1
|
Zeng Z, Xu S, Wang R, Han X. FKBP4 promotes glycolysis and hepatocellular carcinoma progression via p53/HK2 axis. Sci Rep 2024; 14:26893. [PMID: 39505995 PMCID: PMC11542027 DOI: 10.1038/s41598-024-78383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
FKBP4, a member of the FK506-binding protein (FKBP) family, is a promising target for a variety of disorders, including cancer. However, its underlying molecular mechanism and potential function in hepatocellular carcinoma (HCC) are largely elusive. Therefore, we aimed to investigate the expression status, functional implications and underlying mechanisms of FKBP4 in HCC. Our bioinformatics analysis of TCGA LIHC datasets, ICGC LIRI-JP datasets and GEO datasets results showed FKBP4 was upregulated in HCC tissues. We also confirmed the elevated FKBP4 in clinical HCC samples. Additionally, quantitative RT-PCR results revealed FKBP4 was highly expressed in all five tested HCC cell lines. We also observed a correlation between elevated FKBP4 expression and poor prognosis in HCC patients. Loss of FKBP4 can inhibit the proliferation and migration in HCC cells. Furthermore, we found that silencing FKBP4 suppressed glucose uptake, lactic acid production and 18F-FDG uptake compared with the control group. Mechanistically, our funding indicated that FKBP4 participates in glycolysis through p53 mediated HK2 signaling pathway, specially, FKBP4 knockdown promotes the expression and stability of p53 protein rather than affecting the transcription level. Finally, rescue experiments revealed that simultaneous knockdown of both FKBP4 and p53 partially reversed the inhibitory effects on HK2 protein levels and 18F-FDG uptake. Our study elucidates a novel role of FKBP4 in promoting HCC development and glycolysis by modulating the p53/HK2 signaling pathway. Given the critical role of aerobic glycolysis in the progression of HCC, targeting FKBP4 may offer a new therapeutic strategy for treating this malignancy.
Collapse
Affiliation(s)
- Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Shasha Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| |
Collapse
|
2
|
Wang B, Pu R. Association between glycolysis markers and prognosis of liver cancer: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:390. [PMID: 38114977 PMCID: PMC10731852 DOI: 10.1186/s12957-023-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND In recent years, the capacity of tumor cells to maintain high levels of glycolysis, even in the presence of oxygen, has emerged as one of the main metabolic traits and garnered considerable attention. The purpose of this meta-analysis is to investigate the prognostic value of glycolysis markers in liver cancer. METHODS PubMed, Embase, and Cochrane Library databases were searched for articles on glycolytic marker expression levels associated with the prognosis of liver cancer until April 2023. Stata SE14.0 was used to calculate the aggregate hazard ratios and 95% confidence intervals. RESULTS Thirty-five studies were included. The worse overall survival (OS) (P < 0.001), disease-free survival (DFS) (P = 0.001), recurrence-free survival (RFS) (P = 0.004), and time to recurrence (TTR) (P < 0.001) were significantly associated with elevated expression of glycolysis markers. Higher expression of PKM2 (P < 0.001), STMN1 (P = 0.002), MCT4 (P < 0.001), GLUT1 (P = 0.025), HK-2 (P < 0.001), and CA9 (P < 0.001) were significantly related to shorter OS. Increased levels of PKM2 (P < 0.001), CA9 (P = 0.005), and MCT4 (P < 0.001) were associated with worse DFS. Elevated PKM2 expression (P = 0.002) was also associated with poorer RFS in hepatocellular carcinoma patients. GLUT2 expression was not correlated with the prognosis of liver cancer (P = 0.134). CONCLUSIONS Elevated expression of glycolysis markers was associated with worse OS, DFS, RFS, and TTR in patients with liver cancer. Therefore, these glycolysis markers could serve as potential prognostic markers and therapeutic targets in liver cancer. TRIAL REGISTRATION PROSPERO registration: CRD42023469645.
Collapse
Affiliation(s)
- Boqin Wang
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China.
| |
Collapse
|
3
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
4
|
Ozawa A, Iwasaki M, Yokoyama K, Tsuchiya J, Kawano R, Nishihara H, Tateishi U. Correlation between choline kinase alpha expression and 11C-choline accumulation in breast cancer using positron emission tomography/computed tomography: a retrospective study. Sci Rep 2023; 13:17620. [PMID: 37848481 PMCID: PMC10582087 DOI: 10.1038/s41598-023-44542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Choline kinase (CK) is reportedly overexpressed in various malignancies. Among its isoforms, CKα overexpression is presumably related to oncogenic change. Choline positron emission tomography (PET) is reportedly useful for detecting and evaluating therapy outcomes in malignancies. In this study, we investigated the correlation between CKα expression and 11C-choline accumulation in breast cancer cells. We also compared the CKα expression level with other pathological findings for investigating tumour activity. Fifty-six patients with breast cancer (mean age: 51 years) who underwent their first medical examination between May 2007 and December 2008 were enrolled. All the patients underwent 11C-choline PET/computed tomography imaging prior to surgery. The maximum standardised uptake value was recorded for evaluating 11C-choline accumulation. The intensity of CKα expression was classified using immunostaining. A significant correlation was observed between CKα expression and 11C-choline accumulation (P < 0.0001). A comparison of breast cancer mortality demonstrated that strong CKα expression was associated with a shorter survival time (P < 0.0001). 11C-choline accumulation was also negatively correlated with survival time (P < 0.0001). Tumours with strong CKα expression are reportedly highly active in breast cancer. A correlation was observed between CKα expression and 11C-choline accumulation, suggesting their role as prognostic indicators of breast cancer.
Collapse
Affiliation(s)
- Akane Ozawa
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masako Iwasaki
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
5
|
Chamarthy S, Mekala JR. Functional importance of glucose transporters and chromatin epigenetic factors in Glioblastoma Multiforme (GBM): possible therapeutics. Metab Brain Dis 2023; 38:1441-1469. [PMID: 37093461 DOI: 10.1007/s11011-023-01207-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain cancer affecting glial cells and is chemo- and radio-resistant. Glucose is considered the most vital energy source for cancer cell proliferation. During metabolism, hexose molecules will be transported into the cells via transmembrane proteins known as glucose transporter (GLUT). Among them, GLUT-1 and GLUT-3 play pivotal roles in glucose transport in GBM. Knockdown studies have established the role of GLUT-1, and GLUT-3 mediated glucose transport in GBM cells, providing insight into GLUT-mediated cancer signaling and cancer aggressiveness. This review focussed on the vital role of GLUT-1 and GLUT-3 proteins, which regulate glucose transport. Recent studies have identified the role of GLUT inhibitors in effective cancer prevention. Several of them are in clinical trials. Understanding and functional approaches towards glucose-mediated cell metabolism and chromatin epigenetics will provide valuable insights into the mechanism of cancer aggressiveness, cancer stemness, and chemo-resistance in Glioblastoma Multiforme (GBM). This review summarizes the role of GLUT inhibitors, micro-RNAs, and long non-coding RNAs that aid in inhibiting glucose uptake by the GBM cells and other cancer cells leading to the identification of potential therapeutic, prognostic as well as diagnostic markers. Furthermore, the involvement of epigenetic factors, such as microRNAs, in regulating glycolytic genes was demonstrated.
Collapse
Affiliation(s)
- Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
6
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
7
|
Ma Q, Jiang H, Ma L, Zhao G, Xu Q, Guo D, He N, Liu H, Meng Z, Liu J, Zhu L, Lin Q, Wu X, Li M, Luo S, Fang J, Lu Z. The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2209435120. [PMID: 37011206 PMCID: PMC10104498 DOI: 10.1073/pnas.2209435120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/08/2023] [Indexed: 04/05/2023] Open
Abstract
Aberrantly upregulated choline phospholipid metabolism is a novel emerging hallmark of cancer, and choline kinase α (CHKα), a key enzyme for phosphatidylcholine production, is overexpressed in many types of human cancer through undefined mechanisms. Here, we demonstrate that the expression levels of the glycolytic enzyme enolase-1 (ENO1) are positively correlated with CHKα expression levels in human glioblastoma specimens and that ENO1 tightly governs CHKα expression via posttranslational regulation. Mechanistically, we reveal that both ENO1 and the ubiquitin E3 ligase TRIM25 are associated with CHKα. Highly expressed ENO1 in tumor cells binds to I199/F200 of CHKα, thereby abrogating the interaction between CHKα and TRIM25. This abrogation leads to the inhibition of TRIM25-mediated polyubiquitylation of CHKα at K195, increased stability of CHKα, enhanced choline metabolism in glioblastoma cells, and accelerated brain tumor growth. In addition, the expression levels of both ENO1 and CHKα are associated with poor prognosis in glioblastoma patients. These findings highlight a critical moonlighting function of ENO1 in choline phospholipid metabolism and provide unprecedented insight into the integrated regulation of cancer metabolism by crosstalk between glycolytic and lipidic enzymes.
Collapse
Affiliation(s)
- Qingxia Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Hongfei Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Gaoxiang Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Qianqian Xu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
| | - Ningning He
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Hao Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zhaoyuan Meng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Juanjuan Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Lei Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Qian Lin
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Xiaolin Wu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong266003, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong266000, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Zhejinag University Cancer Center, Hangzhou, Zhejiang310029, China
| |
Collapse
|
8
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, Liu W, Liu S, Li B, Li C, Chang A, Tang B. UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:330. [PMID: 36419136 PMCID: PMC9686014 DOI: 10.1186/s13046-022-02528-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolysis metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options. The ubiquitin-proteasome system facilitates the turnover of most intracellular proteins with E3 ligase conferring the target selection and specificity. Ubiquitin protein ligase E3 component N-recognin 7 (UBR7), among the least studied E3 ligases, recognizes its substrate through a plant homeodomain (PHD) finger. Here, we bring into focus on its suppressive role in glycolysis and HCC tumorigenesis, dependent on its E3 ubiquitin ligase activity toward monoubiquitination of histone H2B at lysine 120 (H2BK120ub). METHODS In this study, we carried out high-throughput RNAi screening to identify epigenetic candidates in regulating lactic acid and investigated its possible roles in HCC progression. RESULTS UBR7 loss promotes HCC tumorigenesis both in vitro and in vivo. UBR7 inhibits glycolysis by indirectly suppressing HK2 expression, a downstream target of Nrf2/Bach1 axis. Mechanically, UBR7 regulates H2BK120ub to bind to Keap1 promoter through H2BK120ub monoubiquitination, thereby modulating Keap1 expression and downstream Nrf2/Bach1/HK2 signaling. Pharmaceutical and genetic inhibition of glycolytic enzymes attenuate the promoting effect of UBR7 deficiency on tumor growth. In addition, methyltransferase ALKBH5, downregulated in HCC, regulated UBR7 expression in an m6A-dependent manner. CONCLUSIONS These results collectively establish UBR7 as a critical negative regulator of aerobic glycolysis and HCC tumorigenesis through regulation of the Keap1/Nrf2/Bach1/HK2 axis, providing a potential clinical and therapeutic target for the HCC treatment.
Collapse
Affiliation(s)
- Liang Zhao
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Min Kang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaomeng Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhenran Wang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Yan Wang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Haiqiang Chen
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Wenhui Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Shiqian Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Baibei Li
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Chong Li
- grid.9227.e0000000119573309Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Antao Chang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Bo Tang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
10
|
Li R, Mei S, Ding Q, Wang Q, Yu L, Zi F. A pan-cancer analysis of the role of hexokinase II (HK2) in human tumors. Sci Rep 2022; 12:18807. [PMID: 36335239 PMCID: PMC9637150 DOI: 10.1038/s41598-022-23598-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022] Open
Abstract
More and more evidence show that HK2 is closely related to tumors. But no pan-cancer analysis is available. This paper aimed to explore the potential roles of HK2 across thirty-three tumors based on the datasets of the cancer genome Atlas (TCGA) and gene expression omnibus. HK2 is highly expressed in most tumors and related to the progression of some tumors. HK2 expression was associated with the infiltration of T follicular helper cells for the TCGA tumors of uveal melanoma, breast invasive carcinoma (BRCA), breast invasive carcinoma-luminalA (BRCA-LumA), head and neck squamous cell carcinoma (HNSC), head and neck squamous cell carcinoma with HPV positive (HNSC-HPV+), and cancer-associated fibroblasts for the tumors of brain lower grade glioma and stomach adenocarcinoma. Our first pan-cancer study offers a relatively comprehensive understanding of the roles of HK2 in different tumors.
Collapse
Affiliation(s)
- Ruiqi Li
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Shuchong Mei
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Qiang Ding
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Qingming Wang
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Li Yu
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Fuming Zi
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| |
Collapse
|
11
|
Watson GA, Sanz-Garcia E, Zhang WJ, Liu ZA, Yang SC, Wang B, Liu S, Kubli S, Berman H, Pfister T, Genta S, Spreafico A, Hansen AR, Bedard PL, Lheureux S, Abdul Razak A, Cescon D, Butler MO, Xu W, Mak TW, Siu LL, Chen E. Increase in serum choline levels predicts for improved progression-free survival (PFS) in patients with advanced cancers receiving pembrolizumab. J Immunother Cancer 2022; 10:jitc-2021-004378. [PMID: 35705312 PMCID: PMC9204435 DOI: 10.1136/jitc-2021-004378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Recent studies have demonstrated that T cells can induce vasodilation in a choline-acetyltransferase dependent manner, leading to an increase in T cell migration to infected tissues in response to viral infection, but its role in cancer is unclear. Choline acetyltransferase catalyzes the production of acetylcholine from choline and acetyl-CoA, however, acetylcholine is challenging to quantify due to its extremely short half-life while choline is stable. This study aims to correlate serum choline levels in patients with advanced solid tumors receiving pembrolizumab with treatment outcomes. Methods Blood samples were collected at baseline and at week 7 (pre-cycle 3) in patients treated with pembrolizumab in the INvestigator-initiated Phase 2 Study of Pembrolizumab Immunological Response Evaluation phase II trial (NCT02644369). Samples were analyzed for choline and circulating tumor DNA (ctDNA). Multivariable Cox models were used to assess the association between choline and overall survival (OS) and progression-free survival (PFS) when including ΔctDNAC3 (the change in ctDNA from baseline to cycle 3), cohort, PD-L1 expression and tumor mutation burden (TMB). An independent validation cohort from the LIBERATE study (NCT03702309) included patients on early phase trials treated with a PD-1 inhibitor. Results A total of 106 pts were included in the analysis. With a median follow-up of 12.6 months, median PFS and OS were 1.9 and 13.7 months, respectively. An increase in serum choline level at week 7 compared with baseline (ΔcholineC3) in 81 pts was significantly associated with a better PFS (aHR 0.48, 95% CI 0.28 to 0.83, p=0.009), and a trend toward a better OS (aHR 0.64, 95% CI 0.37 to 1.12, p=0.119). A combination of ΔctDNAC3 and ΔcholineC3 was prognostic for both OS and PFS. Multivariable analyses show ΔcholineC3 was a prognostic factor for PFS independent of ΔctDNAC3, cohort, PD-L1 and TMB. In the independent validation cohort (n=51), an increase in serum choline at cycle 2 was associated with a trend to improved PFS. Conclusions This is the first exploratory report of serum choline levels in pan-cancer patients receiving pembrolizumab. The association between improved PFS and ΔcholineC3 suggests a possible role for the cholinergic system in the regulation of antitumor immunity. Further pre-clinical and clinical studies are required to validate this finding. Trial registration number NCT03702309.
Collapse
Affiliation(s)
- Geoffrey Alan Watson
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Enrique Sanz-Garcia
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Wen-Jiang Zhang
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Zhihui Amy Liu
- Biostatistics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada.,University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Sy Cindy Yang
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ben Wang
- Laboratory Medicine and Pathobiology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shaofeng Liu
- Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Shawn Kubli
- Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hal Berman
- Laboratory Medicine and Pathobiology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Thomas Pfister
- Laboratory Medicine and Pathobiology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Sofia Genta
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dave Cescon
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marcus O Butler
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Wei Xu
- Biostatistics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tak W Mak
- Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eric Chen
- Division of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Wu Q, Wang SP, Sun XX, Tao YF, Yuan XQ, Chen QM, Dai L, Li CL, Zhang JY, Yang AL. HuaChanSu suppresses tumor growth and interferes with glucose metabolism in hepatocellular carcinoma cells by restraining Hexokinase-2. Int J Biochem Cell Biol 2022; 142:106123. [PMID: 34826616 DOI: 10.1016/j.biocel.2021.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has become the sixth highly diagnosed cancer and the fourth main reason of cancer deaths worldwide. HuaChanSu, an extract from dried toad skin, exhibits good anticancer effects and has been widely used in the treatment of liver cancer. The reprogramming of glucose metabolism is one remarkable feature of hepatocellular carcinoma, and the effects of HuaChanSu on the abnormal glucose metabolism of cancer cells have not been elucidated. In our study, we investigate the effects of HuaChanSu on glucose metabolism of hepatocellular carcinoma cells and tumor growth in vivo. The results show that HuaChanSu inhibits the tumor growth of hepatoma H22-bearing mice and prolongs the survival time of tumor-bearing mice, additionally, HuaChanSu has no obvious adverse effects in these mice. In vitro, HuaChanSu restrains the proliferation, induces apoptosis and cell cycle arrest of human hepatoma cells. HuaChanSu also promotes ROS production and causes mitochondrial damage. Furthermore, HuaChanSu inhibits glucose uptake and lactate release in human hepatoma cells. Mechanistically, we find that HuaChanSu downregulates Hexokinase-2 (HK2) expression, and using RNA interference, we confirm that HuaChanSu suppresses the growth of HepG2 cells by interfering with glucose metabolism through downregulation of Hexokinase-2. However, knockdown of Hexokinase-2 has no obvious effect on the proliferation of SK-HEP-1 cells, although glucose uptake and lactate release are reduced in siHK2-transfected SK-HEP-1 cells, subsequently, we illustrate that two human hepatoma cell lines exhibit glucose metabolism heterogeneity, which causes the different cell proliferation responses to the inhibition of Hexokinase-2. Taken together, our study indicates that HuaChanSu could inhibit tumor growth and interfere with glucose metabolism via suppression of Hexokinase-2, and these findings provide a new insight into the anti-hepatoma mechanisms of HuaChanSu and lay a theoretical foundation for the further clinical application of HuaChanSu.
Collapse
Affiliation(s)
- Qi Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shao-Ping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Xue Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu-Fan Tao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Qing Yuan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qi-Mei Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chun-Lei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China.
| | - Jia-Yu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Ai-Lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
14
|
Ferns GA, Shahini Shams Abadi M, Raeisi A, Arjmand MH. The Potential Role of Changes in the Glucose and Lipid Metabolic Pathways in Gastrointestinal Cancer Progression: Strategy in Cancer Therapy. Gastrointest Tumors 2021; 8:169-176. [PMID: 34722470 DOI: 10.1159/000517771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Changes in cell metabolism are a well-known feature of some cancers, and this may be involved in the etiology of tumor formation and progression, as well as tumor heterogeneity. These changes may affect fatty acid metabolism and glycolysis and are required to provide the increase in energy necessary for the high rate of proliferation of cancer cells. Gastrointestinal cancers remain a difficult-to-treat cancer, particularly as they are usually diagnosed at a late stage of disease and are associated with poor outcomes. Summary Recently, the changes in the metabolic pathways, including the expression of the rate-limiting enzymes involved, have been considered to be a potential target for therapy for gastrointestinal tumors. Key Message A combination of routine chemotherapy drugs with metabolic inhibitors may improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Milad Shahini Shams Abadi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ahmad Raeisi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Kong M, Dong W, Xu H, Fan Z, Miao X, Guo Y, Li C, Ye Q, Wang Y, Xu Y. Choline Kinase Alpha Is a Novel Transcriptional Target of the Brg1 in Hepatocyte: Implication in Liver Regeneration. Front Cell Dev Biol 2021; 9:705302. [PMID: 34422825 PMCID: PMC8377418 DOI: 10.3389/fcell.2021.705302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration is a key compensatory process in response to liver injury serving to contain damages and to rescue liver functions. Hepatocytes, having temporarily exited the cell cycle after embryogenesis, resume proliferation to regenerate the injured liver parenchyma. In the present study we investigated the transcriptional regulation of choline kinase alpha (Chka) in hepatocytes in the context of liver regeneration. We report that Chka expression was significantly up-regulated in the regenerating livers in the partial hepatectomy (PHx) model and the acetaminophen (APAP) injection model. In addition, treatment with hepatocyte growth factor (HGF), a strong pro-proliferative cue, stimulated Chka expression in primary hepatocytes. Chka depletion attenuated HGF-induced proliferation of hepatocytes as evidenced by quantitative PCR and Western blotting measurements of pro-proliferative genes as well as EdU incorporation into replicating DNA. Of interest, deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated Chka induction in the regenerating livers in mice and in cultured hepatocytes. Further analysis revealed that Brg1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) to directly bind to the Chka promoter and activate Chka transcription. Finally, examination of human acute liver failure (ALF) specimens identified a positive correlation between Chka expression and Brg1 expression. In conclusion, our data suggest that Brg1-dependent trans-activation of Chka expression may contribute to liver regeneration.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chengping Li
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Qing Ye
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Yutong Wang
- Department of Cell Biology, The Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
16
|
Abstract
Receptor–ligand interactions on the cell surface or intrinsic stress signals can commit mammalian cells to apoptosis. In this study, we discover how hexokinases confer resistance to receptor-mediated apoptosis through specific inhibition of B-cell lymphoma 2 (BCL-2) proteins. Hexokinases retrotranslocate activator and effector BCL-2 proteins from the mitochondria into the cytosol. Hexokinase-dependent BCL-2 protein retrotranslocation can protect cells from apoptosis despite death receptor signaling. Death receptor–mediated apoptosis requires the mitochondrial apoptosis pathway in many mammalian cells. In response to death receptor signaling, the truncated BH3-only protein BID can activate the proapoptotic BCL-2 proteins BAX and BAK and trigger the permeabilization of the mitochondria. BAX and BAK are inhibited by prosurvival BCL-2 proteins through retrotranslocation from the mitochondria into the cytosol, but a specific resistance mechanism to truncated BID-dependent apoptosis is unknown. Here, we report that hexokinase 1 and hexokinase 2 inhibit the apoptosis activator truncated BID as well as the effectors BAX and BAK by retrotranslocation from the mitochondria into the cytosol. BCL-2 protein shuttling and protection from TRAIL- and FasL-induced cell death requires mitochondrial hexokinase localization and interactions with the BH3 motifs of BCL-2 proteins but not glucose phosphorylation. Together, our work establishes hexokinase-dependent retrotranslocation of truncated BID as a selective protective mechanism against death receptor–induced apoptosis on the mitochondria.
Collapse
|
17
|
Liu R, Lee JH, Li J, Yu R, Tan L, Xia Y, Zheng Y, Bian XL, Lorenzi PL, Chen Q, Lu Z. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol Cell 2021; 81:2722-2735.e9. [PMID: 34077757 DOI: 10.1016/j.molcel.2021.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Lipid droplets are important for cancer cell growth and survival. However, the mechanism underlying the initiation of lipid droplet lipolysis is not well understood. We demonstrate here that glucose deprivation induces the binding of choline kinase (CHK) α2 to lipid droplets, which is sequentially mediated by AMPK-dependent CHKα2 S279 phosphorylation and KAT5-dependent CHKα2 K247 acetylation. Importantly, CHKα2 with altered catalytic domain conformation functions as a protein kinase and phosphorylates PLIN2 at Y232 and PLIN3 at Y251. The phosphorylated PLIN2/3 dissociate from lipid droplets and are degraded by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis, fatty acid oxidation, and brain tumor growth. In addition, levels of CHKα2 S279 phosphorylation, CHKα2 K247 acetylation, and PLIN2/3 phosphorylation are positively correlated with one another in human glioblastoma specimens and are associated with poor prognosis in glioblastoma patients. These findings underscore the role of CHKα2 as a protein kinase in lipolysis and glioblastoma development.
Collapse
Affiliation(s)
- Rui Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea; Department of Biological Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610051, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lin Tan
- The Proteomics and Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yan Xia
- Department of Neuro-Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Department of Neuro-Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xue-Li Bian
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Philip L Lorenzi
- The Proteomics and Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Cancer Center, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center of Oral Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; Zhejiang University Cancer Center, Hangzhou, 310029, China.
| |
Collapse
|
18
|
Lacal JC, Zimmerman T, Campos JM. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021; 13:788. [PMID: 34070409 PMCID: PMC8226952 DOI: 10.3390/pharmaceutics13060788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, 28046 Madrid, Spain
| | - Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Department of Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, Universidad de Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), SAS-Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
19
|
Ma R, Wu Y, Li S, Yu X. Interplay Between Glucose Metabolism and Chromatin Modifications in Cancer. Front Cell Dev Biol 2021; 9:654337. [PMID: 33987181 PMCID: PMC8110832 DOI: 10.3389/fcell.2021.654337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells reprogram glucose metabolism to meet their malignant proliferation needs and survival under a variety of stress conditions. The prominent metabolic reprogram is aerobic glycolysis, which can help cells accumulate precursors for biosynthesis of macromolecules. In addition to glycolysis, recent studies show that gluconeogenesis and TCA cycle play important roles in tumorigenesis. Here, we provide a comprehensive review about the role of glycolysis, gluconeogenesis, and TCA cycle in tumorigenesis with an emphasis on revealing the novel functions of the relevant enzymes and metabolites. These functions include regulation of cell metabolism, gene expression, cell apoptosis and autophagy. We also summarize the effect of glucose metabolism on chromatin modifications and how this relationship leads to cancer development. Understanding the link between cancer cell metabolism and chromatin modifications will help develop more effective cancer treatments.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
20
|
Pacheco-Torres J, Penet MF, Mironchik Y, Krishnamachary B, Bhujwalla ZM. The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. Cancer Metab 2021; 9:10. [PMID: 33608051 PMCID: PMC7893974 DOI: 10.1186/s40170-021-00245-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. Methods We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. Results We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. Conclusions Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00245-w.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease According to Fibrosis Severity. Metabolites 2021; 11:metabo11010054. [PMID: 33466889 PMCID: PMC7830343 DOI: 10.3390/metabo11010054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is considered as the forthcoming predominant cause for hepatocellular carcinoma (HCC). NAFLD-HCC may rise in non-cirrhotic livers in 40 to 50% of patients. The aim of this study was to identify different metabolic pathways of HCC according to fibrosis level (F0F1 vs. F3F4). A non-targeted metabolomics strategy was applied. We analyzed 52 pairs of human HCC and adjacent non-tumoral tissues which included 26 HCC developed in severe fibrosis or cirrhosis (F3F4) and 26 in no or mild fibrosis (F0F1). Tissue extracts were analyzed using 1H-Nuclear Magnetic Resonance spectroscopy. An optimization evolutionary method based on genetic algorithm was used to identify discriminant metabolites. We identified 34 metabolites differentiating the two groups of NAFLD-HCC according to fibrosis level, allowing us to propose two metabolomics phenotypes of NAFLD-HCC. We showed that HCC-F0F1 mainly overexpressed choline derivatives and glutamine, whereas HCC-F3F4 were characterized by a decreased content of monounsaturated fatty acids (FA), an increase of saturated FA and an accumulation of branched amino acids. Comparing HCC-F0F1 and HCC-F3F4, differential expression levels of glucose, choline derivatives and phosphoethanolamine, monounsaturated FA, triacylglycerides were identified as specific signatures. Our metabolomics analysis of HCC tissues revealed for the first time two phenotypes of HCC developed in NAFLD according to fibrosis level. This study highlighted the impact of the underlying liver disease on metabolic reprogramming of the tumor.
Collapse
|
22
|
Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113318. [PMID: 33182674 PMCID: PMC7696782 DOI: 10.3390/cancers12113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) represents an important health problem. At the moment, systemic therapies offered only modest clinical benefits. Thus, HCC represents a cancer extremely difficult to treat, and therapeutic breakthroughs are urgently needed. Metabolic reprogramming of neoplastic cells has been recognized as one of the core hallmarks of cancer. Experimental animal models represent an important tool that allows to investigate metabolic changes underlying HCC development and progression. In the present review, we characterize available rodent models of hepatocarcinogenesis. Moreover, we discuss the possibility that pharmacological targeting of Warburg metabolism may represent an additional tool to improve already available therapeutic approaches for HCC. Abstract Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.
Collapse
|
23
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
24
|
Zhang B, Chen J, Cui M, Jiang Y. LncRNA ZFAS1/miR-1271-5p/HK2 Promotes Glioma Development Through Regulating Proliferation, Migration, Invasion and Apoptosis. Neurochem Res 2020; 45:2828-2839. [DOI: 10.1007/s11064-020-03131-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 01/03/2023]
|
25
|
lncRNA-SOX2OT promotes hepatocellular carcinoma invasion and metastasis through miR-122-5p-mediated activation of PKM2. Oncogenesis 2020; 9:54. [PMID: 32467565 PMCID: PMC7256049 DOI: 10.1038/s41389-020-0242-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Tumor cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect, but the involvement of Warburg effect in liver cancer cell metastasis is not well understood. In present study, our results indicate a positive correlation between glucose metabolism level and metastatic potential of hepatocellular carcinoma (HCC). We also observed that a long noncoding RNA-SOX2OT (lncRNA-SOX2OT) can not only increase the metastatic potential of HCC but also promote a pyruvate kinase M2 (PKM2)-mediated activation of glucose metabolism. Inhibition of PKM2 in HCC cells greatly compromises lncRNA-SOX2OT in promoting Warburg effect and metastasis. Furthermore, miR-122-5p was found being a direct target of lncRNA-SOX2OT in regulating PKM2 expression. Thus, our findings reveal that lncRNA-SOX2OT, a regulator of PKM2, could predispose HCC patients to metastases and may serve as a candidate for metastatic prediction and therapies in HCC patients.
Collapse
|
26
|
Yu L, Wei M, Li F. Longitudinal Analysis of Gene Expression Changes During Cervical Carcinogenesis Reveals Potential Therapeutic Targets. Evol Bioinform Online 2020; 16:1176934320920574. [PMID: 32489245 PMCID: PMC7241206 DOI: 10.1177/1176934320920574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the treatment of cervical cancer (CC), the prognosis of patients with CC remains to be improved. This study aimed to explore candidate gene targets for CC. CC datasets were downloaded from the Gene Expression Omnibus database. Genes with similar expression trends in varying steps of CC development were clustered using Short Time-series Expression Miner (STEM) software. Gene functions were then analyzed using the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Protein interactions among genes of interest were predicted, followed by drug-target genes and prognosis-associated genes. The expressions of the predicted genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Red and green profiles with upward and downward gene expressions, respectively, were screened using STEM software. Genes with increased expression were significantly enriched in DNA replication, cell-cycle-related biological processes, and the p53 signaling pathway. Based on the predicted results of the Drug-Gene Interaction database, 17 drug-gene interaction pairs, including 3 red profile genes (TOP2A, RRM2, and POLA1) and 16 drugs, were obtained. The Cancer Genome Atlas data analysis showed that high POLA1 expression was significantly correlated with prolonged survival, indicating that POLA1 is protective against CC. RT-qPCR and Western blotting showed that the expressions of TOP2A, RRM2, and POLA1 gradually increased in the multistep process of CC. TOP2A, RRM2, and POLA1 may be targets for the treatment of CC. However, many studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lijun Yu
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meiyan Wei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengyan Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Li WC, Huang CH, Hsieh YT, Chen TY, Cheng LH, Chen CY, Liu CJ, Chen HM, Huang CL, Lo JF, Chang KW. Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Front Oncol 2020; 10:176. [PMID: 32195170 PMCID: PMC7063098 DOI: 10.3389/fonc.2020.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
To support great demand of cell growth, cancer cells preferentially obtain energy and biomacromolecules by glycolysis over mitochondrial oxidative phosphorylation (OxPhos). Among all glycolytic enzymes, hexokinase (HK), a rate-limiting enzyme at the first step of glycolysis to catalyze cellular glucose into glucose-6-phosphate, is herein emphasized. Four HK isoforms, HK1-HK4, were discovered in nature. It was shown that HK2 expression is enriched in many tumor cells and correlated with poorer survival rates in most neoplastic cells. HK2-mediated regulations for cell malignancy and mechanistic cues in regulating head and neck tumorigenesis, however, are not fully elucidated. Cellular malignancy index, such as cell growth, cellular motility, and treatment sensitivity, and molecular alterations were determined in HK2-deficient head and neck squamous cell carcinoma (HNSCC) cells. By using various cancer databases, HK2, but not HK1, positively correlates with HNSCC progression in a stage-dependent manner. A high HK2 expression was detected in head and neck cancerous tissues compared with their normal counterparts, both in mouse and human subjects. Loss of HK2 in HNSCC cells resulted in reduced cell (in vitro) and tumor (in vivo) growth, as well as decreased epithelial-mesenchymal transition–mediated cell movement; in contrast, HK2-deficient HNSCC cells exhibited greater sensitivity to chemotherapeutic drugs cisplatin and 5-fluorouracil but are more resistant to photodynamic therapy, indicating that HK2 expression could selectively define treatment sensitivity in HNSCC cells. At the molecular level, it was found that HK2 alteration drove metabolic reprogramming toward OxPhos and modulated oncogenic Akt and mutant TP53-mediated signals in HNSCC cells. In summary, the present study showed that HK2 suppression could lessen HNSCC oncogenicity and modulate therapeutic sensitivity, thereby being an ideal therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiang Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ta Hsieh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tsai-Ying Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hao Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Kowloon, Hong Kong
| | - Jeng-Fang Lo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Sapir G, Harris T, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. [ 13C 6,D 8]2-deoxyglucose phosphorylation by hexokinase shows selectivity for the β-anomer. Sci Rep 2019; 9:19683. [PMID: 31873121 PMCID: PMC6928223 DOI: 10.1038/s41598-019-56063-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
A non-radioactive 2-deoxyglucose (2DG) analog has been developed here for hyperpolarized magnetic resonance investigations. The analog, [13C6,D8]2DG, showed 13% polarization in solution (27,000-fold signal enhancement at the C1 site), following a dissolution-DNP hyperpolarization process. The phosphorylation of this analog by yeast hexokinase (yHK) was monitored in real-time with a temporal resolution of 1 s. We show that yHK selectively utilizes the β anomer of the 2DG analog, thus revealing a surprising anomeric specificity of this reaction. Such anomeric selectivity was not observed for the reaction of yHK or bacterial glucokinase with a hyperpolarized glucose analog. yHK is highly similar to the human HK-2, which is overexpressed in malignancy. Thus, the current finding may shed a new light on a fundamental enzyme activity which is utilized in the most widespread molecular imaging technology for cancer detection - positron-emission tomography with 18F-2DG.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
29
|
López Grueso MJ, Tarradas Valero RM, Carmona-Hidalgo B, Lagal Ruiz DJ, Peinado J, McDonagh B, Requejo Aguilar R, Bárcena Ruiz JA, Padilla Peña CA. Peroxiredoxin 6 Down-Regulation Induces Metabolic Remodeling and Cell Cycle Arrest in HepG2 Cells. Antioxidants (Basel) 2019; 8:E505. [PMID: 31652719 PMCID: PMC6912460 DOI: 10.3390/antiox8110505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is the only member of 1-Cys subfamily of peroxiredoxins in human cells. It is the only Prdx acting on phospholipid hydroperoxides possessing two additional sites with phospholipase A2 (PLA2) and lysophosphatidylcholine-acyl transferase (LPCAT) activities. There are contrasting reports on the roles and mechanisms of multifunctional Prdx6 in several pathologies and on its sensitivity to, and influence on, the redox environment. We have down-regulated Prdx6 with specific siRNA in hepatoblastoma HepG2 cells to study its role in cell proliferation, redox homeostasis, and metabolic programming. Cell proliferation and cell number decreased while cell volume increased; import of glucose and nucleotide biosynthesis also diminished while polyamines, phospholipids, and most glycolipids increased. A proteomic quantitative analysis suggested changes in membrane arrangement and vesicle trafficking as well as redox changes in enzymes of carbon and glutathione metabolism, pentose-phosphate pathway, citrate cycle, fatty acid metabolism, biosynthesis of aminoacids, and Glycolysis/Gluconeogenesis. Specific redox changes in Hexokinase-2 (HK2), Prdx6, intracellular chloride ion channel-1 (CLIC1), PEP-carboxykinase-2 (PCK2), and 3-phosphoglycerate dehydrogenase (PHGDH) are compatible with the metabolic remodeling toward a predominant gluconeogenic flow from aminoacids with diversion at 3-phospohglycerate toward serine and other biosynthetic pathways thereon and with cell cycle arrest at G1/S transition.
Collapse
Affiliation(s)
- María José López Grueso
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | | | - Beatriz Carmona-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | - Daniel José Lagal Ruiz
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | - José Peinado
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - Brian McDonagh
- Department of Physiology, School of Medicine, NUI Galway, H91 TK33 Galway, Ireland.
| | - Raquel Requejo Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - José Antonio Bárcena Ruiz
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - Carmen Alicia Padilla Peña
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| |
Collapse
|
30
|
Metabolic Regulation of Glycolysis and AMP Activated Protein Kinase Pathways during Black Raspberry-Mediated Oral Cancer Chemoprevention. Metabolites 2019; 9:metabo9070140. [PMID: 31336728 PMCID: PMC6680978 DOI: 10.3390/metabo9070140] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/15/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.
Collapse
|
31
|
Yang H, Zhong JT, Zhou SH, Han HM. Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 2019; 10:3066-3083. [PMID: 31105886 PMCID: PMC6508962 DOI: 10.18632/oncotarget.24684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
The Warburg effect plays an important role in the proliferation and invasion of malignant tumors. Glucose transporter 1 and hexokinase II are two key energy transporters involved in mediating the Warburg effect. This review will analyze the mechanisms of these two markers in their effects on the biological behavior of head and neck cancer.
Collapse
Affiliation(s)
- Hang Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Present Address: Department of Otorhinolaryngology, The People's Hospital of Jiangshan City, Jiangshan, Zhejiang, 324100, China
| | - Jiang-Tao Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shui-Hong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - He-Ming Han
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
32
|
Sawayama H, Ogata Y, Ishimoto T, Mima K, Hiyoshi Y, Iwatsuki M, Baba Y, Miyamoto Y, Yoshida N, Baba H. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci 2019; 110:1705-1714. [PMID: 30861255 PMCID: PMC6500964 DOI: 10.1111/cas.13995] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose transporter 1 (GLUT1) expression is a prognostic marker for esophageal squamous cell carcinoma (ESCC). Recent work on GLUT1 and development of specific inhibitors supports the feasibility of GLUT1 inhibition as a treatment for various cancers. The anti–proliferative effects of GLUT1‐specific small interfering RNA (siRNA) and a GLUT1 inhibitor were evaluated in ESCC cell lines. Expression of pro–proliferative and anti–proliferative signaling and effector molecules was examined by western blotting and quantitative RT‐PCR. GLUT1 expression in pretreatment clinical biopsy samples was measured by immunohistochemistry and correlated with various clinicopathological parameters and response to chemotherapy. The reduction in standardized uptake value (SUV) of 18F‐fluoro‐deoxyglucose was calculated using the formula: ([pretreatment SUVmax – posttreatment SUVmax]/pretreatment SUVmax) × 100. GLUT1‐specific siRNA expression in ESCC cells inhibited their proliferation, increased expression of p27kip, and decreased expression of cyclin‐dependent kinase 6, pyruvate kinase muscle isozyme M2, lactate dehydrogenase A and phospho‐ERK1/2. Suppression of GLUT1 by siRNA increased low‐dose cisplatin‐induced inhibition of proliferation of TE‐11 ESCC cells, which express high GLUT1 levels. Similarly, BAY‐876, a GLUT1 inhibitor, enhanced cisplatin‐mediated inhibition of ESCC cell proliferation. GLUT1 expression in pretreatment biopsy samples was associated with the response to chemotherapy as well as the pathological tumor stage and histological response grade after esophagectomy. Finally, GLUT1‐negative tumors showed a significantly larger reduction in SUVmax (61.2% ± 4.5%) compared with GLUT1‐positive tumors (46.2% ± 4.4%). GLUT1 expression may be a surrogate marker of response to chemotherapy, and inhibition of GLUT1 may be a potential novel therapy for ESCC patients.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
Cotte AK, Cottet V, Aires V, Mouillot T, Rizk M, Vinault S, Binquet C, de Barros JPP, Hillon P, Delmas D. Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget 2019; 10:2161-2172. [PMID: 31040908 PMCID: PMC6481329 DOI: 10.18632/oncotarget.26738] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Phospholipids are now well-recognised players in tumour progression. Their metabolic tissue alterations can be associated with plasmatic modifications. The aim of this study was to evaluate the potential of the plasma phospholipid profile as a risk and prognostic biomarker in HCC. Methods Ninety cirrhotic patients with (cases) or without HCC (controls) were studied after matching for inclusion centre, age, gender, virus infection, cirrhosis duration and Child-Pugh grade. High-performance liquid chromatography coupled with tandem-mass spectrometry was used to quantify the main species of seven categories of phospholipids in plasma. Results Elevated concentrations of phosphatidylcholine (PC) 16:0/16:1 (p=0.0180), PC 16:0/16:0 (p=0.0327), PC 16:0/18:1 (p=0.0264) and sphingomyelin (SM) 18:2/24:1 (p=0.0379) and low concentrations of lysophosphatidylcholine 20:4 (0.0093) and plasmalogen-phosphatidylethanolamine (pPE) 16:0/20:4 (p=0.0463), pPE 18:0/20:4 (p=0.0077), pPE 18:0/20:5 (p=0.0163), pPE 18:0/20:3 (p=0.0463) discriminated HCC patients from cirrhotic controls. Two ceramide species were associated with increased HCC risk of death while lysophospholipids, a polyunsaturated phosphatidylinositol, some PC and SM species were associated with low risk of death in HCC patients in 1 and/or 3 years. Conclusion This study identified phospholipid profiles related to HCC risk in liver cirrhotic patients and showed for the first time the potential of some phospholipids in predicting HCC patient mortality.
Collapse
Affiliation(s)
- Alexia Karen Cotte
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Vanessa Cottet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Virginie Aires
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Thomas Mouillot
- Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Maud Rizk
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France
| | - Sandrine Vinault
- University of Bourgogne, Franche-Comté, Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Christine Binquet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | | | - Patrick Hillon
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Dominique Delmas
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| |
Collapse
|
34
|
Prognostic role of glycolysis for cancer outcome: evidence from 86 studies. J Cancer Res Clin Oncol 2019; 145:967-999. [DOI: 10.1007/s00432-019-02847-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
35
|
Brito Santos R, Pereira da Silva R, Akihiro Melo Otsuka F, de Jesus Trindade D, Costa Santos A, Reis Matos H. An HPLC method for the determination of adenosine diphosphate: An important marker of hexokinase activity in metabolic diseases. Biomed Chromatogr 2019; 33:e4473. [PMID: 30567013 DOI: 10.1002/bmc.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/10/2022]
Abstract
Hexokinases play a critical role in the cellular uptake and utilization of glucose. As such, they are of fundamental importance to all cells. By catalyzing glucose to produce glucose-6-phosphate, hexokinases control the first irreversible step of glucose metabolism and initiate all major pathways of glucose consumption. Our objective was to develop and validate highly sensitive and selective high-performance liquid chromatography with photodiode array detector (HPLC-PDA) assays allowing the determination of adenosine diphosphate, which was used for the determination of hexokinase activity. Samples were analyzed by HPLC-PDA using a C18 analytical column (250 × 4.6 mm) for chromatographic separation. Optimal detection was achieved based on isocratic elution with a mobile phase consisting of a mixture of sodium phosphate monobasic buffer and methanol. This method met all of the requirements of specificity, sensitivity, linearity, precision, accuracy and stability generally accepted in bioanalytical chemistry and was successfully applied to a study of hexokinase activity in an alloxan-induced diabetic rat model. Determination of hexokinase activity will permit characterization of cellular metabolic state in many diseases, such as cancer and diabetes.
Collapse
Affiliation(s)
- Rodrigo Brito Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Railmara Pereira da Silva
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Felipe Akihiro Melo Otsuka
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Danielle de Jesus Trindade
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Aline Costa Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Humberto Reis Matos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
36
|
Bonatelli M, Silva ECA, Cárcano FM, Zaia MG, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The Warburg Effect Is Associated With Tumor Aggressiveness in Testicular Germ Cell Tumors. Front Endocrinol (Lausanne) 2019; 10:417. [PMID: 31316469 PMCID: PMC6610306 DOI: 10.3389/fendo.2019.00417] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023] Open
Abstract
Testicular Germ Cell Tumors (TGCTs) are a rare group of neoplasms and the most common solid malignancy arising in young male adults. Despite the good response of these tumors to platinum-based chemotherapy, some patients are refractory to treatment and present poor clinical outcomes. During carcinogenesis and tumor development, cancer cells reprogram energy metabolism toward a hyper-glycolytic phenotype, an emerging hallmark of cancer. This phenomenon, known as the Warburg effect or aerobic glycolysis, involves overexpression of metabolism-related proteins, like glucose and monocarboxylate transporters, pH regulators and intracellular glycolytic enzymes. The metabolic profile of TGCTs is very little explored and, recently, this metabolic rewiring of cancer cells has been associated with aggressive clinicopathological characteristics of these tumors. The overexpression of monocarboxylate transporter 4 (MCT4) in TGCTs has been pointed out as a poor prognostic factor, as well as a promising therapeutic target. As a result, the main aim of the present study was to evaluate the prognostic value of key metabolism-related proteins in TGCTs. The immunohistochemical expressions of CD44 (as a monocarboxylate transporter chaperone), glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), hexokinase II (HKII) and lactate dehydrogenase V (LDHV) were evaluated in a series of 148 adult male patients with TGCTs and associated with clinicopathological parameters. In addition, paired normal tissues were also evaluated. The sample included 75 seminoma and 73 non-seminoma tumors. GLUT1 and CD44 expression was significantly increased in malignant samples when compared to paired normal samples. Conversely, HKII and LDHV expressions were significantly decreased in malignant samples. Concerning the clinicopathological values, CAIX expression was significantly associated with disease recurrence, while HKII expression was significantly associated with aggressive characteristics of TGCTs, including higher staging and non-seminoma histology. In conclusion, this study brings new insights on the metabolic characteristics of TGCTs, showing alterations in the expression of proteins related with the Warburg effect, as well as associations of the hyper-glycolytic and acid-resistant phenotype with aggressive clinicopathological parameters.
Collapse
Affiliation(s)
- Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Flavio M. Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
| | - Maurício G. Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luiz F. Lopes
- Barretos Children's Cancer Hospital, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
- *Correspondence: Céline Pinheiro
| |
Collapse
|
37
|
Gu Y, Wei X, Sun Y, Gao H, Zheng X, Wong LL, Jin L, Liu N, Hernandez B, Peplowska K, Zhao X, Zhan QM, Feng XH, Tang ZY, Ji J. miR-192-5p Silencing by Genetic Aberrations Is a Key Event in Hepatocellular Carcinomas with Cancer Stem Cell Features. Cancer Res 2018; 79:941-953. [PMID: 30530815 DOI: 10.1158/0008-5472.can-18-1675] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
Various cancer stem cell (CSC) biomarkers have been identified for hepatocellular carcinoma (HCC), but little is known about the implications of heterogeneity and shared molecular networks within the CSC population. Through miRNA profile analysis in an HCC cohort (n = 241) for five groups of CSC+ HCC tissues, i.e., EpCAM+, CD90+, CD133+, CD44+, and CD24+ HCC, we identified a 14-miRNA signature commonly altered among these five groups of CSC+ HCC. miR-192-5p, the top-ranked CSC miRNA, was liver-abundant and -specific and markedly downregulated in all five groups of CSC+ HCC from two independent cohorts (n = 613). Suppressing miR-192-5p in HCC cells significantly increased multiple CSC populations and CSC-related features through targeting PABPC4. Both TP53 mutation and hypermethylation of the mir-192 promoter impeded transcriptional activation of miR-192-5p in HCC cell lines and primary CSC+ HCC. This study reveals the circuit from hypermethylation of the mir-192 promoter through the increase in PABPC4 as a shared genetic regulatory pathway in various groups of primary CSC+ HCC. This circuit may be the driver that steers liver cells toward hepatic CSC cells, leading to hepatic carcinogenesis. SIGNIFICANCE: miR-192-5p and its regulatory pathway is significantly abolished in multiple groups of HCC expressing high levels of CSC markers, which may represent a key event for hepatic carcinogenesis.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiyang Wei
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjun Gao
- University of Hawai'i Cancer Center, Honolulu, Hawaii.,Clinical Laboratory, China Meitan General Hospital, Beijing, China
| | | | - Linda L Wong
- University of Hawai'i Cancer Center, Honolulu, Hawaii.,Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii
| | - Ling Jin
- University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Niya Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi-Min Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
38
|
Rai V, Bose S, Mukherjee R, Sarbajna A, Chakraborty C. Evaluation of aberrant metabolism related proteins in oral submucous fibrosis: A pilot study. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Sirohi D, Vaske C, Sanborn Z, Smith SC, Don MD, Lindsey KG, Federman S, Vankalakunti M, Koo J, Bose S, Peralta-Venturina MD, Ziffle JV, Grenert JP, Miller S, Chiu C, Amin MB, Simko JP, Stohr BA, Luthringer DJ. Polyoma virus-associated carcinomas of the urologic tract: a clinicopathologic and molecular study. Mod Pathol 2018; 31:1429-1441. [PMID: 29765141 DOI: 10.1038/s41379-018-0065-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
In recent years, there has been increased interest in carcinomas of the urologic tract, that demonstrate association with the polyoma virus BK arising in immunosuppressed individuals, though the nature of this association is uncertain. To begin to understand this phenomenon, we reviewed the clinical, morphological, and immunohistochemical features of 11 carcinomas of the urologic tract, mainly urothelial (N = 9) and collecting duct carcinomas (N = 2), occurring during immunosuppression, and expressing polyoma virus T-antigen by immunohistochemistry. These were compared to a control group of carcinomas (N = 8), also arising during immunosuppression, but without T-antigen expression. A subset of both groups were also studied by hybrid capture-based DNA sequencing, probing not only for 479 cancer-related human genes, but also for polyoma and other viral sequences. Polyoma T-antigen-expressing tumors arose in 7 males and 4 females, at a median age of 66, and were aggressive, high-grade tumors with more than 1 variant morphologic pattern identified in 81% of cases, and a majority (73%) presenting at high stage category (>pT3). Diffuse polyoma T-antigen staining was seen in 91% of cases, with co-localization of aberrant p53 staining in 89%. Sequencing detected a lower number of deleterious mutations among T-antigen-expressing cases (average 1.62; 1/8 with TP53 mutation) compared to control cases (average 3.5, 2/4 with TP53 mutation). Only BK virus was detected with clonal integration and breakpoints randomly distributed across the human and viral genomes in 5/5 of the polyoma T-antigen-expressing carcinomas, and in none of the controls (0/4). In summary, these findings identify aggressive clinicopathologic features of polyoma T-antigen-expressing carcinomas, document BK as the strain involved, and associate BK viral integration with T-antigen expression and p53 aberrancy. While the apparent randomness of viral insertion sites is functionally unclear, the differing rates of mutations between T-antigen-expressing and control cases is intriguing.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | - Steven C Smith
- Departments of Pathology and Urology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle D Don
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Scot Federman
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jamie Koo
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jessica van Ziffle
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - James P Grenert
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Steve Miller
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Charles Chiu
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis, TN, USA
| | - Jeffry P Simko
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Bradley A Stohr
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
40
|
Yao J, Liu J, Zhao W. By blocking hexokinase-2 phosphorylation, limonin suppresses tumor glycolysis and induces cell apoptosis in hepatocellular carcinoma. Onco Targets Ther 2018; 11:3793-3803. [PMID: 30013360 PMCID: PMC6037266 DOI: 10.2147/ott.s165220] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction The purpose of present study was to investigate the effect of limonin on tumor glycolysis and the underlying mechanisms in hepatocellular carcinoma (HCC). Methods Cell proliferation and colony formation assays were performed to evaluate the potency of limonin against HCC cells in vitro. The glucose consumption and lactate production after limonin treatment was determined. The effect of limonin on hexokinase-2 (HK-2) activity was assessed and the mitochondrial location of HK-2 was studied by immunoprecipitation. Cell apoptosis and protein expression were detected by flow cytometry and western blotting respectively. Protein overexpression by plasmid transfection was adopted to investigate the molecular mechanisms. Results HCC proliferation and colony formation were inhibited by limonin in vitro. With the suppression of HK-2 activity, the glycolytic level in HCC cells was substantially reduced, which was evidenced by the decrease of glucose consumption and lactate production. The phosphorylation of HK-2 was substantially inhibited by limonin, which resulted in the disassociation of HK-2 from mitochondria. Due to the reduction of HK-2 in mitochondria, increasing Bax were shifted to the mitochondria and gave rise to the release of cytochrome C, which induced HCC cells to subject to mitochondria-mediated apoptosis. Mechanism investigations revealed that the decrease of HK-2 phosphorylation was mainly due to the inhibition of Akt activity. In Akt exogenously overexpressed HCC cells, limonin-mediated cell proliferation inhibition, glycolysis suppression and apoptosis induction were significantly impaired. Conclusion Limonin inhibited the tumor glycolysis in hepatocellular carcinoma by suppressing HK-2 activity, and the suppression of HK-2 was closely related to the decrease of Akt activity.
Collapse
Affiliation(s)
- Junliang Yao
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| | - Jingtian Liu
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| | - Wensheng Zhao
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| |
Collapse
|
41
|
Shu G, Hao J, Li W, Zhang L, Qiu Y, Yang X. Liensinine suppresses STAT3-dependent HK2 expression through elevating SHP-1 to induce apoptosis in hepatocellular carcinoma cells in vitro and in vivo. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
42
|
STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells. Oncotarget 2018; 8:24777-24784. [PMID: 28445971 PMCID: PMC5421887 DOI: 10.18632/oncotarget.15801] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) and hexokinase 2 (HK2) are involved in hepatocellular carcinoma (HCC). Deregulation of cellular energetics involving an increase in glycolysis is a characteristic of HCC. This study examined whether STAT3 regulates HCC glycolysis through the HK2 pathway in HCC cells. Human HCC cell lines HepG2 and Hep3B cells were transfected with pcDNA3.1(+)-EGFP-STAT3, STAT3 siRNA and HK2 siRNA, respectively, or treated with rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), and the effects on STAT3 and HK2 expression and cell glycolysis were determined. STAT3 and HK2 expressions were evaluated by real-time polymerase chain reaction and Western blotting. The level of glycolysis metabolism was assessed by the determination of glucose consumption and lactate production.The results showed that transfection of HepG2 and Hep3B cells with pcDNA3.1(+)-EGFP-STAT3 significantly increased STAT3 mRNA and protein expression, glucose consumption and lactate production, and HK2 mRNA and protein expression. However, transfection of HepG2 and Hep3B cells with STAT3 siRNA significantly decreased glucose consumption and lactate production and HK2 mRNA and protein expression. Transfection of HepG2 and Hep3B cells with HK2 siRNA significantly decreased glucose consumption and lactate production. Treatment of HepG2 and Hep3B cells with rapamycin significantly reduced HK2 mRNA and protein expression and glucose consumption and lactate production. These results suggest that mTOR-STAT3-HK2 pathway is involved in the glycolysis of HCC cells and STAT3 may regulate HCC glycolysis through HK2 pathway, providing potential multiple therapeutic targets through intervention of glycolysis for the treatment of HCC.
Collapse
|
43
|
Wu J, Hu L, Wu F, Zou L, He T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget 2018; 8:32332-32344. [PMID: 28415659 PMCID: PMC5458288 DOI: 10.18632/oncotarget.15974] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Several previous studies have reported the prognostic value of hexokinase 2 (HK2) in digestive system tumors. However, these studies were limited by the small sample sizes and the results were inconsistent among them. Therefore, we conducted a meta-analysis based on 15 studies with 1932 patients to assess the relationship between HK2 overexpression and overall survival (OS) of digestive system malignancies. The relationship of HK2 and clinicopathological features was also evaluated. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect size. Positive HK2 expression showed poor OS in all tumor types (HR = 1.75 [1.41-2.18], P < 0.001). When stratified by tumor type, the impact of HK2 overexpression on poor prognosis was observed in gastric cancer (HR = 1.77 [1.25-2.50], P < 0.001), hepatocellular carcinoma (HR = 1.87 [1.58-2.21], P < 0.001), and colorectal cancer (HR = 2.89 [1.62-5.15], P < 0.001), but not in pancreatic ductal adencarcinoma (HR = 1.11 [0.58-2.11], P = 0.763). Furthermore, high HK2 expression was significantly associated with some phenotypes of tumor aggressiveness, such as large tumor size (OR = 2.03 [1.10-3.74], P = 0.024), positive lymph node metastasis (OR = 2.05 [1.39-3.02], P < 0.001), advanced clinical stage (OR = 2.17 [1.21-3.89], P = 0.009) and high alpha fetoprotein level (OR = 1.47 [1.09-2.02] P = 0.013). In summary, HK2 might act as a prognostic indicator and a potential therapeutic target of these digestive system cancers.
Collapse
Affiliation(s)
- Jiayuan Wu
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Nutritional Department, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Liren Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Fenping Wu
- Department of Radiotherapy, The Seventh People's Hospital of Chengdu, The Oncology Hospital of Chengdu, Chengdu, People's Republic of China
| | - Lei Zou
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Taiping He
- School of Public Health, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
44
|
Kwee SA, Sato MM, Kuang Y, Franke A, Custer L, Miyazaki K, Wong LL. [ 18F]Fluorocholine PET/CT Imaging of Liver Cancer: Radiopathologic Correlation with Tissue Phospholipid Profiling. Mol Imaging Biol 2018; 19:446-455. [PMID: 27787742 DOI: 10.1007/s11307-016-1020-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE [18F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [18F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [18F]fluorocholine PET/CT before tumor resection. PROCEDURES Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. RESULTS Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [18F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [18F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [18F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [18F]fluorocholine uptake. CONCLUSION Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [18F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors.
Collapse
Affiliation(s)
- Sandi A Kwee
- Hamamatsu/Queen's PET Imaging Center, The Queen's Medical Center, Honolulu, HI, USA.
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.
| | - Miles M Sato
- Oncology Research, The Queen's Medical Center, Honolulu, HI, USA
| | - Yu Kuang
- Department of Medical Physics, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Adrian Franke
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Laurie Custer
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kyle Miyazaki
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Linda L Wong
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
45
|
Hu L, Wang RY, Cai J, Feng D, Yang GZ, Xu QG, Zhai YX, Zhang Y, Zhou WP, Cai QP. Overexpression of CHKA contributes to tumor progression and metastasis and predicts poor prognosis in colorectal carcinoma. Oncotarget 2018; 7:66660-66678. [PMID: 27556502 PMCID: PMC5341828 DOI: 10.18632/oncotarget.11433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/13/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrant expression of choline kinase alpha (CHKA) has been reported in a variety of human malignancies including colorectal carcinoma (CRC). However, the role of CHKA in the progression and prognosis of CRC remains unknown. In this study, we found that CHKA was frequently upregulated in CRC clinical samples and CRC-derived cell lines and was significantly correlated with lymph node metastasis (p = 0.028), TNM stage (p = 0.009), disease recurrence (p = 0.004) and death (p < 0.001). Survival analyses indicated that patients with higher CHKA expression had a significantly shorter disease-free survival (DFS) and disease-specific survival (DSS) than those with lower CHKA expression. Multivariate analyses confirmed that increased CHKA expression was an independent unfavorable prognostic factor for CRC patients. In addition, combination of CHKA with TNM stage was a more powerful predictor of poor prognosis than either parameter alone. Functional study demonstrated that knockdown of CHKA expression profoundly suppressed the growth and metastasis of CRC cells both in vitro and in vivo. Mechanistic investigation revealed that EGFR/PI3K/AKT pathway was essential for mediating CHKA function. In conclusion, our results provide the first evidence that CHKA contributes to tumor progression and metastasis and may serve as a novel prognostic biomarker and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.,Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ruo-Yu Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Yu Zhang
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Ping Cai
- Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma. Oncotarget 2018; 7:41798-41810. [PMID: 27260001 PMCID: PMC5173097 DOI: 10.18632/oncotarget.9723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Hexokinase 2 (HK2) is a rate-determining enzyme in aerobic glycolysis, a process upregulated in tumor cells. HK2 expression is controlled by various transcription factors and epigenetic alterations and is heterogeneous in hepatocellular carcinomas (HCCs), though the cause of this heterogeneity is not known. DNA methylation in the HK2 promoter CpG island (HK2-CGI) and its surrounding regions (shore and shelf) has not previously been evaluated, but may provide clues about the regulation of HK2 expression. Here, we compared HK2 promoter methylation in HCCs and adjacent non-cancerous liver tissues using a HumanMethylation450 BeadChip array. We found that, while the HK2-CGI N-shore was hypomethylated, thereby enhancing HK2 expression, the HK2-CGI was itself hypermethylated in some HCCs. This hypermethylation suppressed HK2 expression by inhibiting interactions between HIF-1α and a hypoxia response element (HRE) located at -234/-230. HCCs that were HK2negative and had distinct promoter CGI methylation were denoted as having a HK2-CGI methylation phenotype (HK2-CIMP), which was associated with poor clinical outcome. These findings indicate that HK2-CGI N-shore hypomethylation and HK2-CGI hypermethylation affect HK2 expression by influencing the interaction between HIF 1α and HRE. HK2-CGI hypermethylation induces HK2-CIMP and could represent a prognostic biomarker for HCC.
Collapse
|
47
|
Xu X, Li D, Li X, Shi Q, Ju X. Mesenchymal stem cell conditioned medium alleviates oxidative stress injury induced by hydrogen peroxide via regulating miR143 and its target protein in hepatocytes. BMC Immunol 2017; 18:51. [PMID: 29258429 PMCID: PMC5735881 DOI: 10.1186/s12865-017-0232-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To investigate the impact of miRNA (microRNA) on hepatic oxidative stress damage under the human mesenchymal stem cell conditioned medium (MSC-CM) and explore the roles of the beta-1 adrenergic receptor (ADRB1) and hexokinase 2 (HK2) in this process. METHODS Hydrogen peroxide was used to induce oxidative stress injury in the human normal liver cell line L02. MSC-CM was separately prepared. After treatment with MSC-CM, the protective effects of MSC-CM on oxidative stress injury were assessed by changes in apoptosis, cell viability, cell cycle, and mitochondrial membrane potential. According to the microarray analysis, 19 disparately expressed miRNAs were selected for RT-PCR and miR143 identified as having significant differential expression in MSC-CM against oxidative stress injury. Subsequently, the predicted target proteins of miR143 were selected by bioinformatics software, and verified by western blot. In addition, down-regulation and up-regulation of miR143 expression and hydrogen peroxide induced hypoxia injury were carried out on L02 cells to study the role of miR143. RESULTS MSC-CM significantly attenuated H2O2 induced oxidative stress injury. The expression of miR143 was increased following oxidative stress injury whereas it decreased after MSC-CM treatment. The expression levels of HK2 and ADRB1 regulated by miR143 and Bcl-2 decreased under H2O2 treatment but were restored following MSC-CM treatment. However the expression levels of Bax and BMF increased after H2O2 injury and decreased after MSC-CM treatment. Moreover over-expression or down-regulation of miR143 aggravated or alleviated hepatocyte apoptosis respectively. CONCLUSIONS MSC-CM may alleviate H2O2 induced oxidative stress injury by inhibiting apoptosis and adjusting miRNA expression. Moreover down-regulation of miR143 protects L02 cells from apoptosis and initiates an adaptive process by adjusting the expression of HK2 ADRB1 and apoptosis-related proteins.
Collapse
Affiliation(s)
- Xuejing Xu
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China.,Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xue Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiuli Ju
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. .,Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
48
|
Gu JJ, Singh A, Xue K, Mavis C, Barth M, Yanamadala V, Lenz P, Grau M, Lenz G, Czuczman MS, Hernandez-Ilizaliturri FJ. Up-regulation of hexokinase II contributes to rituximab-chemotherapy resistance and is a clinically relevant target for therapeutic development. Oncotarget 2017; 9:4020-4033. [PMID: 29423101 PMCID: PMC5790518 DOI: 10.18632/oncotarget.23425] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023] Open
Abstract
In order to identify cellular pathways associated with therapy-resistant aggressive lymphoma, we generated rituximab-resistant cell lines (RRCL) and found that the acquirement of rituximab resistance was associated with a deregulation in glucose metabolism and an increase in the apoptotic threshold leading to chemotherapy resistance. Hexokinase II (HKII), the predominant isoform overexpressed in cancer cells, has dual functions of promoting glycolysis as well as inhibiting mitochondrial-mediated apoptosis. We found that RRCL demonstrated higher HKII levels. Targeting HKII resulted in decreased mitochondrial membrane potential, ATP production, cell viability; and re-sensitization to chemotherapy agents. Analyzed gene expression profiling data from diffuse large B-cell lymphoma patients, high-HKII levels were associated with a shorter progression free survival (PFS) and/or overall survival (OS). Our data suggest that over-expression of HKII is associated with resistance to rituximab and chemotherapy agents in aggressive lymphoma and identifies this enzyme isoform as a potential therapeutic target.
Collapse
Affiliation(s)
- Juan J Gu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Anil Singh
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kai Xue
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cory Mavis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Matthew Barth
- Department of Pediatric Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Vivek Yanamadala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Peter Lenz
- Department of Physics, Philipps-University, Marburg, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | | | - Francisco J Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
49
|
Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, Ji J, Yu Y, Wu RY, Ravichandran S, Liu JJ, Feng GK, Chen MS, Zeng YX, Deng R, Zhu XF. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 2017; 14:671-684. [PMID: 28980855 DOI: 10.1080/15548627.2017.1381804] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Impaired macroautophagy/autophagy and high levels of glycolysis are prevalent in liver cancer. However, it remains unknown whether there is a regulatory relationship between autophagy and glycolytic metabolism. In this study, by utilizing cancer cells with basal or impaired autophagic flux, we demonstrated that glycolytic activity is negatively correlated with autophagy level. The autophagic degradation of HK2 (hexokinase 2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate, was found to be involved in the regulation of glycolysis by autophagy. The Lys63-linked ubiquitination of HK2 catalyzed by the E3 ligase TRAF6 was critical for the subsequent recognition of HK2 by the autophagy receptor protein SQSTM1/p62 for the process of selective autophagic degradation. In a tissue microarray of human liver cancer, the combination of high HK2 expression and high SQSTM1 expression was shown to have biological and prognostic significance. Furthermore, 3-BrPA, a pyruvate analog targeting HK2, significantly decreased the growth of autophagy-impaired tumors in vitro and in vivo (p < 0.05). By demonstrating the regulation of glycolysis by autophagy through the TRAF6- and SQSTM1-mediated ubiquitination system, our study may open an avenue for developing a glycolysis-targeting therapeutic intervention for treatment of autophagy-impaired liver cancer.
Collapse
Affiliation(s)
- Lin Jiao
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China.,b Department of Respiratory Disease , Daping Hospital, Army Medical University , Chongqing , China
| | - Hai-Liang Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Dan-Dan Li
- c Department of Biotherapy , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Ke-Li Yang
- d Department of Hepatobiliary Surgery , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jun Tang
- e Department of Breast Oncology , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Xuan Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jiao Ji
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Yan Yu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Rui-Yan Wu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Senthilkumar Ravichandran
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jian-Jun Liu
- f Department of Head-neck and Breast Surgery , Anhui Provincial Cancer Hospital, West branch of Anhui Provincial Hospital , Hefei , China
| | - Gong-Kan Feng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Min-Shan Chen
- d Department of Hepatobiliary Surgery , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Yi-Xin Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Rong Deng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Xiao-Feng Zhu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
50
|
Liu H, Liu N, Cheng Y, Jin W, Zhang P, Wang X, Yang H, Xu X, Wang Z, Tu Y. Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS One 2017; 12:e0189353. [PMID: 29220380 PMCID: PMC5722312 DOI: 10.1371/journal.pone.0189353] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
In cancer, glycolysis driving enzymes and their regulating microRNAs are one of the key focus of oncology research lately. The glycolytic enzyme hexokinase 2 (HK2) is crucial for the Warburg effect in human glioma, the most common malignant brain tumor. In the present study, we studied the tumorigenic role of HK2 in glioma, and clarified the mechanism of miR-218 induced HK2 regulation in glioma development. The HK2 expression in patient derived glioma and non neoplastic brain tissue was quantified. The HK2 silenced U87 and U251 cell lines were assessed for their proliferation, migration and invasive potential in vitro, while the tumor forming potential of U87 cells was evaluated in vivo. The untreated cell lines served as control. The HK2 expression in (a) lentivirus-infected, miR-218 overexpressing and (b) shRNA mediated Bmi1 silenced U87 and U251 glioma cell lines were quantified. Luciferase reporter assay, qRT-PCR analysis and WB were employed as required. The HK2 expression was significantly increased in glioma tissues comparing with the non neoplastic brain tissues and was positively correlated with the glioma grade. Silencing HK2 in glioma cell lines significantly decreased their proliferation, migration, invasion and tumorigenic abilities. Although, overexpression of miR-218 significantly downregulated the HK2 expression, luciferase reporter assay failed to show HK2 as the direct target of miR-218. A direct correlation, however, was observed between HK2 and Bmi-1, the direct target of miR-218. Taken together, our findings confirmed the tumorigenic activity of HK2 in glioma, and the involvement of the miR218/Bmi1 pathway in the regulation of its expression.
Collapse
Affiliation(s)
- Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingduan Cheng
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Research, Cipher Ground, North Brunswick, New Jersey, United States of America
| | - Weilin Jin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Department of Bio-Nano-Science and Engineering, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongwei Yang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoshan Xu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|