1
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wei S. Hormone receptors in breast cancer: An update on the uncommon subtypes. Pathol Res Pract 2023; 250:154791. [PMID: 37672851 DOI: 10.1016/j.prp.2023.154791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Breast cancer is the most common cancer affecting women and is the second leading cause of cancer death among US women. Estrogen receptor (ER) signaling plays a crucial role in mammary gland development and carcinogenesis. Near 80 % of invasive breast cancers are ER-positive (ER+). Endocrine therapies targeting ER have significantly improved the prognostic outcomes in the patients with ER+ breast cancer, and the therapeutic effects are strongly correlated with the levels of the ER expression in tumor cells. Despite being an ER-dependent gene product, PR is not always overexpressed in ER+ tumors, and a small subset of breast cancers demonstrates an ER+/PR- phenotype, and a rare ER-/PR+ subtype also exists. There have been controversies on the biology of these tumor types and the predictive and prognostic power of PR status. Compelling data have shown the distinct biologic characteristics of ER+/PR- and ER-/PR+ tumors. Despite that ER-low breast cancers demonstrate more similarity to ER- tumors, at least a subset of ER-low carcinomas may have a functional ER signaling. Thus, adequate PR expression is essential as its absence indicates impaired ER pathway. Assessment of PR status may not only distinguish the ER+/PR- subset from the ER+ and ER-low tumors, but also differentiate the ER-/PR+ phenotype from the ER- carcinomas, both with therapeutic implications. This article was aimed to provide an up-to-date review focusing on the clinicopathologic characteristics of uncommon subtypes of breast cancer, including ER+/PR-, ER-/PR+, and ER-low breast cancers.
Collapse
Affiliation(s)
- Shi Wei
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 4000 Cambridge Street, Kansas City, KS 66160, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, United States.
| |
Collapse
|
3
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
4
|
Chang YH, Wu KC, Wang KH, Ding DC. Effects of the Overexpression of Progesterone Receptors on a Precancer p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line. Int J Mol Sci 2023; 24:11823. [PMID: 37511582 PMCID: PMC10380282 DOI: 10.3390/ijms241411823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of progesterone receptors A (PRA) and B (PRB) on proliferation, migration, invasion, anchorage-independent growth (AIG), and apoptosis of FE25 cells, a precancer p53- and retinoblastoma-defective human fallopian tube epithelial cell line. We observed that the transfection of PRA (FE25-PRA) or PRB (FE25-PRB) into FE25 cells significantly increased the expression of PRA or PRB at both RNA and protein levels without affecting cell morphology. The FE25-PRA cells exhibited slower proliferation, whereas FE25-PRB showed faster cell proliferation than the control cells. In contrast, the FE25-PRA cells showed the highest migration and invasion abilities, whereas the FE25-PRB cells showed the lowest migration and invasion abilities. After treatment with progesterone, all cell types showed decreased AIG levels, increased apoptotic rates in Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling assay (TUNEL) staining, and increased levels of apoptotic proteins ascertained based on cleaved caspase-3 levels. The half-maximal inhibitory concentration of carboplatin increased in FE25-PRB cells, but that of paclitaxel remained unchanged. Overall, this study suggests that PRA and PRB have distinct roles in regulating the behavior of FE25 cells, and targeting these receptors could be a potential therapeutic strategy for ovarian cancer treatment. If PRA or PRB overexpression is observed in high-grade serous carcinoma, progesterone could be considered as an adjuvant therapy for these specific cancer patients. However, further research is needed to confirm these findings and investigate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
5
|
Pu H, Wen X, Luo D, Guo Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J Steroid Biochem Mol Biol 2023; 227:106199. [PMID: 36191723 DOI: 10.1016/j.jsbmb.2022.106199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
The uterus and breasts are hormone-responsive tissues. Progesterone and estradiol regulate gonadotropin secretion, prepare the endometrium for implantation, maintain pregnancy, and regulate the differentiation of breast tissue. Dysregulation of these hormones causes endometriosis, endometrial cancer, and breast cancer, damaging the physical and mental health of women. Emerging evidence has shown that progesterone resistance or elevated progesterone activity is the primary hormonal substrate of these diseases. Since progesterone acts through its specific nuclear receptor, the abnormal expression of the progesterone receptor (PR) dysregulates progesterone function. This review discusses the regulatory mechanisms of PR expression in patients with endometriosis, and endometrial or breast cancer, including estrogen, polymorphisms, transcription factors, epigenetics, and the ubiquitin-proteasome system. (1) Estrogen promotes the expression of PRA (a PR isoform) mRNA and protein through the interaction of estrogen receptors (ERs) and Sp1 with half-ERE/Sp1 binding sites. ERs also affect the binding of Sp1 and Sp1 sites to promote the expression of PRB (another PR isoform)(2) PR polymorphisms, mainly PROGINS and + 331 G/A polymorphism, regulate PR expression by affecting DNA methylation and transcription factor binding. (3) The influence of epigenetic alterations on PR expression occurs through DNA methylation, histone modification, and microRNA. (4) As one of the main protein degradation pathways in vivo, the ubiquitin-proteasome system (UPS) regulates PR expression by participating in protein degradation. These mechanisms may provide new molecular targets for diagnosing and treating endometriosis, endometrial, and breast cancer.
Collapse
Affiliation(s)
- Huijie Pu
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - DiXian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong 518000, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022; 30:1408-1420. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Preterm birth is defined as the birth of a neonate before 37 weeks of gestation and is considered as a leading cause of the under five deaths of neonates. Neonates born preterm are known to have higher perinatal mortality and morbidity with associated risks of low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, cerebral palsy, and delayed development. India leads the list of countries with the greatest number of preterm births. The studies focusing on the molecular mechanisms related to the etiology of preterm birth have described the role of different transcription factors. With respect to this, transcription factors like peroxisome proliferator activated receptors (PPAR), nuclear factor kappa β (NF-kβ), nuclear erythroid 2-related factor 2 (Nrf2), and progesterone receptor (PR) are known to be associated with preterm labor. All these transcription factors are linked together with a common cascade involving inflammatory processes. Thus, the current review describes the possible cross-talk between these transcription factors and their therapeutic potential to prevent or manage preterm labor.
Collapse
Affiliation(s)
- Akshaya Meher
- Central Research Laboratory, Dr. Vasantrao Pawar Medical College, Hospital and Research Centre, Nashik, Maharashtra, India, 422003.
| |
Collapse
|
7
|
Vini R, Rajavelu A, Sreeharshan S. 27-Hydroxycholesterol, The Estrogen Receptor Modulator, Alters DNA Methylation in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:783823. [PMID: 35360070 PMCID: PMC8961300 DOI: 10.3389/fendo.2022.783823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| |
Collapse
|
8
|
Pecci A, Ogara MF, Sanz RT, Vicent GP. Choosing the right partner in hormone-dependent gene regulation: Glucocorticoid and progesterone receptors crosstalk in breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1037177. [PMID: 36407312 PMCID: PMC9672667 DOI: 10.3389/fendo.2022.1037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors (SHRs) belong to a large family of ligand-activated nuclear receptors that share certain characteristics and possess others that make them unique. It was thought for many years that the specificity of hormone response lay in the ligand. Although this may be true for pure agonists, the natural ligands as progesterone, corticosterone and cortisol present a broader effect by simultaneous activation of several SHRs. Moreover, SHRs share structural and functional characteristics that range from similarities between ligand-binding pockets to recognition of specific DNA sequences. These properties are clearly evident in progesterone (PR) and glucocorticoid receptors (GR); however, the biological responses triggered by each receptor in the presence of its ligand are different, and in some cases, even opposite. Thus, what confers the specificity of response to a given receptor is a long-standing topic of discussion that has not yet been unveiled. The levels of expression of each receptor, the differential interaction with coregulators, the chromatin accessibility as well as the DNA sequence of the target regions in the genome, are reliable sources of variability in hormone action that could explain the results obtained so far. Yet, to add further complexity to this scenario, it has been described that receptors can form heterocomplexes which can either compromise or potentiate the respective hormone-activated pathways with its possible impact on the pathological condition. In the present review, we summarized the state of the art of the functional cross-talk between PR and GR in breast cancer cells and we also discussed new paradigms of specificity in hormone action.
Collapse
Affiliation(s)
- Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| | - María Florencia Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Rosario T. Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| |
Collapse
|
9
|
Abascal MF, Elía A, Alvarez M, Pataccini G, Sequeira G, Riggio M, Figueroa V, Lamb CA, Rojas PA, Spengler E, Martínez-Vazquez P, Burruchaga J, Liguori M, Sahores A, Wargon V, Molinolo A, Hewitt S, Lombes M, Sartorius C, Vanzulli SI, Giulianelli S, Lanari C. Progesterone receptor isoform ratio dictates antiprogestin/progestin effects on breast cancer growth and metastases: A role for NDRG1. Int J Cancer 2021; 150:1481-1496. [PMID: 34935137 DOI: 10.1002/ijc.33913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Progesterone receptors (PR) ligands are being tested in luminal breast cancer. There are mainly two PR isoforms, PRA and PRB, and their ratio (PRA/PRB) may be predictive of antiprogestin response. Our aim was to investigate: the impact of the PR isoform ratio on metastatic behavior, the PR isoform ratio in paired primary tumors and lymph node metastases (LNM) and, the effect of antiprogestin/progestins on metastatic growth. Using murine and human metastatic models, we demonstrated that tumors with PRB > PRA (PRB-H) have a higher proliferation index but less metastatic ability than those with PRA > PRB (PRA-H). Antiprogestins and progestins inhibited metastatic burden in PRA-H and PRB-H models, respectively. In breast cancer samples, LNM retained the same PRA/PRB ratio as their matched primary tumors. Moreover, PRA-H LNM expressed higher total PR levels than the primary tumors. The expression of NDRG1, a metastasis suppressor protein, was higher in PRB-H compared with PRA-H tumors and was inversely regulated by antiprogestins/progestins. The binding of the corepressor SMRT at the progesterone responsive elements of the NDRG1 regulatory sequences, together with PRA, impeded its expression in PRA-H cells. Antiprogestins modulate the interplay between SMRT and AIB1 recruitment in PRA-H or PRB-H contexts regulating NDRG1 expression and thus, metastasis. In conclusion, we provide a mechanistic interpretation to explain the differential role of PR isoforms in metastatic growth and highlight the therapeutic benefit of using antiprogestins in PRA-H tumors. The therapeutic effect of progestins in PRB-H tumors is suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Michelle Alvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Hospital Público de Gestión Descentralizada Dr. Arturo Oñativia, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Paola A Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Eunice Spengler
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Marcos Liguori
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | | | | | - Marc Lombes
- INSERM and Fac Med Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, France
| | - Carol Sartorius
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| |
Collapse
|
10
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
11
|
Kunc M, Popęda M, Biernat W, Senkus E. Lost but Not Least-Novel Insights into Progesterone Receptor Loss in Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13194755. [PMID: 34638241 PMCID: PMC8507533 DOI: 10.3390/cancers13194755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor α (ERα) and progesterone receptor (PgR) are crucial prognostic and predictive biomarkers that are usually co-expressed in breast cancer (BC). However, 12-24% of BCs present ERα(+)/PgR(-) phenotype at immunohistochemical evaluation. In fact, BC may either show primary PgR(-) status (in chemonaïve tumor sample), lose PgR expression during neoadjuvant treatment, or acquire PgR(-) phenotype in local relapse or metastasis. The loss of PgR expression in ERα(+) breast cancer may signify resistance to endocrine therapy and poorer outcomes. On the other hand, ERα(+)/PgR(-) BCs may have a better response to neoadjuvant chemotherapy than double-positive tumors. Loss of PgR expression may be a result of pre-transcriptional alterations (copy number loss, mutation, epigenetic modifications), decreased transcription of the PGR gene (e.g., by microRNAs), and post-translational modifications (e.g., phosphorylation, sumoylation). Various processes involved in the down-regulation of PgR have distinct consequences on the biology of cancer cells. Occasionally, negative PgR status detected by immunohistochemical analysis is paradoxically associated with enhanced transcriptional activity of PgR that might be inhibited by antiprogestin treatment. Identification of the mechanism of PgR loss in each patient seems challenging, yet it may provide important information on the biology of the tumor and predict its responsiveness to the therapy.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-214 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-584-4481
| |
Collapse
|
12
|
Pedroza DA, Subramani R, Tiula K, Do A, Rashiraj N, Galvez A, Chatterjee A, Bencomo A, Rivera S, Lakshmanaswamy R. Crosstalk between progesterone receptor membrane component 1 and estrogen receptor α promotes breast cancer cell proliferation. J Transl Med 2021; 101:733-744. [PMID: 33903732 DOI: 10.1038/s41374-021-00594-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022] Open
Abstract
Progesterone (P4) and estradiol (E2) have been shown to stimulate and regulate breast cancer proliferation via classical nuclear receptor signaling through progesterone receptor (PR) and estrogen receptor α (ERα), respectively. However, the basis of communication between PR/ERα and membrane receptors remains largely unknown. Here, we aim to identify classical and nonclassical endocrine signaling mechanisms that can alter cell proliferation through a possible crosstalk between PR, ERα, and progesterone receptor membrane component 1 (PGRMC1), a membrane receptor frequently observed in breast cancer cells. While P4 and E2 treatment increased cell proliferation of ER+/PR+/PGRMC1 overexpressing breast cancer cells, silencing ERα and PR or treatment with selective estrogen receptor modulator (SERM) tamoxifen, or (PR-antagonist) RU-486 decreased cell proliferation. All four treatments rapidly altered PGRMC1 mRNA levels and protein expression. Furthermore, P4 and E2 treatments rapidly activated EGFR a known interacting partner of PGRMC1 and its downstream signaling. Interestingly, downregulation of ERα by tamoxifen and ERα silencing decreased the expression levels of PGRMC1 with no repercussions to PR expression. Strikingly PGRMC1 silencing decreased ERα expression irrespective of PR. METABRIC and TCGA datasets further demonstrated that PGRMC1 expression was comparable to that of ERα in Luminal A and B breast cancers. Targeting of PR, ERα, and PGRMC1 confirmed that a crosstalk between classical and nonclassical signaling mechanisms exists in ER+ breast cancer cells that could enhance the growth of ER+/PR+/PGRMC1 overexpressing tumors.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Kira Tiula
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Anthony Do
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Navya Rashiraj
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Animesh Chatterjee
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Servando Rivera
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
13
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) 2020; 12:cancers12092440. [PMID: 32867363 PMCID: PMC7563480 DOI: 10.3390/cancers12092440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Much emphasis is placed on estrogen (E2) and estrogen receptor (ER) signaling as most research is focused on understanding E2 and ER’s ability to enhance proliferative signals in breast cancers. Progesterone (P4) is important for normal mammary gland development, function and menstrual control. However, P4 and its receptors (PRs) in breast cancer etiology continue to be understudied and its role in breast cancer remains controversial. The Women’s Health Initiative (WHI) clinical trial clearly demonstrated the importance of progestogens in breast cancer development. P4 has historically been associated with classical-signaling through nuclear receptors, however non-classical P4 signaling via membrane receptors has been described. Progestogens have the ability to bind to nuclear and membrane receptors and studies have demonstrated that both can promote breast cancer cell proliferation and breast tumor growth. In this review, we attempt to understand the classical and non-classical signaling role of P4 in breast cancers because both nuclear and membrane receptors could become viable therapeutic options for breast cancer patients.
Collapse
|
15
|
Beato M, Wright RHG, Dily FL. 90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. J Mol Endocrinol 2020; 65:T65-T79. [PMID: 32485671 PMCID: PMC7354705 DOI: 10.1530/jme-19-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Gene regulation by steroid hormones has been at the forefront in elucidating the intricacies of transcriptional regulation in eukaryotes ever since the discovery by Karlson and Clever that the insect steroid hormone ecdysone induces chromatin puffs in giant chromosomes. After the successful cloning of the hormone receptors toward the end of the past century, detailed mechanistic insight emerged in some model systems, in particular the MMTV provirus. With the arrival of next generation DNA sequencing and the omics techniques, we have gained even further insight into the global cellular response to steroid hormones that in the past decades also extended to the function of the 3D genome topology. More recently, advances in high resolution microcopy, single cell genomics and the new vision of liquid-liquid phase transitions in the context of nuclear space bring us closer than ever to unravelling the logic of gene regulation and its complex integration of global cellular signaling networks. Using the function of progesterone and its cellular receptor in breast cancer cells, we will briefly summarize the history and describe the present extent of our knowledge on how regulatory proteins deal with the chromatin structure to gain access to DNA sequences and interpret the genomic instructions that enable cells to respond selectively to external signals by reshaping their gene regulatory networks.
Collapse
Affiliation(s)
- Miguel Beato
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roni H G Wright
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| | - François Le Dily
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| |
Collapse
|
16
|
Bocchini M, Nicolini F, Severi S, Bongiovanni A, Ibrahim T, Simonetti G, Grassi I, Mazza M. Biomarkers for Pancreatic Neuroendocrine Neoplasms (PanNENs) Management-An Updated Review. Front Oncol 2020; 10:831. [PMID: 32537434 PMCID: PMC7267066 DOI: 10.3389/fonc.2020.00831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNENs) are rare sporadic cancers or develop as part of hereditary syndromes. PanNENs can be both functioning and non-functioning based on whether they produce bioactive peptides. Some PanNENs are well differentiated while others-poorly. Symptoms, thus, depend on both oncological and hormonal causes. PanNEN diagnosis and treatment benefit from and in some instances are guided by biomarker monitoring. However, plasmatic monoanalytes are only suggestive of PanNEN pathological status and their positivity is typically followed by deepen diagnostic analyses through imaging techniques. There is a strong need for new biomarkers and follow-up modalities aimed to improve the outcome of PanNEN patients. Liquid biopsy follow-up, i.e., sequential analysis on tumor biomarkers in body fluids offers a great potential, that need to be substantiated by additional studies focusing on the specific markers and the timing of the analyses. This review provides the most updated panorama on PanNEN biomarkers.
Collapse
Affiliation(s)
- Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Units, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ilaria Grassi
- Nuclear Medicine and Radiometabolic Units, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
17
|
Mousazadeh S, Ghaheri A, Shahhoseini M, Aflatoonian R, Afsharian P. Differential expression of progesterone receptor isoforms related to PGR +331g/a polymorphism in endometriosis: A case-control study. Int J Reprod Biomed 2019; 17. [PMID: 31435600 PMCID: PMC6661139 DOI: 10.18502/ijrm.v17i3.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/02/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background Endometriosis are defined as a progesterone-resistance disease. Two progesterone receptor (PR) isoforms, namely PR-A and PR-B, mediate the special effects of progesterone. One of the most effective polymorphism in the promoter region of PGR is the +331G/A. Objective The differential expression level of PR isoforms due to +331G/A polymorphism may be able to influence the function of progesterone and reduce the susceptibility of endometriosis. Materials and Methods This analytic, case-control study was carried out at Royan Institute, Tehran, Iran. Whole-blood samples were collected from 98 infertile women undergoing laparoscopy for endometriosis and 102 healthy fertile women. After DNA extraction, genotype frequencies were determined by polymerase chain reaction-restriction fragment length polymorphism. Then, RNA was extracted from the selected eutopic tissue samples of endometriosis patients. Analysis of PR-A and PR-B mRNA expressions were performed using Real-time polymerase chain reaction. Results The frequency distribution of GG, GA genotypes in +331G/A polymorphism was 98.04%, 1.96% in the patients and 97.96%, 2.04% in the control groups, respectively (p = 0.968). Although our data did not show any significant association with +331G/A in the patient and control groups, we were able to demonstrate significantly higher expression level of PR-B and no significant lower expression level of PR-A isoforms in patients by favoring GA to GG genotypes (p = 0.017, p = 0.731, respectively). Conclusion Our findings show that patients with GA genotypes had a higher expression level of PR-B compared to patients with GG genotypes.
Collapse
Affiliation(s)
- Sepideh Mousazadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Ataei N, Aghaei M, Panjehpour M. Cadmium induces progesterone receptor gene expression via activation of estrogen receptor in human ovarian cancer cells. Res Pharm Sci 2019; 13:493-499. [PMID: 30607147 PMCID: PMC6288990 DOI: 10.4103/1735-5362.245961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cadmium (Cd) as a metalloesterogen may have a role in development of ovarian cancer. One of the critical target genes of estrogens is progesterone receptors (PRs). There are controversial studies on association between Cd, PRs, and cell proliferation. This study investigates the effect of Cd on proliferation of ovarian cancer cell lines, PRA and PRB expression and their relationship. OVCAR3 and SKOV3 cells were treated with CdCl2 (1-100 nM) and cell proliferation was assayed using bromodeoxyuridine (BrdU) method. The mechanism underlying the proliferative effect of Cd mediated by PRs was examined using cell transfection with PR- small interfering RNA (siRNA) and western blot analysis. Our results showed the involvement of PRs in Cd induced proliferation of ovarian cancer cells. Progesterone receptors are involved in proliferative effect of Cd. Moreover, Cd modified the expression of PRA and PRB and induced ovarian cancer cell proliferation through the change of PRA/PRB ratio. In conclusion, there is a mechanistic association between Cd effects on ovarian cancer cell proliferation, estrogen receptors and PRs expression.
Collapse
Affiliation(s)
- Negar Ataei
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mojtaba Panjehpour
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
19
|
Lamb CA, Fabris VT, Jacobsen B, Molinolo AA, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:ERC-18-0179. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PR), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have been also used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PR have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PR are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, that exert different functions and the relative abundance of one isoform respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- C Lamb, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Victoria T Fabris
- V Fabris, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Britta Jacobsen
- B Jacobsen, Department of Pathology, University of Colorado at Denver - Anschutz Medical Campus, Aurora, United States
| | - Alfredo A Molinolo
- A Molinolo, Biorepository and Tissue Technology Shared Resource, University of California San Diego Moores Cancer Center, La Jolla, United States
| | - Claudia Lanari
- C Lanari, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| |
Collapse
|
20
|
Carlini MJ, Recouvreux MS, Simian M, Nagai MA. Gene expression profile and cancer-associated pathways linked to progesterone receptor isoform a (PRA) predominance in transgenic mouse mammary glands. BMC Cancer 2018; 18:682. [PMID: 29940887 PMCID: PMC6019805 DOI: 10.1186/s12885-018-4550-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Background Progesterone receptor (PR) is expressed from a single gene as two isoforms, PRA and PRB. In normal breast human tissue, PRA and PRB are expressed in equimolar ratios, but isoform ratio is altered during malignant progression, usually leading to high PRA:PRB ratios. We took advantage of a transgenic mouse model where PRA isoform is predominant (PRA transgenics) and identified the key transcriptional events and associated pathways underlying the preneoplastic phenotype in mammary glands of PRA transgenics as compared with normal wild-type littermates. Methods The transcriptomic profiles of PRA transgenics and wild-type mammary glands were generated using microarray technology. We identified differentially expressed genes and analyzed clustering, gene ontology (GO), gene set enrichment analysis (GSEA), and pathway profiles. We also performed comparisons with publicly available gene expression data sets of human breast cancer. Results We identified a large number of differentially expressed genes which were mainly associated with metabolic pathways for the PRA transgenics phenotype while inflammation- related pathways were negatively correlated. Further, we determined a significant overlap of the pathways characterizing PRA transgenics and those in breast cancer subtypes Luminal A and Luminal B and identified novel putative biomarkers, such as PDHB and LAMB3. Conclusion The transcriptional targets identified in this study should facilitate the formulation or refinement of useful molecular descriptors for diagnosis, prognosis, and therapy of breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4550-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María José Carlini
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, 01246-903, Brazil.,Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo, SP, 01246-000, Brazil.,Present address: Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - María Sol Recouvreux
- Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Simian
- Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina.,Present address: Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, 1650, San Martín, Provincia de Buenos Aires, Argentina
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, 01246-903, Brazil. .,Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
21
|
Yazdani S, Kasajima A, Onodera Y, McNamara KM, Ise K, Nakamura Y, Tachibana T, Motoi F, Unno M, Sasano H. Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm. J Steroid Biochem Mol Biol 2018; 178:243-253. [PMID: 29331723 DOI: 10.1016/j.jsbmb.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
In pancreatic neuroendocrine neoplasms (Pan-NEN) progesterone signaling has been shown to have both inhibitory and stimulatory effects on cell proliferation. The ability of progesterone to inhibit tumor proliferation is of particular interest and is suggested to be mediated through the less abundantly expressed progesterone receptor (PR) isoform A (PRA). To date the mechanistic processes underlying this inhibition of proliferation remain unclear. To examine the mechanism of PRA actions, the human Pan-NEN cell line QGP-1, that endogenously expresses PR isoform B (PRB) without PRA, was transfected with PRA. PRA transfection suppressed the majority of cell cycle related genes increased by progesterone including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2). Importantly, following progesterone administration cell cycle distribution was shifted to S and G2/M phases in the naïve cell line but in PRA-transfected cells, this effect was suppressed. To see if these mechanistic insights were confirmed in patient samples PRA, PRB, CCNA2, CCNB, CDK1 and CDK2 immunoreactivities were assessed in Pan-NEN cases. Higher levels of cell cycle markers were associated with higher WHO grade tumors and correlations between the markers suggested formation of cyclin/CDK activated complexes in S and G2/M phases. PRA expression was associated with inverse correlation of all cell cycle markers. Collectively, these results indicate that progesterone signals through PRA negatively regulates cell cycle progression through suppressing S and G2/M phases and downregulation of cell cycle phases specific cyclins/CDKs.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Tachibana
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Singhal H, Greene ME, Zarnke AL, Laine M, Al Abosy R, Chang YF, Dembo AG, Schoenfelt K, Vadhi R, Qiu X, Rao P, Santhamma B, Nair HB, Nickisch KJ, Long HW, Becker L, Brown M, Greene GL. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling. Oncotarget 2018; 9:4282-4300. [PMID: 29435103 PMCID: PMC5796974 DOI: 10.18632/oncotarget.21378] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Hari Singhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marianne E. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Allison L. Zarnke
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Muriel Laine
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Rose Al Abosy
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Anna G. Dembo
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Kelly Schoenfelt
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Raga Vadhi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prakash Rao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | - Henry W. Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Fabris V, Abascal MF, Giulianelli S, May M, Sequeira GR, Jacobsen B, Lombès M, Han J, Tran L, Molinolo A, Lanari C. Isoform specificity of progesterone receptor antibodies. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:227-233. [PMID: 29085663 PMCID: PMC5653926 DOI: 10.1002/cjp2.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone‐dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N‐terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin‐fixed paraffin‐embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D‐YA and ‐YB cells expressing PRA or PRB, respectively, MDA‐MB‐231 cells modified to synthesize PRB, and MDA‐MB‐231/iPRAB cells which can bi‐inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H‐190, clone 636, clone 16, and Ab‐6 anti‐PR antibodies, the latter exclusively recognizing PRB. Except for Ab‐6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H‐190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA‐specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer.
Collapse
Affiliation(s)
- Victoria Fabris
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina
| | - María F Abascal
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina
| | - Sebastián Giulianelli
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina.,Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos, Instituto de Biología de Organismos Marinos (IBIOMAR), CONICETArgentina
| | - María May
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina
| | - Gonzalo R Sequeira
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina
| | | | - Marc Lombès
- Unité Mixte de Recherche, INSERM U 1185, Fac Med Paris SudUniversité Paris SaclayFrance
| | - Julie Han
- Department of Pathology, Moore's Cancer Center, UCSDLa JollaCAUSA
| | - Luan Tran
- Department of Pathology, Moore's Cancer Center, UCSDLa JollaCAUSA
| | - Alfredo Molinolo
- Department of Pathology, Moore's Cancer Center, UCSDLa JollaCAUSA
| | - Claudia Lanari
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos AiresArgentina
| |
Collapse
|
24
|
Louie MC, Sevigny MB. Steroid hormone receptors as prognostic markers in breast cancer. Am J Cancer Res 2017; 7:1617-1636. [PMID: 28861319 PMCID: PMC5574935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023] Open
Abstract
Despite the existence of many promising anti-cancer therapies, not all breast cancers are equally treatable, due partly to the fact that focus has been primarily on a few select breast cancer biomarkers- notably ERα, PR and HER2. In cases like triple negative breast cancer (ERα-, PR-, and HER2-), there is a complete lack of available biomarkers for prognosis and therapeutic purposes. The goal of this review is to determine if other steroid receptors, like ERβ and AR, could play a prognostic and/or therapeutic role. Data from various in vitro, in vivo, and clinical breast cancer studies were examined to analyze the presence and function of ERβ, PR, and AR in the presence and absence of ERα. Additionally, we focused on studies that examined how expression of the various steroid receptor isoforms affects breast cancer progression. Our findings suggest that while we have a solid understanding of how these receptors work individually, how they interact and behave in the presence and absence of other receptors requires further research. Furthermore, there is an incomplete understanding of how the various steroid receptor isoforms interact and impact receptor function and breast cancer progression, partly due to the difficulty in detecting all the various isoforms. More large-scale clinical studies must be made to analyze systematically the expression of steroid hormone receptors and their respective isoforms in breast cancer patients in order to determine how these receptors interact with each other and in turn affect cancer progression.
Collapse
|
25
|
Rojas PA, May M, Sequeira GR, Elia A, Alvarez M, Martínez P, Gonzalez P, Hewitt S, He X, Perou CM, Molinolo A, Gibbons L, Abba MC, Gass H, Lanari C. Progesterone Receptor Isoform Ratio: A Breast Cancer Prognostic and Predictive Factor for Antiprogestin Responsiveness. J Natl Cancer Inst 2017; 109:3064537. [PMID: 28376177 DOI: 10.1093/jnci/djw317] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Compelling evidence shows that progestins regulate breast cancer growth. Using preclinical models, we demonstrated that antiprogestins are inhibitory when the level of progesterone receptor isoform A (PR-A) is higher than that of isoform B (PR-B) and that they might stimulate growth when PR-B is predominant. The aims of this study were to investigate ex vivo responses to mifepristone (MFP) in breast carcinomas with different PR isoform ratios and to examine their clinical and molecular characteristics. Methods We performed human breast cancer tissue culture assays (n = 36) to evaluate the effect of MFP on cell proliferation. PR isoform expression was determined by immunoblotting (n = 282). Tumors were categorized as PRA-H (PR-A/PR-B ≥ 1.2) or PRB-H (PR-A/PR-B ≤ 0.83). RNA was extracted for Ribo-Zero-Seq sequencing to evaluate differentially expressed genes. Subtypes and risk scores were predicted using the PAM50 gene set, the data analyzed using The Cancer Genome Atlas RNA-seq gene analysis and other publicly available gene expression data. Tissue microarrays were performed using paraffin-embedded tissues (PRA-H n = 53, PRB-H n = 24), and protein expression analyzed by immunohistochemistry. All statistical tests were two-sided. Results One hundred sixteen out of 222 (52.3%) PR+ tumors were PRA-H, and 64 (28.8%) PRB-H. Cell proliferation was inhibited by MFP in 19 of 19 tissue cultures from PRA-H tumors. A total of 139 transcripts related to proliferative pathways were differentially expressed in nine PRA-H and seven PRB-H tumors. PRB-H and PRA-H tumors were either luminal B or A phenotypes, respectively ( P = .03). PRB-H cases were associated with shorter relapse-free survival (hazard ratio [HR] = 2.70, 95% confidence interval [CI] = 1.71 to 6.20, P = .02) and distant metastasis-free survival (HR = 4.17, 95% CI = 2.18 to 7.97, P < .001). PRB-H tumors showed increased tumor size ( P < .001), Ki-67 levels ( P < .001), human epidermal growth factor receptor 2 expression ( P = .04), high grades ( P = .03), and decreased total PR ( P = .004) compared with PRA-H tumors. MUC-2 ( P < .001) and KRT6A ( P = .02) were also overexpressed in PRB-H tumors. Conclusion The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
Collapse
Affiliation(s)
- Paola A Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María May
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michelle Alvarez
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Martínez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Pedro Gonzalez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Stephen Hewitt
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaping He
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Alfredo Molinolo
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Luz Gibbons
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - Martin C Abba
- CINIBA-CONICET, Escuela de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Wu SP, DeMayo FJ. Progesterone Receptor Signaling in Uterine Myometrial Physiology and Preterm Birth. Curr Top Dev Biol 2017; 125:171-190. [PMID: 28527571 DOI: 10.1016/bs.ctdb.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myometrium holds the structural integrity for the uterus and generates force for parturition with its primary component, the smooth muscle cells. The progesterone receptor mediates progesterone-dependent signaling and connects to a network of pathways for regulation of contractility and inflammatory responses in myometrium. Dysfunctional progesterone signaling has been linked to pregnancy complications including preterm birth. In the present review, we summarize recent findings on modifiers and effectors of the progesterone receptor signaling. Discussions include novel conceptual discoveries and new development in legacy pathways such as the signal transducers NF-κB, ZEB, microRNA, and the unfolded protein response pathways. We also discuss the impact of progesterone receptor isoform composition and ligand accessibility in modification of the progesterone receptor genomic actions.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States.
| |
Collapse
|
27
|
Esber N, Cherbonnier C, Resche-Rigon M, Hamze A, Alami M, Fagart J, Loosfelt H, Lombès M, Chabbert-Buffet N. Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model. Discov Oncol 2016; 7:137-47. [DOI: 10.1007/s12672-016-0255-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
|
28
|
Esber N, Le Billan F, Resche-Rigon M, Loosfelt H, Lombès M, Chabbert-Buffet N. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS One 2015; 10:e0140795. [PMID: 26474308 PMCID: PMC4608808 DOI: 10.1371/journal.pone.0140795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required.
Collapse
Affiliation(s)
- Nathalie Esber
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- HRA-Pharma, Paris, France
| | - Florian Le Billan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | | | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- Service d’Endocrinologie et des Maladies de la Reproduction, assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique Médecine de la Reproduction, Hôpitaux Universitaires Est Parisien site Tenon, AP-HP, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 938, Centre de Recherche Saint Antoine, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Kaya HS, Hantak AM, Stubbs LJ, Taylor RN, Bagchi IC, Bagchi MK. Roles of progesterone receptor A and B isoforms during human endometrial decidualization. Mol Endocrinol 2015; 29:882-95. [PMID: 25875046 DOI: 10.1210/me.2014-1363] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Progesterone, acting through the progesterone receptors (PGRs), is one of the most critical regulators of endometrial differentiation, known as decidualization, which is a key step toward the establishment of pregnancy. Yet a long-standing unresolved issue in uterine biology is the precise roles played by the major PGR isoforms, PGR-A and PGR-B, during decidualization in the human. Our approach, expressing PGR-A and PGR-B individually after silencing endogenous PGRs in human endometrial stromal cells (HESCs), enabled the analysis of the roles of these isoforms separately as well as jointly. Chromatin immunoprecipitation-sequencing in combination with gene expression profiling revealed that PGR-B controls a substantially larger cistrome and transcriptome than PGR-A during HESC differentiation. Interestingly, PGR-B directly regulates the expression of PGR-A. De novo motif analysis indicated that, although the 2 isoforms bind to the same DNA sequence motif, there are both common and unique neighboring motifs where other transcription factors, such as FOSL1/2, JUN, C/EBPβ, and STAT3, bind and dictate the transcriptional activities of these isoforms. We found that PGR-A and PGR-B regulate overlapping as well as distinct sets of genes, many of which are known to be critical for decidualization and establishment of pregnancy. When PGR-A and PGR-B were coexpressed during HESC differentiation, PGR-B played a predominant role, although both isoforms influenced each other's transcriptional activity. This study revealed the gene networks that operate downstream of each PGR isoform to mediate critical functions, such as regulation of the cell cycle, angiogenesis, lysosomal activation, insulin receptor signaling, and apoptosis, during decidualization in the human.
Collapse
Affiliation(s)
- Hatice S Kaya
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Alison M Hantak
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Lisa J Stubbs
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert N Taylor
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Indrani C Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
30
|
Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update 2014; 21:155-73. [PMID: 25406186 DOI: 10.1093/humupd/dmu056] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key cellular signaling pathways required for growth. In contrast, progesterone via PR activation appears to increase leiomyoma growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysiology of RPL and the use of progesterone for therapeutic benefit remains uncertain. CONCLUSIONS PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying mechanisms of PR isoform action in the uterus is required, as this knowledge will afford the opportunity to create progestin/PR-based therapeutics to treat various uterine pathologies.
Collapse
Affiliation(s)
- Bansari Patel
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sonia Elguero
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suruchi Thakore
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wissam Dahoud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohamed Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sam Mesiano
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML, Gorostiaga MA, Jacobsen B, Molinolo A, Novaro V, Lanari C. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 2014; 136:2680-92. [PMID: 25363551 DOI: 10.1002/ijc.29304] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/16/2014] [Indexed: 01/01/2023]
Abstract
There is emerging interest in understanding the role of progesterone receptors (PRs) in breast cancer. The aim of this study was to investigate the proliferative effect of progestins and antiprogestins depending on the relative expression of the A (PRA) and B (PRB) isoforms of PR. In mifepristone (MFP)-resistant murine carcinomas antiprogestin responsiveness was restored by re-expressing PRA using demethylating agents and histone deacetylase inhibitors. Consistently, in two human breast cancer xenograft models, one manipulated to overexpress PRA or PRB (IBH-6 cells), and the other expressing only PRA (T47D-YA) or PRB (T47D-YB), MFP selectively inhibited the growth of PRA-overexpressing tumors and stimulated IBH-6-PRB xenograft growth. Furthermore, in cells with high or equimolar PRA/PRB ratios, which are stimulated to proliferate in vitro by progestins, and are inhibited by MFP, MPA increased the interaction between PR and the coactivator AIB1, and MFP favored the interaction between PR and the corepressor SMRT. In a PRB-dominant context in which MFP stimulates and MPA inhibits cell proliferation, the opposite interactions were observed. Chromatin immunoprecipitation assays in T47D cells in the presence of MPA or MFP confirmed the interactions between PR and the coregulators at the CCND1 and MYC promoters. SMRT downregulation by siRNA abolished the inhibitory effect of MFP on MYC expression and cell proliferation. Our results indicate that antiprogestins are therapeutic tools that selectively inhibit PRA-overexpressing tumors by increasing the SMRT/AIB1 balance at the CCND1 and MYC promoters.
Collapse
Affiliation(s)
- Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gracanin A, Voorwald FA, van Wolferen M, Timmermans-Sprang E, Mol JA. Marginal activity of progesterone receptor B (PR-B) in dogs but high incidence of mammary cancer. J Steroid Biochem Mol Biol 2014; 144 Pt B:492-9. [PMID: 25158022 DOI: 10.1016/j.jsbmb.2014.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/18/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022]
Abstract
Progesterone plays an important role in the normal development and carcinogenesis of the mammary gland. In vitro studies have shown that the canine progesterone receptor B (cPR-B), which is essential for mammary development in the mouse, does not transactivate reporter constructs containing progesterone response elements. Therefore, the question was raised whether the cPR-B was completely devoid of transactivation potential of endogenous progesterone regulated genes. Canine mammary cell lines expressing doxycycline-inducible cPR-B, human PR-B or a chimera in which the canine B-upstream segment (BUS) was replaced by a human BUS were treated for 24h with doxycycline, progesterone or a combination of the two. The expression profiling was subsequently performed using a dog-specific microarray and miRNA primers. Incubation of stably transfected cell lines with doxycycline or progesterone alone, did not change expression of any endogenous gene. Expression of activated human PR-B or the chimera of human BUS with the canine PR resulted in differential expression of >500 genes whereas the activated cPR-B regulated only a subset of 40 genes and to a limited extent. The relevance of the marginal transactivation potential or the consequence of a lack of cPR-B function for the carcinogenesis of mammary gland tumors is discussed.
Collapse
Affiliation(s)
- Ana Gracanin
- Department of Clinical Sciences of Companion, Animals Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | | | - Monique van Wolferen
- Department of Clinical Sciences of Companion, Animals Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Elpetra Timmermans-Sprang
- Department of Clinical Sciences of Companion, Animals Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion, Animals Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
33
|
Vija L, Boukari K, Loosfelt H, Meduri G, Viengchareun S, Binart N, Young J, Lombès M. Ligand-dependent stabilization of androgen receptor in a novel mouse ST38c Sertoli cell line. Mol Cell Endocrinol 2014; 384:32-42. [PMID: 24440575 DOI: 10.1016/j.mce.2014.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Mature Sertoli cells (SC) are critical mediators of androgen regulation of spermatogenesis, via the androgen receptor (AR) signaling. Available immortalized SC lines loose AR expression or androgen responsiveness, hampering the study of endogenous AR regulation in SC. We have established and characterized a novel clonal mouse immortalized SC line, ST38c. These cells express some SC specific genes (sox9, wt1, tjp1, clu, abp, inhbb), but not fshr, yet more importantly, maintain substantial expression of endogenous AR as determined by PCR, immunocytochemistry, testosterone binding assays and Western blots. Microarrays allowed identification of some (146) but not all (rhox5, spinlw1), androgen-dependent, SC expressed target genes. Quantitative Real-Time PCR validated regulation of five up-regulated and two down-regulated genes. We show that AR undergoes androgen-dependent transcriptional activation as well as agonist-dependent posttranslational stabilization in ST38c cells. This cell line constitutes a useful experimental tool for future investigations on the molecular and cellular mechanisms of androgen receptor signaling in SC function.
Collapse
Affiliation(s)
- Lavinia Vija
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France; «Carol Davila» University of Medicine and Pharmacy, Bucharest, Romania
| | - Kahina Boukari
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France
| | - Hugues Loosfelt
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France
| | - Geri Meduri
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France
| | - Say Viengchareun
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France
| | - Nadine Binart
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et Maladies de la Reproduction, Le Kremlin Bicêtre F-94275, France
| | - Jacques Young
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et Maladies de la Reproduction, Le Kremlin Bicêtre F-94275, France
| | - Marc Lombès
- INSERM U693 and Univ Paris-Sud 11, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin Bicêtre F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et Maladies de la Reproduction, Le Kremlin Bicêtre F-94275, France.
| |
Collapse
|
34
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
35
|
Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 2013; 27:909-24. [PMID: 23579486 DOI: 10.1210/me.2012-1328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Currently available progesterone (P4) receptor (PR) antagonists, such as mifepristone (RU486), lack specificity and display partial agonist properties, leading to potential drawbacks in their clinical use. Recent x-ray crystallographic studies have identified key contacts involved in the binding of agonists and antagonists with PR opening the way for a new rational strategy for inactivating PR. We report here the synthesis and characterization of a novel class of PR antagonists (APRn) designed from such studies. The lead molecule, the homosteroid APR19, displays in vivo endometrial anti-P4 activity. APR19 inhibits P4-induced PR recruitment and transactivation from synthetic and endogenous gene promoters. Importantly, it exhibits high PR selectivity with respect to other steroid hormone receptors and is devoid of any partial agonist activity on PR target gene transcription. Two-hybrid and immunostaining experiments reveal that APR19-bound PR is unable to interact with either steroid receptor coactivators 1 and 2 (SRC1 and SCR2) or nuclear receptor corepressor (NcoR) and silencing mediator of retinoid acid and thyroid hormone receptor (SMRT), in contrast to RU486-PR complexes. APR19 also inhibits agonist-induced phosphorylation of serine 294 regulating PR transcriptional activity and turnover kinetics. In silico docking studies based on the crystal structure of the PR ligand-binding domain show that, in contrast to P4, APR19 does not establish stabilizing hydrogen bonds with the ligand-binding cavity, resulting in an unstable ligand-receptor complex. Altogether, these properties highly distinguish APR19 from RU486 and likely its derivatives, suggesting that it belongs to a new class of pure antiprogestins that inactivate PR by a passive mechanism. These specific PR antagonists open new perspectives for long-term hormonal therapy.
Collapse
Affiliation(s)
- Junaid A Khan
- Inserm U693, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bellance C, Khan JA, Meduri G, Guiochon-Mantel A, Lombès M, Loosfelt H. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes. Mol Biol Cell 2013; 24:1363-74. [PMID: 23485561 PMCID: PMC3639048 DOI: 10.1091/mbc.e12-11-0807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Conditionally expressed progesterone receptor isoforms PRA and PRB enhance breast cancer cell migration through interaction with focal adhesion kinase (FAK) and differential regulation of FAK phosphorylation and turnover. PRB-stimulated migration is reduced by progestins, which is prevented by PR antagonists or agonist-bound PRA. Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(–) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.
Collapse
Affiliation(s)
- Catherine Bellance
- Institut National de la Santé et de la Recherche Médicale Unité 693, Le Kremlin-Bicêtre F-94276, France
| | | | | | | | | | | |
Collapse
|