK, Chen SJ, Chiou SH, Chiao CC, Chien Y. Inhibition of angiogenesis by the secretome from iPSC-derived retinal ganglion cells with Leber's hereditary optic neuropathy-like phenotypes. Biomed Pharmacother 2024; 178:117270. [PMID: 39126773 DOI: 10.1016/j.biopha.2024.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.
Collapse
Affiliation(s)
- Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Hsin Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Physiology, National Yang Ming Chiao Tung University, Taiwan, ROC
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - En-Tung Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, ROC; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC.
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| |
Collapse
|
3
|
Yamamoto Y, Taniguchi T, Shimazaki A. Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats. Biomolecules 2024; 14:1047. [PMID: 39334813 PMCID: PMC11430293 DOI: 10.3390/biom14091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Rotenone is a mitochondrial complex I inhibitor that causes retinal degeneration. A study of a rat model of rotenone-induced retinal degeneration suggested that this model is caused by indirect postsynaptic N-methyl-D-aspartate (NMDA) stimulation triggered by oxidative stress-mediated presynaptic intracellular calcium signaling. To elucidate the mechanisms by which rotenone causes axonal degeneration, we investigated morphological changes in optic nerves and the change in retinal ganglion cell (RGC) number in rats. Optic nerves and retinas were collected 3 and 7 days after the intravitreal injection of rotenone. The cross-sections of the optic nerves were subjected to a morphological analysis with axon quantification. The axons and somas of RGCs were analyzed immunohistochemically in retinal flatmounts. In the optic nerve, rotenone induced axonal swelling and degeneration with the incidence of reactive gliosis. Rotenone also significantly reduced axon numbers in the optic nerve. Furthermore, rotenone caused axonal thinning, fragmentation, and beading in RGCs on flatmounts and decreased the number of RGC soma. In conclusion, the intravitreal injection of rotenone in rats induced morphological abnormities with a reduced number of optic nerve axons and RGC axons when the RGC somas were degenerated. These findings help elucidate the pathogenesis of optic neuropathy induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yasuko Yamamoto
- Product Development Division, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| | - Takazumi Taniguchi
- Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| | - Atsushi Shimazaki
- Product Development Division, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| |
Collapse
|
4
|
Choi Y, Cho YL, Park S, Park M, Hong KS, Park YJ, Lee IA, Chung SW, Lee H, Lee SJ. Anti-Inflammatory Effects of Idebenone Attenuate LPS-Induced Systemic Inflammatory Diseases by Suppressing NF-κB Activation. Antioxidants (Basel) 2024; 13:151. [PMID: 38397749 PMCID: PMC10885939 DOI: 10.3390/antiox13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammation is a natural protective process through which the immune system responds to injury, infection, or irritation. However, hyperinflammation or long-term inflammatory responses can cause various inflammatory diseases. Although idebenone was initially developed for the treatment of cognitive impairment and dementia, it is currently used to treat various diseases. However, its anti-inflammatory effects and regulatory functions in inflammatory diseases are yet to be elucidated. Therefore, this study aimed to investigate the anti-inflammatory effects of idebenone in cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation. Murine models of cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation were generated, followed by treatment with various concentrations of idebenone. Additionally, lipopolysaccharide-stimulated macrophages were treated with idebenone to elucidate its anti-inflammatory effects at the cellular level. Idebenone treatment significantly improved survival rate, protected against tissue damage, and decreased the expression of inflammatory enzymes and cytokines in mice models of sepsis and systemic inflammation. Additionally, idebenone treatment suppressed inflammatory responses in macrophages, inhibited the NF-κB signaling pathway, reduced reactive oxygen species and lipid peroxidation, and normalized the activities of antioxidant enzyme. Idebenone possesses potential therapeutic application as a novel anti-inflammatory agent in systemic inflammatory diseases and sepsis.
Collapse
Affiliation(s)
- Yumin Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Lai Cho
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
| | - Sujeong Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Minkyung Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Keun-Seok Hong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
| | - Young Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Ah Lee
- Department of Chemistry, Kunsan National University, Gunsan 54150, Republic of Korea;
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea;
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (Y.C.); (Y.-L.C.); (S.P.); (M.P.); (K.-S.H.); (Y.J.P.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Hu JL, Hsu CC, Hsiao YJ, Lin YY, Lai WY, Liu YH, Wang CL, Ko YL, Tsai ML, Tseng HC, Chien Y, Yang YP. Leber's hereditary optic neuropathy: Update on the novel genes and therapeutic options. J Chin Med Assoc 2024; 87:12-16. [PMID: 38016117 DOI: 10.1097/jcma.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.
Collapse
Affiliation(s)
- Jui-Lin Hu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Jer Hsiao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Long Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yueh Chien
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
8
|
García-López C, García-López V, Matamoros JA, Fernández-Albarral JA, Salobrar-García E, de Hoz R, López-Cuenca I, Sánchez-Puebla L, Ramírez JM, Ramírez AI, Salazar JJ. The Role of Citicoline and Coenzyme Q10 in Retinal Pathology. Int J Mol Sci 2023; 24:5072. [PMID: 36982157 PMCID: PMC10049438 DOI: 10.3390/ijms24065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ocular neurodegenerative diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration are common retinal diseases responsible for most of the blindness causes in the working-age and elderly populations in developed countries. Many of the current treatments used in these pathologies fail to stop or slow the progression of the disease. Therefore, other types of treatments with neuroprotective characteristics may be necessary to allow a more satisfactory management of the disease. Citicoline and coenzyme Q10 are molecules that have neuroprotective, antioxidant, and anti-inflammatory properties, and their use could have a beneficial effect in ocular neurodegenerative pathologies. This review provides a compilation, mainly from the last 10 years, of the main studies that have been published on the use of these drugs in these neurodegenerative diseases of the retina, analyzing the usefulness of these drugs in these pathologies.
Collapse
Affiliation(s)
- Claudia García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Verónica García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
9
|
Karaa A, Klopstock T. Clinical trials in mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:229-250. [PMID: 36813315 DOI: 10.1016/b978-0-12-821751-1.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Primary mitochondrial diseases are some of the most common and complex inherited inborn errors of metabolism. Their molecular and phenotypic diversity has led to difficulties in finding disease-modifying therapies and clinical trial efforts have been slow due to multiple significant challenges. Lack of robust natural history data, difficulties in finding specific biomarkers, absence of well-validated outcome measures, and small patient numbers have made clinical trial design and conduct difficult. Encouragingly, new interest in treating mitochondrial dysfunction in common diseases and regulatory incentives to develop therapies for rare conditions have led to significant interest and efforts to develop drugs for primary mitochondrial diseases. Here, we review past and present clinical trials and future strategies of drug development in primary mitochondrial diseases.
Collapse
Affiliation(s)
- Amel Karaa
- Mitochondrial Disease Program, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
10
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
11
|
Traitements médicaux dans la neuropathie optique héréditaire de Leber. J Fr Ophtalmol 2022; 45:S24-S31. [DOI: 10.1016/s0181-5512(22)00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Spiegel SJ, Sadun AA. Solutions to a Radical Problem: Overview of Current and Future Treatment Strategies in Leber's Hereditary Opic Neuropathy. Int J Mol Sci 2022; 23:13205. [PMID: 36361994 PMCID: PMC9656544 DOI: 10.3390/ijms232113205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.
Collapse
Affiliation(s)
- Samuel J. Spiegel
- Gavin Herbert Eye Institute, University of California, Irvine, CA 92617, USA
| | - Alfredo A. Sadun
- Jules Stein and Doheny Eye Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
14
|
Liutkeviciene R, Mikalauskaite R, Gedvilaite G, Glebauskiene B, Kriauciuniene L, Žemaitienė R. Relative Leukocyte Telomere Length and Telomerase Complex Regulatory Markers Association with Leber's Hereditary Optic Neuropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091240. [PMID: 36143917 PMCID: PMC9504758 DOI: 10.3390/medicina58091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives: To evaluate the association of relative leukocyte telomere length (RLTL) and telomerase complex regulatory markers with Leber’s hereditary optic neuropathy (LHON). Material and Methods: A case-control study was performed in patients with LHON (≥18 years) and healthy subjects. The diagnosis of LHON was based on a genetic blood test (next-generation sequencing with Illumina MiSeq, computer analysis: BWA2.1 Illumina BaseSpace, Alamut, and mtDNA Variant analyzer 1000 were performed) and diagnostic criteria approved by the LHON disease protocol. Statistical analysis was performed using the standard statistical software package, IBM SPSS Statistics 27. Statistically significant results were considered when p < 0.05. Results: Significantly longer RLTL was observed in LHON patients than in healthy controls (p < 0.001). RLTL was significantly longer in women and men with LOHN than in healthy women and men in the control group (p < 0.001 and p = 0.003, respectively). In the elderly group (>32 years), RLTL was statistically significantly longer in LHON patients compared with healthy subjects (p < 0.001). The GG genotype of the TERC rs12696304 polymorphism was found to be statistically significantly higher in the LHON group (p = 0.041), and the C allele in the TERC rs12696304 polymorphism was found to be statistically significantly less common in the LHON group (p < 0.001). The RLTL of LHON patients was found to be statistically significantly longer in the TERC rs12696304 polymorphism in all tested genotypes (CC, p = 0.005; CG, p = 0.008; GG, p = 0.025), TEP1 rs1760904 polymorphism in the GA genotype (p < 0.001), and TEP1 gene rs1713418 in the AA and AG genotypes (p = 0.011 and p < 0.001, respectively). Conclusions: The RLTL in LHON patients was found to be longer than in healthy subjects regardless of treatment with idebenone. The TERC rs12696304 polymorphism, of all studied polymorphisms, was the most significantly associated with changes in LHON and telomere length.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Mikalauskaite
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| | - Brigita Glebauskiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
15
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
16
|
Stramkauskaitė A, Povilaityte I, Glebauskiene B, Liutkeviciene R. Clinical Overview of Leber Hereditary Optic Neuropathy. Acta Med Litu 2022; 29:9-18. [PMID: 36061944 PMCID: PMC9428633 DOI: 10.15388/amed.2022.29.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Leber hereditary ptic neuropathy (LHON) is a disease of young adults with bilateral, painless, subacute visual loss. The peak age of onset of LHON is in the second and third decades of life. Men are 4 times more likely to be affected than women. In about 25-50% of cases, both eyes are affected simultaneously. In unilateral cases, the other eye is usually affected 2 to 3 months later. Visual acuity deteriorates to counting fingers or worse with a dense central or centrocecal scotoma. In the subacute phase, the optic disc may appear hyperemic with swelling of the peripapillary retinal nerve fibre layer, peripapillary telangiectasias, and increased vascular tortuosity. Ocular coherence tomography of the macula shows marked thinning of the ganglion cell complex even at this stage. The diagnosis of LHON is made in a subject with a consistent clinical history and/or one of three common pathogenic mitochondrial DNA (mtDNA) variants identified by molecular genetic testing. Idebenone was approved by the European Medicines Agency under exceptional circumstances for the treatment of LHON. Current evidence suggests some benefit to vision in a subset of affected individuals treated with idebenone, particularly when treated within the first year of onset of vision loss. In this article, we discuss aetiology, clinical features, diagnosis, differential dignosis, prognosis and treatment.
Collapse
|
17
|
Lee HJ, Park JH, Hoe HS. Idebenone Regulates Aβ and LPS-Induced Neurogliosis and Cognitive Function Through Inhibition of NLRP3 Inflammasome/IL-1β Axis Activation. Front Immunol 2022; 13:749336. [PMID: 35222363 PMCID: PMC8866241 DOI: 10.3389/fimmu.2022.749336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Idebenone is an analogue of coenzyme Q10, an electron donor in the mitochondrial electron transport chain, and thus may function as an antioxidant to facilitate mitochondrial function. However, whether idebenone modulates LPS- and Aβ-mediated neuroinflammatory responses and cognitive function in vivo is unknown. The present study explored the effects of idebenone on LPS- or Aβ-mediated neuroinflammation, learning and memory and the underlying molecular mechanisms in wild-type (WT) mice and 5xFAD mice, a mouse model of Alzheimer’s disease (AD). In male and female WT mice, idebenone upregulated neuroprotective NRF2 expression, rescued LPS-induced spatial and recognition memory impairments, and reduced NLRP3 priming and subsequent neuroinflammation. Moreover, idebenone downregulated LPS-mediated neurogliosis, reactive oxygen species (ROS) levels, and mitochondrial function in BV2 microglial cells and primary astrocytes by inhibiting NLRP3 inflammasome activation. In 5xFAD mice, idebenone increased neuroprotective NRF2 expression and improved amyloid beta (Aβ)-induced cognitive dysfunction. Idebenone downregulated Aβ-mediated gliosis and proinflammatory cytokine levels in 5xFAD mice by modulating the vicious NLRP3/caspase-1/IL-1β neuroinflammation cycle. Taken together, our results suggest that idebenone targets neuroglial NLRP3 inflammasome activation and therefore may have neuroprotective effects and inhibit the pathological progression of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
18
|
Subramaniam MD, Chirayath RB, Iyer M, Nair AP, Vellingiri B. Mesenchymal stem cells (MSCs) in Leber's hereditary optic neuropathy (LHON): a potential therapeutic approach for future. Int Ophthalmol 2022; 42:2949-2964. [PMID: 35357640 DOI: 10.1007/s10792-022-02267-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Optic neuropathy has become a new typical syndromic multi-system disease that leads to optic atrophy. This review discusses potential treatments and advances of Leber's hereditary optic neuropathy (LHON), a sporadic genetic disorder. LHON is caused due to slight mutations in mitochondria leading to mitochondrial dysfunction, causing vision loss. There are no current significant treatments that have been proven to work for LHON. METHODS However, extensive review was carried out on capable studies that have shown potential treatment sensory systems and are being evaluated currently. Some of these studies are in clinical trials, whereas other ones are still being planned. Here, we focus more on treatment based on mesenchymal stem cells-mediated mitochondrial transfer via various techniques. We discuss different mitochondrial transfer modes and possible ways to understand the mitochondria transfer technique's phenotypic characteristics. CONCLUSION It is clearly understood that transfer of healthy mitochondria from MSC to target cell would regulate the range of reactive oxygen species and ATP'S, which are majorly responsible for mutation upon irregulating. Therefore, mitochondrial transfer is suggested and discussed in this review with various aspects. The graphical abstract represents different means of mitochondrial transport like (a) Tunnelling nanotubules, (b) Extracellular vesicles, (c) Cell fusion and (d) Gap junctions. In (a) Tunnelling nanotubules, the signalling pathways TNF- α/TNF αip2 and NFkB/TNF αep2 are responsible for forming tunnels. Also, Miro protein acts as cargo for the transport of mitochondria with myosin's help in the presence of RhoGTPases [35]. In (b) Extracellular vesicles, the RhoA ARF6 contributes to Actin/Cytoskeletal rearrangement leading to the shedding of microvesicles. Coming to (c) Cell fusion when there is a high amount of ATP, the cells tend to fuse when in close proximity leading to the transfer of mitochondria via EFF-1/HAP2 [48]. In (d) Gap Junctions, Connexin43 is responsible for the intracellular channel in the presence of more ATP [86].
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India.
| | - Ruth Bright Chirayath
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Aswathy P Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, India
| |
Collapse
|
19
|
Yang YP, Chang YL, Lai YH, Tsai PH, Hsiao YJ, Nguyen LH, Lim XZ, Weng CC, Ko YL, Yang CH, Hwang DK, Chen SJ, Chiou SH, Chiou GY, Wang AG, Chien Y. Retinal Circular RNA hsa_circ_0087207 Expression Promotes Apoptotic Cell Death in Induced Pluripotent Stem Cell-Derived Leber’s Hereditary Optic Neuropathy-like Models. Biomedicines 2022; 10:biomedicines10040788. [PMID: 35453537 PMCID: PMC9027941 DOI: 10.3390/biomedicines10040788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Backgrounds: Leber’s hereditary optic neuropathy (LHON) is known as an inherited retinal disorder characterized by the bilateral central vision loss and degeneration of retinal ganglion cells (RGCs). Unaffected LHON carriers are generally asymptomatic, suggesting that certain factors may contribute to the disease manifestations between carriers and patients who carry the same mutated genotypes. Methods: We first aimed to establish the iPSC-differentiated RGCs from the normal healthy subject, the carrier, and the LHON patient and then compared the differential expression profile of circular RNAs (CircRNAs) among RGCs from these donors in vitro. We further overexpressed or knocked down the most upregulated circRNA to examine whether this circRNA contributes to the distinct phenotypic manifestations between the carrier- and patient-derived RGCs. Results: iPSCs were generated from the peripheral blood cells from the healthy subject, the carrier, and the LHON patient and successfully differentiated into RGCs. These RGCs carried equivalent intracellular reactive oxygen species, but only LHON-patient iPSC-derived RGCs exhibited remarkable apoptosis. Next-generation sequencing and quantitative real-time PCR revealed the circRNA hsa_circ_0087207 as the most upregulated circRNA in LHON-patient iPSC-derived RGCs. Overexpression of hsa_circ_0087207 increased the apoptosis in carrier iPSC-derived RGCs, while knockdown of hsa_circ_0087207 attenuated the apoptosis in LHON-patient iPSC-derived RGCs. Predicted by bioinformatics approaches, hsa_circ_0087207 acts as the sponge of miR-665 to induce the expression of a variety of apoptosis-related genes in LHON patient iPSC-derived RGCs. Conclusions: Our data indicated that hsa_circ_0087207 upregulation distinguishes the disease phenotype manifestations between iPSC-derived RGCs generated from the LHON patient and carrier. Targeting the hsa_circ_0087207/miR-665 axis might hold therapeutic promises for the treatment of LHON.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
| | - Long Hoang Nguyen
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Basic Medical Sciences, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| | - Xue-Zhen Lim
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Chang-Chi Weng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Genomic Research Center, Academia Sinica, Taipei 11217, Taiwan
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Correspondence: (G.-Y.C.); (Y.C.)
| | - An-Guor Wang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Correspondence: (G.-Y.C.); (Y.C.)
| |
Collapse
|
20
|
Altering neuronal circuitry with 4-aminopyridine for visual improvement in Leber's hereditary optic neuropathy (LHON). Mitochondrion 2021; 62:181-186. [PMID: 34915201 DOI: 10.1016/j.mito.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022]
Abstract
In this retrospective, interventional, longitudinal small case series, we looked at the visual effects of pharmacologic intervention with 4-aminopyridine (4-AP) in chronic Leber's Hereditary Optic Neuropathy (LHON) patients who are non-responders to idebenone. We illustrate, as examples, the visual progression of three LHON patients with 4-AP as add-on therapy to idebenone. Each patient had a different primary LHON mutation and was treated with idebenone within one year of onset. No response to idebenone at 300 mg orally three times a day ranged from less than one year to 2.5 years, and the addition of 4-AP at 10 mg orally two times a day ranged from 24 to 29 months. Outcome measures included best-corrected distance visual acuity, color vision, automated perimetry, the average retinal nerve fiber layer (RNFL) thickness, and the full-field photopic negative response (PhNR) amplitude. The 19-year-old man with the LHON mutation 11778A > G had no response to the addition of 4-AP to idebenone. The 27-year-old man with the LHON mutation 3460A > G experienced a significant response to 4-AP. Finally, the 40-year-old man with the LHON mutation 14484 T > C had a milder response. Although this case series was too small to demonstrate the efficacy of idebenone with add-on 4AP, it allowed us to consider a new hypothesis that neuronal activity generated from 4-AP can add more potential for visual recovery in LHON patients.
Collapse
|
21
|
Wang Y, Hu LF, Cui PF, Qi LY, Xing L, Jiang HL. Pathologically Responsive Mitochondrial Gene Therapy in an Allotopic Expression-Independent Manner Cures Leber's Hereditary Optic Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103307. [PMID: 34431574 DOI: 10.1002/adma.202103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare inherited blindness caused by mutations in the mitochondrial DNA (mtDNA). The disorder is untreatable and tricky, as the existing chemotherapeutic agent Idebenone alleviates symptoms rather than overcoming the underlying cause. Although some studies have made progress on allotopic expression for LHON, in situ mitochondrial gene therapy remains challenging, which may simplify delivery procedures to be a promising therapeutic for LHON. LHON becomes more difficult to manage in the changed mitochondrial microenvironment, including increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP). Herein, a pathologically responsive mitochondrial gene delivery vector named [triphenylphosphine-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine) and Ide-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine)] (TISUH) is reported to facilitate commendable in situ mitochondrial gene therapy for LHON. TISUH directly targets diseased mitochondria via triphenylphosphine and fluorination addressing the decreasing MMP. In addition, TISUH can be disassembled by high mitochondrial ROS levels to release functional genes for enhancing gene transfection efficiency and fundamentally correcting genetic abnormalities. In both traditional and gene-mutation-induced LHON mouse models, TISUH-mediated gene therapy shows satisfactory curative effect through the sustained therapeutic protein expression in vivo. This work proposes a novel pathologically responsive in situ mitochondrial delivery platform and provides a promising approach for refractory LHON as well as other mtDNA mutated diseases treatments.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Fei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
22
|
Aoyama Y, Inagaki S, Aoshima K, Iwata Y, Nakamura S, Hara H, Shimazawa M. Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. J Pharmacol Sci 2021; 147:200-207. [PMID: 34384568 DOI: 10.1016/j.jphs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Drug Discovery
- Drug Evaluation, Preclinical
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/physiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Mutation
- Optic Atrophy, Hereditary, Leber/chemically induced
- Optic Atrophy, Hereditary, Leber/drug therapy
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Piperazines/pharmacology
- Reactive Oxygen Species/metabolism
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Retinal Degeneration/chemically induced
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Rotenone/adverse effects
- Mice
Collapse
Affiliation(s)
- Yakumo Aoyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kota Aoshima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
23
|
Varela-Fernández R, Lema-Gesto MI, González-Barcia M, Otero-Espinar FJ. Design, development, and characterization of an idebenone-loaded poly-ε-caprolactone intravitreal implant as a new therapeutic approach for LHON treatment. Eur J Pharm Biopharm 2021; 168:195-207. [PMID: 34500025 DOI: 10.1016/j.ejpb.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a hereditary mitochondrial neurodegenerative disease of unclear etiology and lack of available therapeutic alternatives. The main goal of the current pilot study was based on the evaluation of the feasibility and characteristics of prolonged and controlled idebenone release from a PCL intravitreal implant. The design, development, and characterization of idebenone-loaded PCL implants prepared by an homogenization/extrusion/solvent evaporation method allowed the obtention of high PY, EE and LC values. In vitro characterization was completed by the assessment of mechanical and instrumental properties. The in vitro release of idebenone from the PCL implants was assessed and the implant erosion was monitored by the mass loss and surface morphology changes. DSC was used to estimate stability and interaction among implant's components. The present work demonstrated the controlled and prolonged idebenone delivery from the PCL implants in an in vitro model. A consistent preclinical base was established, supporting the idea of idebenone-loaded PCL implants as a new strategy of long-term sustained intraocular delivery for the LHON treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain; Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - María Isabel Lema-Gesto
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
24
|
Improving Sperm Oxidative Stress and Embryo Quality in Advanced Paternal Age Using Idebenone In Vitro-A Proof-of-Concept Study. Antioxidants (Basel) 2021; 10:antiox10071079. [PMID: 34356315 PMCID: PMC8301200 DOI: 10.3390/antiox10071079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced paternal age is associated with increased sperm reactive oxygen species (ROS) and decreased fertilization and pregnancy rates. Sperm washing during infertility treatment provides an opportunity to reduce high sperm ROS concentrations associated with advanced paternal age through the addition of idebenone. Sperm from men aged >40 years and older CBAF1 mice (12–18 months), were treated with 5 µM and 50 µM of idebenone and intracellular and superoxide ROS concentrations assessed. Following in vitro fertilization (IVF), embryo development, blastocyst differentiation, DNA damage and cryosurvival, pregnancy and implantation rates and fetal and placental weights were assessed. Five µM of idebenone given to aged human and mouse sperm reduced superoxide concentrations ~20% (p < 0.05), while both 5 and 50 µM reduced sperm intracellular ROS concentrations in mice ~30% (p < 0.05). Following IVF, 5 µM of idebenone to aged sperm increased fertilization rates (65% vs. 60%, p < 0.05), blastocyst total, trophectoderm and inner cell mass cell numbers (73 vs. 66, 53 vs. 47 and 27 vs. 24, respectively, p < 0.01). Treatment with idebenone also increased blastocyst cryosurvival rates (96% vs. 78%, p < 0.01) and implantation rates following embryo transfer (35% vs. 18%, p < 0.01). Placental weights were smaller (107 mg vs. 138 mg, p < 0.05), resulting in a larger fetal to placental weight ratio (8.3 vs. 6.3, p = 0.07) after sperm idebenone treatment. Increased sperm ROS concentrations associated with advanced paternal age are reduced with the addition of idebenone in vitro, and are associated with improved fertilization rates, embryo quality and implantation rates after IVF.
Collapse
|
25
|
Bandara AB, Drake JC, Brown DA. Complex II subunit SDHD is critical for cell growth and metabolism, which can be partially restored with a synthetic ubiquinone analog. BMC Mol Cell Biol 2021; 22:35. [PMID: 34118887 PMCID: PMC8196461 DOI: 10.1186/s12860-021-00370-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. Results Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. Conclusions Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061-0913, USA. .,Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061-0342, USA.
| | - Joshua C Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061-0913, USA
| | - David A Brown
- Mitochondrial Solutions, LLC, 800 Draper Road, Blacksburg, VA, 24060, USA
| |
Collapse
|
26
|
Clinical and Optic Disc Characteristics of Patients Showing Visual Recovery in Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2021; 40:15-21. [PMID: 31609832 DOI: 10.1097/wno.0000000000000830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The visual prognosis in Leber hereditary optic neuropathy (LHON) is generally poor. However, some individuals can have spontaneous visual recovery (VR) in one or both eyes by a mechanism that is not yet clearly understood. The purpose of this study was to determine whether certain clinical and optic disc features are associated with VR in patients with LHON. METHODS We retrospectively examined 80 eyes of 40 patients with LHON using clinical databases, fundus photographs, and high-definition spectral-domain optical coherence tomography (OCT) images. VR was defined as a gain of 3 or more lines of logarithm of the minimum angle of resolution (logMAR)-scaled visual acuity from nadir; this represents a doubling of the visual angle. Patients were divided into VR and nonrecovery (NR) groups. Using fundus photographs, we measured optic disc size and evaluated for the presence of optic disc features, including peripapillary telangiectasia, disc hyperemia, and swelling. We also measured the disc area, cup-to-disc ratio, and rim area of the optic disc using OCT. RESULTS Twenty-one of 80 eyes (26%) had a VR. The VR occurred within 2 years after onset in 81% of cases. The VR group showed younger age at onset (21 vs 29 years, P = 0.017) and better visual acuity at the nadir (1.39 vs 2.16 logMAR, P < 0.001) compared with the NR group. Optic disc features, particularly peripapillary telangiectasia (P = 0.027) and disc hyperemia (P = 0.006), were more prominent in the NR group. The cup-to-disc ratio was significantly smaller (0.64 vs 0.71, P = 0.004) and the rim area was significantly greater (1.17 vs 0.85 mm, P < 0.001) in the VR group compared with the NR group. CONCLUSIONS A younger age at onset and a less severe reduction of visual acuity at the nadir were associated with a higher probability of VR. Presence of peripapillary telangiectasia and optic disc hyperemia may serve as predictive factors for poor visual prognosis in patients with LHON.
Collapse
|
27
|
Hage R, Vignal-Clermont C. Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Front Neurol 2021; 12:651639. [PMID: 34122299 PMCID: PMC8187781 DOI: 10.3389/fneur.2021.651639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that specifically targets the retinal ganglion cells by reducing their ability to produce enough energy to sustain. The mutations of the mitochondrial DNA that cause LHON are silent until an unknown trigger causes bilateral central visual scotoma. After the onset of loss of vision, most patients experience progressive worsening within the following months. Few of them regain some vision after a period of ~1 year. Management of LHON patients has been focused on understanding the triggers of the disease and its pathophysiology to prevent the onset of visual loss in a carrier. Medical treatment is recommended once visual loss has started in at least one eye. Research evaluated drugs that are thought to be able to restore the mitochondrial electron transport chain of the retinal ganglion cells. Significant advances were made in evaluating free radical cell scavengers and gene therapy as potential treatments for LHON. Although encouraging the results of clinical trial have been mixed in stopping the worsening of visual loss. In patients with chronic disease of over 1 year, efficient treatment that restores vision is yet to be discovered. In this review, we summarize the management strategies for patients with LHON before, during, and after the loss of vision, explain the rationale and effectiveness of previous and current treatments, and report findings about emerging treatments.
Collapse
Affiliation(s)
- Rabih Hage
- Neuro-ophthalmology Department, Hôpital Fondation Rothschild, Paris, France
| | | |
Collapse
|
28
|
Hetzer SM, Guilhaume-Correa F, Day D, Bedolla A, Evanson NK. Traumatic Optic Neuropathy Is Associated with Visual Impairment, Neurodegeneration, and Endoplasmic Reticulum Stress in Adolescent Mice. Cells 2021; 10:cells10050996. [PMID: 33922788 PMCID: PMC8146890 DOI: 10.3390/cells10050996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) results in a number of impairments, often including visual symptoms. In some cases, visual impairments after head trauma are mediated by traumatic injury to the optic nerve, termed traumatic optic neuropathy (TON), which has few effective options for treatment. Using a murine closed-head weight-drop model of head trauma, we previously reported in adult mice that there is relatively selective injury to the optic tract and thalamic/brainstem projections of the visual system. In the current study, we performed blunt head trauma on adolescent C57BL/6 mice and investigated visual impairment in the primary visual system, now including the retina and using behavioral and histologic methods at new time points. After injury, mice displayed evidence of decreased optomotor responses illustrated by decreased optokinetic nystagmus. There did not appear to be a significant change in circadian locomotor behavior patterns, although there was an overall decrease in locomotor behavior in mice with head injury. There was evidence of axonal degeneration of optic nerve fibers with associated retinal ganglion cell death. There was also evidence of astrogliosis and microgliosis in major central targets of optic nerve projections. Further, there was elevated expression of endoplasmic reticulum (ER) stress markers in retinas of injured mice. Visual impairment, histologic markers of gliosis and neurodegeneration, and elevated ER stress marker expression persisted for at least 30 days after injury. The current results extend our previous findings in adult mice into adolescent mice, provide direct evidence of retinal ganglion cell injury after head trauma and suggest that axonal degeneration is associated with elevated ER stress in this model of TON.
Collapse
Affiliation(s)
- Shelby M. Hetzer
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.M.H.); (D.D.); (A.B.)
| | - Fernanda Guilhaume-Correa
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
| | - Dylan Day
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.M.H.); (D.D.); (A.B.)
| | - Alicia Bedolla
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.M.H.); (D.D.); (A.B.)
| | - Nathan K. Evanson
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (S.M.H.); (D.D.); (A.B.)
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
29
|
Bandara AB, Drake JC, James CC, Smyth JW, Brown DA. Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion 2021; 58:160-168. [PMID: 33744462 DOI: 10.1016/j.mito.2021.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Complex I is the largest and most intricate of the protein complexes of mitochondrial electron transport chain (ETC). This L-shaped enzyme consists of a peripheral hydrophilic matrix domain and a membrane-bound orthogonal hydrophobic domain. The interfacial region between these two arms is known to be critical for binding of ubiquinone moieties and has also been shown to be the binding site of Complex I inhibitors. Knowledge on specific roles of the ETC interfacial region proteins is scarce due to lack of knockout cell lines and animal models. Here we mutated nuclear encoded NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2), one of three protein subunits of the interfacial region, in a human embryonic kidney cell line 293 using a CRISPR/Cas9 procedure. Disruption of NDUFS2 significantly decreased cell growth in medium, Complex I specific respiration, glycolytic capacity, ATP pool and cell-membrane integrity, but significantly increased Complex II respiration, ROS generation, apoptosis, and necrosis. Treatment with idebenone, a clinical benzoquinone currently being investigated in other indications, partially restored growth, ATP pool, and oxygen consumption of the mutant. Overall, our results suggest that NDUFS2 is vital for growth and metabolism of mammalian cells, and respiratory defects of NDUFS2 dysfunction can be partially corrected with treatment of an established mitochondrial therapeutic candidate. This is the first report to use CRISPR/Cas9 approach to construct a knockout NDUFS2 cell line and use the constructed mutant to evaluate the efficacy of a known mitochondrial therapeutic to enhance bioenergetic capacity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States
| | - Carissa C James
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, United States; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, United States; Mitochondrial Solutions, LLC, 800 Draper Road, Blacksburg VA 24060, United States
| |
Collapse
|
30
|
Feng Z, Nadikudi M, Woolley KL, Hemasa AL, Chear S, Smith JA, Gueven N. Bioactivity Profiles of Cytoprotective Short-Chain Quinones. Molecules 2021; 26:molecules26051382. [PMID: 33806577 PMCID: PMC7961879 DOI: 10.3390/molecules26051382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Short-chain quinones (SCQs) have been investigated as potential therapeutic candidates against mitochondrial dysfunction, which was largely thought to be associated with the reversible redox characteristics of their active quinone core. We recently reported a library of SCQs, some of which showed potent cytoprotective activity against the mitochondrial complex I inhibitor rotenone in the human hepatocarcinoma cell line HepG2. To better characterize the cytoprotection of SCQs at a molecular level, a bioactivity profile for 103 SCQs with different compound chemistries was generated that included metabolism related markers, redox activity, expression of cytoprotective proteins and oxidative damage. Of all the tested endpoints, a positive correlation with cytoprotection by SCQs in the presence of rotenone was only observed for the NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent reduction of SCQs, which also correlated with an acute rescue of ATP levels. The results of this study suggest an unexpected mode of action for SCQs that appears to involve a modification of NQO1-dependent signaling rather than a protective effect by the reduced quinone itself. This finding presents a new selection strategy to identify and develop the most promising compounds towards their clinical use.
Collapse
Affiliation(s)
- Zikai Feng
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Monila Nadikudi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Krystel L. Woolley
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Ayman L. Hemasa
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Sueanne Chear
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- Correspondence:
| |
Collapse
|
31
|
A Typical Case Presentation with Spontaneous Visual Recovery in Patient Diagnosed with Leber Hereditary Optic Neuropathy due to Rare Point Mutation in MT-ND4 Gene ( m.11253T>C) and Literature Review. ACTA ACUST UNITED AC 2021; 57:medicina57030202. [PMID: 33652663 PMCID: PMC7996816 DOI: 10.3390/medicina57030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15–35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment.
Collapse
|
32
|
Novel Short-Chain Quinones to Treat Vision Loss in a Rat Model of Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22031016. [PMID: 33498409 PMCID: PMC7864174 DOI: 10.3390/ijms22031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5–8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58–80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.
Collapse
|
33
|
Atkinson R, Leung J, Bender J, Kirkcaldie M, Vickers J, King A. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy. Dis Model Mech 2021; 14:dmm.047548. [PMID: 33408125 PMCID: PMC7888715 DOI: 10.1242/dmm.047548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Mislocalization of the TAR DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm is a common feature of neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The downstream in vivo cellular effects of this mislocalization are not well understood. To investigate the impact of mislocalized TDP-43 on neuronal cell bodies, axons and axonal terminals, we utilized the mouse visual system to create a new model of TDP-43 proteinopathy. Mouse (C57BL/6J) retinal ganglion cells (RGCs) were transduced with GFP-tagged human wildtype TDP-43 (hTDP-WT-GFP) and human TDP-43 with a mutation in the nuclear localization sequence (hTDP-ΔNLS-GFP), to cause TDP-43 mislocalization, with ∼60% transduction efficiency achieved. Expression of both hTDP-WT-GFP and hTDP-ΔNLS-GFP resulted in changes to neurofilament expression, with cytoplasmic TDP-43 being associated with significantly (p<0.05) increased neurofilament heavy expression in the cell soma, and both forms of altered TDP-43 leading to significantly (p<0.05) decreased numbers of neurofilament-positive axons within the optic nerve. Alterations to neurofilament proteins were associated with significantly (p<0.05) increased microglial density in the optic nerve and retina. Furthermore expression of hTDP-WT-GFP was associated with a significant (p<0.05) increase in pre-synaptic input into RGCs in the retina. The current study has developed a new model allowing detailed examination of alterations to TDP-43 and will contribute to the knowledge of TDP-43-mediated neuronal alterations and degeneration.
Collapse
Affiliation(s)
- Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - James Bender
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Matthew Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - James Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Anna King
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| |
Collapse
|
34
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
35
|
Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, Castillo L, Friedburg C, Halfpenny CA, Lincoln JA, Traber GL, Acaroglu G, Black GCM, Doncel C, Fraser CL, Jakubaszko J, Landau K, Langenegger SJ, Muñoz-Negrete FJ, Newman NJ, Poulton J, Scoppettuolo E, Subramanian P, Toosy AT, Vidal M, Vincent AL, Votruba M, Zarowski M, Zermansky A, Lob F, Rudolph G, Mikazans O, Silva M, Llòria X, Metz G, Klopstock T. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2020; 40:558-565. [PMID: 32991388 PMCID: PMC7657145 DOI: 10.1097/wno.0000000000001023] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) leads to bilateral central vision loss. In a clinical trial setting, idebenone has been shown to be safe and to provide a trend toward improved visual acuity, but long-term evidence of effectiveness in real-world clinical practice is sparse. METHODS Open-label, multicenter, retrospective, noncontrolled analysis of long-term visual acuity and safety in 111 LHON patients treated with idebenone (900 mg/day) in an expanded access program. Eligible patients had a confirmed mitochondrial DNA mutation and had experienced the onset of symptoms (most recent eye) within 1 year before enrollment. Data on visual acuity and adverse events were collected as per normal clinical practice. Efficacy was assessed as the proportion of patients with either a clinically relevant recovery (CRR) or a clinically relevant stabilization (CRS) of visual acuity. In the case of CRR, time to and magnitude of recovery over the course of time were also assessed. RESULTS At time of analysis, 87 patients had provided longitudinal efficacy data. Average treatment duration was 25.6 months. CRR was observed in 46.0% of patients. Analysis of treatment effect by duration showed that the proportion of patients with recovery and the magnitude of recovery increased with treatment duration. Average gain in best-corrected visual acuity for responders was 0.72 logarithm of the minimal angle of resolution (logMAR), equivalent to more than 7 lines on the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. Furthermore, 50% of patients who had a visual acuity below 1.0 logMAR in at least one eye at initiation of treatment successfully maintained their vision below this threshold by last observation. Idebenone was well tolerated, with most adverse events classified as minor. CONCLUSIONS These data demonstrate the benefit of idebenone treatment in recovering lost vision and maintaining good residual vision in a real-world setting. Together, these findings indicate that idebenone treatment should be initiated early and be maintained more than 24 months to maximize efficacy. Safety results were consistent with the known safety profile of idebenone.
Collapse
Affiliation(s)
- Claudia B Catarino
- Department of Neurology (CBC, OM, TK), Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) (CBC, TK), Munich, Germany; Department of Ophthalmology (BL, CP, FL, GR), University Hospital of the Ludwig-Maximilians-University Munich, Germany; New York Eye and Ear Infirmary of Mount Sinai (RB), New York, New York; Ophthalmology Department (SM), Waikato Hospital, Hamilton, New Zealand; Scheie Eye Institute (MAT), University of Pennsylvania, Philadelphia, Pennsylvania; Institut Català de Retina (LC), Barcelona, Spain; Augenklinik (CF), Universitätsklinikum Giessen, Giessen, Germany; University Hospital Southampton (CAH), Southampton, United Kingdom; McGovern Medical School (JAL), UTHealth, Houston, Texas; Department of Ophthalmology (GLT, KL, SJL), University Hospital and University of Zurich, Zurich, Switzerland; Neuro-ophthalmology Associates (GA), Ankara, Turkey; Manchester Centre for Genomic Medicine (GCMB), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, United Kingdom; Division of Evolution and Genomic Sciences (GCMB), Neuroscience and Mental Health Domain, School of Health Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Ophthalmology Unit (CD), Hospital de Poniente, El Ejido, Almería, Spain; Save Sight Institute (CLF), University of Sydney, Sydney, Australia; Department of Pediatric Traumatology and Emergency Medicine (JJ), Wroclaw Medical University, Poland; Poland SPEKTRUM Ophthalmology Clinic (JJ), Wroclaw, Poland; University Hospital Ramon y Cajal (FJM-N), IRYCIS, Madrid, Spain; Emory University School of Medicine (NJN), Atlanta Georgia; Nuffield Dept Obstetrics and Gynaecology (JP), University of Oxford, The Women's Centre, Oxford, United Kingdom; Department of Ophthalmology (ES), East Kent Hospitals University Foundation Trust, United Kingdom; Neuro-Ophthalmology Division (PS), University of Colorado School of Medicine, Aurora, Colorado; Department of Neuroinflammation (ATT), Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom; Hospital Sant Joan de Déu Barcelona (MV), Barcelona, Spain; Eye Department (ALV), Greenlane Clinical Centre, Auckland, New Zealand; School of Optometry and Vision Sciences (MV), Cardiff University, Cardiff, United Kingdom; Department of Developmental Neurology (MZ), Poznan University of Medical Sciences, Poznan, Poland; Manchester Centre for Clinical Neuroscience (AZ), Salford Royal NHS Foundation Trust, Salford, United Kingdom; Neuro-ophthalmology Unit (MS, XL, GM) Santhera Pharmaceuticals, Pratteln, Switzerland; and Munich Cluster for Systems Neurology (SyNergy) (TK), Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gueven N, Ravishankar P, Eri R, Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol 2020; 38:101812. [PMID: 33254077 PMCID: PMC7708875 DOI: 10.1016/j.redox.2020.101812] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Idebenone is a well described drug that was initially developed against dementia. The current literature widely portrays this molecule as a potent antioxidant and CoQ10 analogue. While numerous papers seem to support this view, a closer look indicates that the pharmacokinetics of idebenone do not support these claims. A major discrepancy between achievable tissue levels, especially in target tissues such as the brain, and doses required to show the proposed effects, significantly questions our current understanding. This review explains how this has happened and highlights the discrepancies in the current literature. More importantly, based on some recent discoveries, a new framework is presented that can explain the mode of action of this molecule and can align formerly contradictory results. Finally, this new appreciation of the molecular activities of idebenone provides a rational approach to test idebenone in novel indications that might have not been considered previously for this drug.
Collapse
Affiliation(s)
- Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | - Pranathi Ravishankar
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Emma Rybalka
- Victoria University, Institute for Health and Sport, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Characteristics of Japanese patients with Leber's hereditary optic neuropathy and idebenone trial: a prospective, interventional, non-comparative study. Jpn J Ophthalmol 2020; 65:133-142. [PMID: 33185792 DOI: 10.1007/s10384-020-00789-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Leber's hereditary optic neuropathy (LHON) is a mitochondrial neuropathy that causes acute vision loss. Idebenone, a short-chain ubiquinone analog that preserves mitochondrial function is thought to suppress disease progression in early-onset LHON patients. We investigated the effects of idebenone in Japanese LHON patients. STUDY DESIGN Prospective, interventional, non-comparative study in patients with definite LHON diagnosis, under trial registration number UMIN000017939. METHODS Fifty-seven patients received 900 mg/day idebenone for 24 weeks. We measured baseline best-corrected visual acuity, visual fields, critical fusion frequency and retinal ganglion cell layer complex thickness; we assessed efficacy at 24 and 48 weeks, and safety throughout. RESULTS Patients were predominantly male (91.2%) and most had an mt.11778G>A mutation (94.7%). All patients tolerated idebenone therapy well. Data from the 51 mt.11778 patients were compared with their baseline data. At 48 weeks, significant improvement in best-corrected visual acuity was observed in 17 patients (33.3%). Furthermore, 25.5% of patients showed improvements in visual fields and 33.3% in critical fusion frequency. However, retinal ganglion cell layer complex thickness was significantly reduced. Among patients who started idebenone >1 year after disease onset, visual improvement was found in 12 (38.7%). Among patients who developed LHON before 19 years of age, visual improvement was found in 11 (42.3%). CONCLUSION Idebenone's potential and favorable safety profile were confirmed in Japanese LHON patients. However, this study had no placebo group; therefore, we need to undertake a prospective intervention study to further investigate the therapeutic effects of Idebenone in Japanese LHON patients.
Collapse
|
38
|
Varricchio C, Beirne K, Aeschlimann P, Heard C, Rozanowska M, Votruba M, Brancale A. Discovery of Novel 2-Aniline-1,4-naphthoquinones as Potential New Drug Treatment for Leber's Hereditary Optic Neuropathy (LHON). J Med Chem 2020; 63:13638-13655. [PMID: 33180495 DOI: 10.1021/acs.jmedchem.0c00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare genetic mitochondrial disease and the primary cause of chronic visual impairment for at least 1 in 10 000 individuals in the U.K. Treatment options remain limited, with only a few drug candidates and therapeutic approaches, either approved or in development. Recently, idebenone has been investigated as drug therapy in the treatment of LHON, although evidence for the efficacy of idebenone is limited in the literature. NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III were identified as the major enzymes involved in idebenone activity. Based on this mode of action, computer-aided techniques and structure-activity relationship (SAR) optimization studies led to the discovery of a series naphthoquinone-related small molecules, with comparable adenosine 5'-triphosphate (ATP) rescue activity to idebenone. Among these, three compounds showed activity in the nanomolar range and one, 2-((4-fluoro-3-(trifluoromethyl)phenyl)amino)-3-(methylthio)naphthalene-1,3-dione (1), demonstrated significantly higher potency ex vivo, and significantly lower cytotoxicity, than idebenone.
Collapse
Affiliation(s)
- Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Kathy Beirne
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Pascale Aeschlimann
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Charles Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K.,Cardiff Eye Unit, University Hospital of Wales, Heath Park, Cardiff CF24 4LU, Wales, U.K
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, U.K
| |
Collapse
|
39
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
40
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
41
|
Feng Z, Sedeeq M, Daniel A, Corban M, Woolley KL, Condie R, Azimi I, Smith JA, Gueven N. Comparative In Vitro Toxicology of Novel Cytoprotective Short-Chain Naphthoquinones. Pharmaceuticals (Basel) 2020; 13:ph13080184. [PMID: 32784558 PMCID: PMC7463972 DOI: 10.3390/ph13080184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain quinones (SCQs) have been identified as potential drug candidates against mitochondrial dysfunction, which largely depends on the reversible redox characteristics of the active quinone core. We recently identified 11 naphthoquinone derivatives, 1–11, from a library of SCQs that demonstrated enhanced cytoprotection and improved metabolic stability compared to the clinically used benzoquinone idebenone. Since the toxicity properties of our promising SCQs were unknown, this study developed multiplex methods and generated detailed toxicity profiles from 11 endpoint measurements using the human hepatocarcinoma cell line HepG2. Overall, the toxicity profiles were largely comparable across different assays, with simple standard assays showing increased sensitivity compared to commercial toxicity assays. Within the 11 naphthoquinones tested, the L-phenylalanine derivative 4 consistently demonstrated the lowest toxicity across all assays. The results of this study not only provide useful information about the toxicity features of SCQs but will also enable the progression of the most promising drug candidates towards their clinical use.
Collapse
Affiliation(s)
- Zikai Feng
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
- Correspondence: (Z.F.); (N.G.)
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Abraham Daniel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Monika Corban
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Krystel L. Woolley
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Ryan Condie
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (R.C.); (J.A.S.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.S.); (A.D.); (M.C.); (I.A.)
- Correspondence: (Z.F.); (N.G.)
| |
Collapse
|
42
|
Idebenone Has Distinct Effects on Mitochondrial Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J Neurosci 2020; 40:4609-4619. [PMID: 32350039 DOI: 10.1523/jneurosci.1632-17.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.
Collapse
|
43
|
Sadik NAH, El-Boghdady NA, Omar NN, Al-Hamid HA. Esculetin and idebenone ameliorate galactose-induced cataract in a rat model. J Food Biochem 2020; 44:e13230. [PMID: 32301145 DOI: 10.1111/jfbc.13230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 01/20/2023]
Abstract
Cataract is the principal cause of blindness. The enzyme, aldose reductase (AR) is a key player in polyol pathway. Buildup of polyols and oxidative stress are the main causes of cataractogenesis. This study investigated the cytoprotective properties of esculetin and idebenone in galactose-induced cataract. Rats were partitioned into four groups each of ten rats. Control group was fed with normal diet; group 2 rats were fed with galactose diet (50%); groups 3, 4 rats were fed with galactose diet concurrently with either esculetin (50 mg/kg BW) or idebenone (100 mg/kg BW), for 20 days. The study revealed that esculetin and idebenone significantly reduced the elevated levels of Bax/Bcl-2 ratio, malondialdehyde, and DNA fragmentation and increased total antioxidant capacity level in lenses compared to the cataract-induced group. Only esculetin decreased AR, galactitol, and advanced glycated end products levels in lenses. Histopathological examinations supported the biochemical findings. Esculetin and idebenone may have chemopreventive effects for sugar cataract. PRACTICAL APPLICATIONS: Cataract is an age-related disease that might cause blindness in older adult people. Presently, no absolute pharmacological treatment is accessible for cataract. The use of natural products or their derivatives attract particular attention in modern medicines as they are believed to be safer with few or no side effects. Esculetin is a polyphenolic compound found in many medicinal plants. Idebenone is a synthetic analogue of coenzyme Q10. The current study is an approach to explore the anticataract effects of esculetin and idebenone in galactose-induced cataract in rats. Our study proved that both agents have anticataractogenic potentials due to their antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
| | | | - Nesreen Nabil Omar
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hager Abd Al-Hamid
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
44
|
Blanco LP, Pedersen HL, Wang X, Lightfoot YL, Seto N, Carmona-Rivera C, Yu ZX, Hoffmann V, Yuen PS, Kaplan MJ. Improved Mitochondrial Metabolism and Reduced Inflammation Following Attenuation of Murine Lupus With Coenzyme Q10 Analog Idebenone. Arthritis Rheumatol 2020; 72:454-464. [PMID: 31566908 PMCID: PMC7050361 DOI: 10.1002/art.41128] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A role for mitochondrial dysfunction has been proposed in the immune dysregulation and organ damage characteristic of systemic lupus erythematosus (SLE). Idebenone is a coenzyme Q10 synthetic quinone analog and an antioxidant that has been used in humans to treat diverse diseases in which mitochondrial function is impaired. This study was undertaken to assess whether idebenone ameliorates lupus in murine models. METHODS Idebenone was administered orally to MRL/lpr mice at 2 different doses (1 gm/kg or 1.5 gm/kg idebenone-containing diet) for 8 weeks. At peak disease activity, clinical, immunologic, and metabolic parameters were analyzed and compared to those in untreated mice (n = 10 per treatment group). Results were confirmed in the lupus-prone NZM2328 mouse model. RESULTS In MRL/lpr mice, idebenone-treated mice showed a significant reduction in mortality incidence (P < 0.01 versus untreated mice), and the treatment attenuated several disease features, including glomerular inflammation and fibrosis (each P < 0.05 versus untreated mice), and improved renal function in association with decreased renal expression of interleukin-17A (IL-17A) and mature IL-18. Levels of splenic proinflammatory cytokines and inflammasome-related genes were significantly decreased (at least P < 0.05 and some with higher significance) in mice treated with idebenone, while no obvious drug toxicity was observed. Idebenone inhibited neutrophil extracellular trap formation in neutrophils from lupus-prone mice (P < 0.05) and human patients with SLE. Idebenone also improved mitochondrial metabolism (30% increase in basal respiration and ATP production), reduced the extent of heart lipid peroxidation (by one-half that of untreated mice), and significantly improved endothelium-dependent vasorelaxation (P < 0.001). NZM2328 mice exposed to idebenone also displayed improvements in renal and systemic inflammation, reducing the kidney pathology score (P < 0.05), IgG/C3 deposition (P < 0.05), and the gene expression of interferon, proinflammatory, and inflammasome-related genes (at least P < 0.05 and some with higher significance). CONCLUSION Idebenone ameliorates murine lupus disease activity and the severity of organ damage, supporting the hypothesis that agents that modulate mitochondrial biologic processes may have a therapeutic role in human SLE.
Collapse
Affiliation(s)
- Luz P. Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hege L. Pedersen
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yaíma L. Lightfoot
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Office of the Director, Division of Veterinary Resources, Diagnostic and Research Services Branch, NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutic Unit, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
45
|
Sasaoka M, Ota T, Kageyama M. Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats. Sci Rep 2020; 10:969. [PMID: 31969611 PMCID: PMC6976703 DOI: 10.1038/s41598-020-57638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone-induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neurofilament light-chain gene (Nfl) as a retinal ganglion cell (RGC) marker. This effect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nfl downregulation, whereas none of these agents modified NMDA-induced Nfl downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan.
| |
Collapse
|
46
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
47
|
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB. Mitochondrially-targeted treatment strategies. Mol Aspects Med 2019; 71:100836. [PMID: 31866004 DOI: 10.1016/j.mam.2019.100836] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Disruption of mitochondrial function is a common feature of inherited mitochondrial diseases (mitochondriopathies) and many other infectious and non-infectious diseases including viral, bacterial and protozoan infections, inflammatory and chronic pain, neurodegeneration, diabetes, obesity and cardiovascular diseases. Mitochondria therefore become an attractive target for developing new therapies. In this review we describe critical mechanisms involved in the maintenance of mitochondrial functionality and discuss strategies used to identify and validate mitochondrial targets in different diseases. We also highlight the most recent preclinical and clinical findings using molecules targeting mitochondrial bioenergetics, morphology, number, content and detoxification systems in common pathologies.
Collapse
Affiliation(s)
- Luiz H M Bozi
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Juliane C Campos
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil; Department of Chemical and Systems Biology, School of Medicine, Stanford University, USA.
| |
Collapse
|
48
|
Liu W, Li X, Chen X, Zhang J, Luo L, Hu Q, Zhou J, Yan J, Lin S, Ye J. JIP1 Deficiency Protects Retinal Ganglion Cells From Apoptosis in a Rotenone-Induced Injury Model. Front Cell Dev Biol 2019; 7:225. [PMID: 31681759 PMCID: PMC6804425 DOI: 10.3389/fcell.2019.00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo apoptosis after injury. c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1) is a scaffold protein that is relevant to JNK activation and a key molecule known to regulate neuronal apoptosis. However, the specific role of JIP1 in the apoptosis of RGCs is currently undefined. Here, we used JIP1 gene knockout (KO) mice to investigate the importance of JIP1-JNK signaling in the apoptosis of RGCs in a rotenone-induced injury model. In adult JIP1 KO mice, the number and electrophysiological functions of RGCs were not different from those of wild-type (WT) mice. Ablation of JIP1 attenuated the activation of JNK and the cleavage of caspase-3 in the retina after rotenone injury and contributed to a lower number of TUNEL-positive RGCs, a greater percentage of surviving RGCs, and a significant reduction in the electrophysiological functional loss of RGCs when compared to those in WT controls. We also found that JIP1 was located in the neurites of primary RGCs, but accumulated in soma in response to rotenone treatment. Moreover, the number of TUNEL-positive RGCs, the level of activation of JNK and the rate of cleavage of caspase-3 were reduced in primary JIP1-deficient RGCs after rotenone injury than in WT controls. Together, our results demonstrate that the JIP1-mediated activation of JNK contributes to the apoptosis of RGCs in a rotenone-induced injury model in vitro and in vivo, suggesting that JIP1 may be a potential therapeutic target for RGC degeneration.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yan
- Department 1, Research Institute of Surgery & Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
49
|
Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez‐Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao‐Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med 2019; 11:emmm.201708734. [PMID: 30979712 PMCID: PMC6505685 DOI: 10.15252/emmm.201708734] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Precision MedicineUniversity of Campania “L. Vanvitelli”Caserta CEItaly
| | - Alessia Romano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Jorge Henao‐Mejia
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA,Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Adam Williams
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA,Department of Genetics and Genomic SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Richard A Flavell
- Department of ImmunobiologyYale University School of MedicineNew HavenCTUSA,Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Institute of Cellular Biology and Neurobiology “ABT”CNRRomaItaly
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Enrico M Surace
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly,Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly,Present address:
Medical GeneticsDepartment of Translational Medical ScienceUniversity of Naples “Federico II”NaplesItaly
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy .,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy .,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
50
|
Woolley KL, Nadikudi M, Koupaei MN, Corban M, McCartney P, Bissember AC, Lewis TW, Gueven N, Smith JA. Amide linked redox-active naphthoquinones for the treatment of mitochondrial dysfunction. MEDCHEMCOMM 2019; 10:399-412. [PMID: 30996858 DOI: 10.1039/c8md00582f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022]
Abstract
Naphthoquinones have been investigated as potential therapeutic molecules for neurodegenerative disorders, which is largely based on their anti-oxidative potential. However, a theoretical framework for the pleiotropic protective effects of naphthoquinone derivatives is largely missing. We synthesized a library of novel short chain 2,3-disubstituted naphthoquinone derivatives and measured their redox characteristics to identify a potential connection with their biological activity. Using two cell lines with different reducing potential, the compounds were tested for their inherent toxicity, acute rescue of ATP levels and cytoprotective activity. For the first time, a structure-activity-relationship for naphthoquinones has been established. Our results clearly demonstrate that it is the group on the alkyl side chain and not solely the redox characteristics of the naphthoquinone unit or lipophilicity that determines the extent of cytoprotection by individual compounds. From this, we developed a number of amide containing naphthoquinones with superior activity in ATP rescue and cell viability models compared to the clinically used benzoquinone idebenone.
Collapse
Affiliation(s)
- Krystel L Woolley
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Monila Nadikudi
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Mitra N Koupaei
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Monika Corban
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | | | - Alex C Bissember
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Trevor W Lewis
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Nuri Gueven
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Jason A Smith
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| |
Collapse
|