1
|
Lund JM, Hladik F, Prlic M. Advances and challenges in studying the tissue-resident T cell compartment in the human female reproductive tract. Immunol Rev 2023; 316:52-62. [PMID: 37140024 PMCID: PMC10524394 DOI: 10.1111/imr.13212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023]
Abstract
Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.
Collapse
Affiliation(s)
- Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
- Department of Immunology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
2
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Gibbs A, Healy K, Kaldhusdal V, Sundling C, Franzén-Boger M, Edfeldt G, Buggert M, Lajoie J, Fowke KR, Kimani J, Kwon DS, Andersson S, Sandberg JK, Broliden K, Davanian H, Chen MS, Tjernlund A. OUP accepted manuscript. J Infect Dis 2022; 226:1428-1440. [PMID: 35511032 PMCID: PMC9574661 DOI: 10.1093/infdis/jiac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mucosa-associated invariant T (MAIT) cells are innate-like T cells with specialized antimicrobial functions. Circulating MAIT cells are depleted in chronic human immunodeficiency virus (HIV) infection, but studies examining this effect in peripheral tissues, such as the female genital tract, are lacking. Methods Flow cytometry was used to investigate circulating MAIT cells in a cohort of HIV-seropositive (HIV+) and HIV-seronegative (HIV−) female sex workers (FSWs), and HIV− lower-risk women (LRW). In situ staining and quantitative polymerase chain reaction were performed to explore the phenotype of MAIT cells residing in paired cervicovaginal tissue. The cervicovaginal microbiome was assessed by means of 16S ribosomal RNA gene sequencing. Results MAIT cells in the HIV+ FSW group were low in frequency in the circulation but preserved in the ectocervix. MAIT cell T-cell receptor gene segment usage differed between the HIV+ and HIV− FSW groups. The TRAV1-2–TRAJ20 transcript was the most highly expressed MAIT TRAJ gene detected in the ectocervix in the HIV+ FSW group. MAIT TRAVJ usage was not associated with specific genera in the vaginal microbiome. Conclusions MAIT cells residing in the ectocervix are numerically preserved irrespective of HIV infection status and displayed dominant expression of TRAV1-2–TRAJ20. These findings have implications for understanding the role of cervical MAIT cells in health and disease.
Collapse
Affiliation(s)
| | | | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Franzén-Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Sonia Andersson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Division of Oral Diagnostics and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Division of Oral Diagnostics and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Tjernlund
- Correspondence: Annelie Tjernlund, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, J7:20, S-171 76 Stockholm, Sweden ()
| |
Collapse
|
4
|
HIV-Exposed Seronegative Sex Workers Express Low T-Cell Activation and an Intact Ectocervical Tissue Microenvironment. Vaccines (Basel) 2021; 9:vaccines9030217. [PMID: 33806390 PMCID: PMC7998094 DOI: 10.3390/vaccines9030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological correlates of natural resistance to HIV have been identified in HIV-exposed seronegative (HESN) individuals and include a low-inflammatory genital mucosal status. The cervicovaginal epithelium has not been studied for such correlates despite constituting an important barrier against sexual HIV transmission. To fill this gap in knowledge, we collected samples of blood, cervical mononuclear cells, cervicovaginal lavage, and ectocervical tissue from Kenyan HESN sex workers (n = 29) and controls (n = 33). The samples were analyzed by flow cytometry, protein profiling, 16S rRNA gene sequencing, in situ image analysis, and tissue-based RNA sequencing. A significantly higher relative proportion of regulatory T cells in blood (B7+CD25hiFoxP3+CD127loCD4+ and B7+Helios+FoxP3+CD4+), and a significantly lower proportion of activated cervical T cells (CCR5+CD69+CD4+ and CCR5+CD69+CD8+), were found in the HESN group compared with the controls. In contrast, there were no statistically significant differences between the study groups in cervicovaginal protein and microbiome compositions, ectocervical epithelial thickness, E-cadherin expression, HIV receptor expression, and tissue RNA transcriptional profiles. The identification of an intact ectocervical microenvironment in HESN individuals add new data to current knowledge about natural resistance to sexual transmission of HIV.
Collapse
|
5
|
Mohammadi A, Bagherichimeh S, Perry MC, Fazel A, Tevlin E, Huibner S, Tharao W, Coburn B, Kaul R. The impact of cervical cytobrush sampling on cervico-vaginal immune parameters and microbiota relevant to HIV susceptibility. Sci Rep 2020; 10:8514. [PMID: 32444843 PMCID: PMC7244754 DOI: 10.1038/s41598-020-65544-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The immunology and microbiota of the female genital tract (FGT) are key determinants of HIV susceptibility. Cervical cytobrush sampling is a relatively non-invasive method permitting the longitudinal assessment of endocervical immune cells, but effects on FGT immunology are unknown. Blood, cervico-vaginal secretions and cervical cytobrushes were collected from sexually transmitted infection (STI)-free women at baseline and after either 6 hours or 48 hours. Endocervical immune cell subsets were assessed by flow cytometry, and pro-inflammatory cytokines by multiplex ELISA. The density of Lactobacillus species and key bacterial vaginosis-associated bacterial taxa were determined by qPCR. Paired changes were assessed before and after cytobrush sampling. After 6 hours there were significant increases in CD4 + T cell, antigen presenting cell (APC) and neutrophil numbers; APC elevations persisted at 48 hours, while neutrophil and CD4 + T cell numbers returned to baseline. In addition, pro-inflammatory cytokine levels were increased at 6 hours and returned to baseline by 48 hours. No significant changes were observed in the absolute abundance of Lactobacillus species or BV-associated bacteria at either time point. Overall, cytobrush sampling altered genital immune parameters at 6 hours, but only APC number increases persisted at 48 hours. This should be considered in longitudinal analyses of FGT immunology.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - S Bagherichimeh
- Department of Medicine, University of Toronto, Toronto, Canada
| | - M C Perry
- Department of Immunology, University of Toronto, Toronto, Canada
| | - A Fazel
- Department of Medicine, University of Toronto, Toronto, Canada
| | - E Tevlin
- Women's Health in Women's Hands Community Health Center, Toronto, Canada
| | - S Huibner
- Department of Medicine, University of Toronto, Toronto, Canada
| | - W Tharao
- Women's Health in Women's Hands Community Health Center, Toronto, Canada
| | - B Coburn
- Department of Immunology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - R Kaul
- Department of Medicine, University of Toronto, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, Martini E, Eidsmo L, Ball TB, Kimani J, Kaul R, Karlsson AC, Wählby C, Broliden K, Tjernlund A. Human Immunodeficiency Virus-Infected Women Have High Numbers of CD103-CD8+ T Cells Residing Close to the Basal Membrane of the Ectocervical Epithelium. J Infect Dis 2019; 218:453-465. [PMID: 29272532 DOI: 10.1093/infdis/jix661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Genital mucosa is the main portal of entry for various incoming pathogens, including human immunodeficiency virus (HIV), hence it is an important site for host immune defenses. Tissue-resident memory T (TRM) cells defend tissue barriers against infections and are characterized by expression of CD103 and CD69. In this study, we describe the composition of CD8+ TRM cells in the ectocervix of healthy and HIV-infected women. Methods Study samples were collected from healthy Swedish and Kenyan HIV-infected and uninfected women. Customized computerized image-based in situ analysis was developed to assess the ectocervical biopsies. Genital mucosa and blood samples were assessed by flow cytometry. Results Although the ectocervical epithelium of healthy women was populated with bona fide CD8+ TRM cells (CD103+CD69+), women infected with HIV displayed a high frequency of CD103-CD8+ cells residing close to their epithelial basal membrane. Accumulation of CD103-CD8+ cells was associated with chemokine expression in the ectocervix and HIV viral load. CD103+CD8+ and CD103-CD8+ T cells expressed cytotoxic effector molecules in the ectocervical epithelium of healthy and HIV-infected women. In addition, women infected with HIV had decreased frequencies of circulating CD103+CD8+ T cells. Conclusions Our data provide insight into the distribution of CD8+ TRM cells in human genital mucosa, a critically important location for immune defense against pathogens, including HIV.
Collapse
Affiliation(s)
- Anna Gibbs
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Petter Ranefall
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Terry B Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg
| | - Joshua Kimani
- Department of Medical Microbiology, Kenyatta National Hospital, University of Nairobi, Kenya
| | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto, Canada
| | - Annika C Karlsson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
7
|
Dorta-Estremera S, Nehete PN, Yang G, He H, Nehete BP, Shelton KK, Barry MA, Sastry KJ. Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques. PLoS One 2017; 12:e0188807. [PMID: 29220358 PMCID: PMC5722341 DOI: 10.1371/journal.pone.0188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023] Open
Abstract
Studies in nonhuman primates (NHP) for prospective immune cell monitoring subsequent to infection and/or vaccination usually rely on periodic sampling of the blood samples with only occasional collections of biopsies from mucosal tissues because of safety concerns and practical constraints. Here we present evidence in support of cytobrush sampling of oral, rectal, and genital mucosal tissues as a minimally invasive approach for the phenotypic analyses of different T cells subsets de novo as well as prospectively after intranasal immunization in rhesus macaques. Significant percentages of viable lymphocytes were obtained consistently from both naïve and chronically SIV-infected rhesus macaques. The percentages of CD3+ T cells in the blood were significantly higher compared to those in the mucosal tissues analyzed in the naïve animals, while in the SIV+ animals the CD3+ T cells were significantly elevated in the rectal tissues, relative to all other sites analyzed. In the naïve, but not SIV+ macaques, the rectal and vaginal mucosal tissues, compared to oral mucosa and blood, showed higher diversity and percentages of CD4+ T cells expressing the HIV entry co-receptor CCR5 and mucosal specific adhesion (CD103) as well as activation (HLA-DR) and proliferation (Ki67) markers. Sequential daily cytobrush sampling from the oral, rectal, and genital mucosal tissues was performed in SIV+ animals from an ongoing study where they were administered intranasal immunization with adenoviral vectored vaccines incorporating the green fluorescent protein (GFP) reporter gene. We detected a transient increase in GFP+ CD4 T cells in only oral mucosa suggesting limited mucosal trafficking. In general, CD4+ and CD8+ T cells expressing Ki67 transiently increased in all mucosal tissues, but those expressing the CCR5, HLA-DR, and CD103 markers exhibited minor changes. We propose the minimally invasive cytobrush sampling as a practical approach for effective and prospective immune monitoring of the oral-genital mucosal tissues in NHP.
Collapse
Affiliation(s)
- Stephanie Dorta-Estremera
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Pramod N. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
| | - Guojun Yang
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Hong He
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation, Houston, TX, United States of America
| | - Bharti P. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Kathryn K. Shelton
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Michael A. Barry
- Mayo Clinic, Department of Internal Medicine, Division of Infectious Diseases, Rochester, MN, United States of America
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, United States of America
- Mayo Clinic, Department of Immunology, Rochester, MN, United States of America
- Mayo Clinic, Translational Immunology Virology and Biodefense Program, Rochester, MN, United States of America
| | - K. Jagannadha Sastry
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
8
|
Assessment of Anti-HIV-1 Antibodies in Oral and Nasal Compartments of Volunteers From 3 Different Populations. J Acquir Immune Defic Syndr 2017; 73:130-7. [PMID: 27243901 DOI: 10.1097/qai.0000000000001094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we assessed the feasibility of collecting standardized nasal and salivary samples at centers in Nairobi (Kenya), Kigali (Rwanda), and London (United Kingdom) using different collection devices and media (synthetic absorptive matrices versus flocked swabs, and Salimetrics oral swabs versus whole oral fluid collection). We detected anti-Gag (p24) and envelope (gp140) antibodies in both nasal fluid and salivary collections from all HIV-infected individuals, and cross-reactive anti-p24 antibodies were detected in 10% of HIV-uninfected individuals enrolled at one site. Collections from the nasal turbinates were comparable with samples collected deeper in the nasopharyngeal tract, and the yield of anti-p24 IgA in the whole oral fluid samples was higher than in samples collected from the parotid gland. We noted a trend toward reduced levels of anti-HIV antibody in the volunteers receiving anti-retroviral therapy. Levels of antibodies were stable over multiple collection visits. Overall, this study shows that nasal and salivary samples can be collected in a standardized manner over repeated visits in both low- and high-resource settings. These methods may be used in support for future HIV vaccine clinical trials.
Collapse
|
9
|
Abdulhaqq SA, Zorrilla C, Kang G, Yin X, Tamayo V, Seaton KE, Joseph J, Garced S, Tomaras GD, Linn KA, Foulkes AS, Azzoni L, VerMilyea M, Coutifaris C, Kossenkov AV, Showe L, Kraiselburd EN, Li Q, Montaner LJ. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes. Mucosal Immunol 2016; 9:1027-38. [PMID: 26555708 PMCID: PMC4864149 DOI: 10.1038/mi.2015.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023]
Abstract
Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: P<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSWs also had increased levels of interferon-ɛ (IFNɛ) gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses.
Collapse
Affiliation(s)
| | - Carmen Zorrilla
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | - Guobin Kang
- University of Nebraska, School of Biological Sciences and Nebraska Center for Virology, Lincoln, NE 68583
| | | | - Vivian Tamayo
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | - Kelly E. Seaton
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710
| | | | - Sheyla Garced
- Maternal-Infant Study Center (CEMI), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00963
| | | | - Kristin A. Linn
- Department of Biostatistics and Epidemiology University of Pennsylvania Philadelphia, PA 19104
| | - Andrea S. Foulkes
- University of Massachusetts, Division of Biostatistics and Epidemiology, Amherst, MA 01003
| | | | | | | | | | | | | | - Qingsheng Li
- University of Nebraska, School of Biological Sciences and Nebraska Center for Virology, Lincoln, NE 68583
| | | |
Collapse
|
10
|
Lajoie J, Boily-Larouche G, Doering K, Cheruiyot J, Oyugi J, Broliden K, Kimani J, Fowke KR. Improving Adherence to Post-Cervical Biopsy Sexual Abstinence in Kenyan Female Sex Workers. Am J Reprod Immunol 2016; 76:82-93. [PMID: 27221472 PMCID: PMC5089664 DOI: 10.1111/aji.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
Problem Cervical biopsies offer a unique opportunity for studying local immune response. To investigate hormonally induced immune fluctuations in cervical tissues of Kenyan female sex workers, we improved biopsy sampling protocol safety. Here, we report on steps taken to minimize exposure to HIV following two cervical biopsies. Methods of study Women were asked to abstain from vaginal intercourse to limit HIV exposure during wound healing with financial compensation. A comprehension tool for informed consent, on‐site detection of prostate‐specific antigens indicating unprotected intercourse within 48 hr, and bi‐weekly text message reminders were implemented. Results The implemented methods improved compliance with post‐procedure abstinence by two times (P = 0.013). Fourteen days following a cervical biopsy, no sign of genital inflammation or change in HIV T‐cell target proportion were observed. Conclusions This study provides new tools for limiting HIV exposure in studies requiring biopsy sampling among women at risk of acquiring HIV.
Collapse
Affiliation(s)
- Julie Lajoie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Kelsie Doering
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Julius Oyugi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Kenya AIDS Control Program, Nairobi, Kenya
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Clinic of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Kenya AIDS Control Program, Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
11
|
Strbo N, Alcaide ML, Romero L, Bolivar H, Jones D, Podack ER, Fischl MA. Loss of Intra-Epithelial Endocervical Gamma Delta (GD) 1 T Cells in HIV-Infected Women. Am J Reprod Immunol 2015; 75:134-45. [PMID: 26666220 DOI: 10.1111/aji.12458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023] Open
Abstract
PROBLEM Human gamma delta (GD) T cells play a well-documented role in epithelial barrier surveillance and protection. Two subsets of GD T cells, defined by the use of either the Vdelta2 (GD2) or Vdelta1 (GD1) TCR, predominate. We hypothesized that endocervical GD T cells play important role in lower genital tract anti-HIV immune responses. METHOD OF STUDY HIV-infected (n = 18) and HIV-uninfected (n = 19) pre-menopausal women participating in the WIHS cohort were recruited. Frequency and phenotype of GD T cells were determined in endocervical cytobrush samples and peripheral blood by multicolor flow cytometry. RESULTS We found depletion of GD2 cells in the blood of HIV-infected women as well as significant decrease in the frequency of endocervical GD1 cells compared to uninfected women. CONCLUSION We report for the first time, the GD1 cells are a predominant endocervical T-cell subset that is significantly decreased in HIV-infected women.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Alcaide
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah Jones
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Fischl
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Holmen SD, Kleppa E, Lillebø K, Pillay P, van Lieshout L, Taylor M, Albregtsen F, Vennervald BJ, Onsrud M, Kjetland EF. The first step toward diagnosing female genital schistosomiasis by computer image analysis. Am J Trop Med Hyg 2015; 93:80-86. [PMID: 25918212 PMCID: PMC4497910 DOI: 10.4269/ajtmh.15-0071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/10/2015] [Indexed: 11/07/2022] Open
Abstract
Schistosoma haematobium causes female genital schistosomiasis (FGS), which is a poverty-related disease in sub-Saharan Africa. Furthermore, it is co-endemic with human immunodeficiency virus (HIV), and biopsies from genital lesions may expose the individual to increased risk of HIV infection. However, microscopy of urine and hematuria are nonspecific and insensitive predictors of FGS and gynecological investigation requires extensive training. Safe and affordable diagnostic methods are needed. We explore a novel method of diagnosing FGS using computer color analysis of colposcopic images. In a cross-sectional study on young women in an endemic area, we found strong associations between the output from the computer color analysis and both clinical diagnosis (odds ratio [OR] = 5.97, P < 0.001) and urine microscopy for schistosomiasis (OR = 3.52, P = 0.004). Finally, using latent class statistics, we estimate that the computer color analysis yields a sensitivity of 80.5% and a specificity of 66.2% for the diagnosis of FGS.
Collapse
Affiliation(s)
- Sigve Dhondup Holmen
- Norwegian Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Microbiology, Haukeland University Hospital, Bergen, Norway; Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa; Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands; Discipline of Public Health Medicine, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Informatics, University of Oslo, Oslo, Norway; Parasitology and Aquatic Diseases, University of Copenhagen, Copenhagen, Denmark; Department of Gynaecology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Holmen SD, Kjetland EF, Taylor M, Kleppa E, Lillebø K, Gundersen SG, Onsrud M, Albregtsen F. Colourimetric image analysis as a diagnostic tool in female genital schistosomiasis. Med Eng Phys 2015; 37:309-14. [PMID: 25630808 DOI: 10.1016/j.medengphy.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/21/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022]
Abstract
Female genital schistosomiasis (FGS) is a highly prevalent waterborne disease in some of the poorest areas of sub-Saharan Africa. Reliable and affordable diagnostics are unavailable. We explored colourimetric image analysis to identify the characteristic, yellow lesions caused by FGS. We found that the method may yield a sensitivity of 83% and a specificity of 73% in colposcopic images. The accuracy was also explored in images of simulated inferior quality, to assess the possibility of implementing such a method in simple, electronic devices. This represents the first step towards developing a safe and affordable aid in clinical diagnosis, allowing for a point-of-care approach.
Collapse
Affiliation(s)
- Sigve Dhondup Holmen
- Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | | | - Myra Taylor
- School of Public Health, Nelson Mandela School of Medicine, University of KwaZulu-Natal, South Africa
| | - Elisabeth Kleppa
- Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kristine Lillebø
- Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway
| | - Svein Gunnar Gundersen
- Centre for Imported and Tropical Diseases, Oslo University Hospital, Oslo, Norway; Research Department, Sørlandet Hospital HF, Kristiansand, Norway; Institute of Development Studies, University of Agder, Kristiansand, Norway
| | - Mathias Onsrud
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Fritz Albregtsen
- Department of Informatics, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Juno JA, Boily-Larouche G, Lajoie J, Fowke KR. Collection, isolation, and flow cytometric analysis of human endocervical samples. J Vis Exp 2014. [PMID: 25045942 DOI: 10.3791/51906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Collapse
Affiliation(s)
| | | | - Julie Lajoie
- Department of Medical Microbiology, University of Manitoba;
| | - Keith R Fowke
- Department of Medical Microbiology, University of Manitoba; Department of Community Health Sciences, University of Manitoba
| |
Collapse
|
15
|
Gibbs A, Hirbod T, Li Q, Bohman K, Ball TB, Plummer FA, Kaul R, Kimani J, Broliden K, Tjernlund A. Presence of CD8+ T cells in the ectocervical mucosa correlates with genital viral shedding in HIV-infected women despite a low prevalence of HIV RNA-expressing cells in the tissue. THE JOURNAL OF IMMUNOLOGY 2014; 192:3947-57. [PMID: 24639358 DOI: 10.4049/jimmunol.1302826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The female genital tract is a portal of entry for sexual HIV transmission and a possible viral reservoir. In this study, the ectocervical CD8+ T cell distribution was explored in situ and was related to expression of CD3 and HLA-DR and presence of HIV RNA. For this purpose, ectocervical tissue samples and genital secretions were collected from HIV-seropositive (HIV+) Kenyan female sex workers (FSWs) (n = 20), HIV-seronegative (HIV-) FSWs (n = 17), and HIV(-) lower-risk women (n = 21). Cell markers were assessed by in situ staining and by quantitative PCR. HIV RNA expression in tissue was analyzed by in situ hybridization, and viral shedding was assessed by quantitative PCR. The HIV+ FSW group had a higher amount of total cells and CD8+, CD3+, and HLA-DR+ cells compared with the HIV(-)FSW group and HIV- lower-risk women. The majority of CD8+ cells were CD3+ T cells, and the numbers of CD8+ cells correlated significantly with plasma and cervical viral load. HIV RNA expression in situ was found in 4 of the 20 HIV+FSW women but did not correlate with cervical or plasma viral load. Thus, the HIV+ women displayed high numbers of CD8+, CD3+, and HLA-DR+ cells, as well as a limited number of HIV RNA+ cells, in their ectocervical mucosa; hence, this localization cannot be neglected as a potential viral reservoir. The elevated levels of CD8+ T cells may play a role in the immunopathogenesis of HIV in the female genital tract.
Collapse
Affiliation(s)
- Anna Gibbs
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
McKinnon LR, Hughes SM, De Rosa SC, Martinson JA, Plants J, Brady KE, Gumbi PP, Adams DJ, Vojtech L, Galloway CG, Fialkow M, Lentz G, Gao D, Shu Z, Nyanga B, Izulla P, Kimani J, Kimwaki S, Bere A, Moodie Z, Landay AL, Passmore JAS, Kaul R, Novak RM, McElrath MJ, Hladik F. Optimizing viable leukocyte sampling from the female genital tract for clinical trials: an international multi-site study. PLoS One 2014; 9:e85675. [PMID: 24454917 PMCID: PMC3893217 DOI: 10.1371/journal.pone.0085675] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
Background Functional analysis of mononuclear leukocytes in the female genital mucosa is essential for understanding the immunologic effects of HIV vaccines and microbicides at the site of HIV exposure. However, the best female genital tract sampling technique is unclear. Methods and Findings We enrolled women from four sites in Africa and the US to compare three genital leukocyte sampling methods: cervicovaginal lavages (CVL), endocervical cytobrushes, and ectocervical biopsies. Absolute yields of mononuclear leukocyte subpopulations were determined by flow cytometric bead-based cell counting. Of the non-invasive sampling types, two combined sequential cytobrushes yielded significantly more viable mononuclear leukocytes than a CVL (p<0.0001). In a subsequent comparison, two cytobrushes yielded as many leukocytes (∼10,000) as one biopsy, with macrophages/monocytes being more prominent in cytobrushes and T lymphocytes in biopsies. Sample yields were consistent between sites. In a subgroup analysis, we observed significant reproducibility between replicate same-day biopsies (r = 0.89, p = 0.0123). Visible red blood cells in cytobrushes increased leukocyte yields more than three-fold (p = 0.0078), but did not change their subpopulation profile, indicating that these leukocytes were still largely derived from the mucosa and not peripheral blood. We also confirmed that many CD4+ T cells in the female genital tract express the α4β7 integrin, an HIV envelope-binding mucosal homing receptor. Conclusions CVL sampling recovered the lowest number of viable mononuclear leukocytes. Two cervical cytobrushes yielded comparable total numbers of viable leukocytes to one biopsy, but cytobrushes and biopsies were biased toward macrophages and T lymphocytes, respectively. Our study also established the feasibility of obtaining consistent flow cytometric analyses of isolated genital cells from four study sites in the US and Africa. These data represent an important step towards implementing mucosal cell sampling in international clinical trials of HIV prevention.
Collapse
Affiliation(s)
- Lyle R. McKinnon
- Department of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey A. Martinson
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jill Plants
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Kirsten E. Brady
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Pamela P. Gumbi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Devin J. Adams
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Christine G. Galloway
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Fialkow
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Gretchen Lentz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Billy Nyanga
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Preston Izulla
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Steve Kimwaki
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Alfred Bere
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alan L. Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jo-Ann S. Passmore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medicine, University Health Network, Toronto, Canada
| | - Richard M. Novak
- College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hirbod T, Kimani J, Tjernlund A, Cheruiyot J, Petrova A, Ball TB, Mugo N, Jaoko W, Plummer FA, Kaul R, Broliden K. Stable CD4 Expression and Local Immune Activation in the Ectocervical Mucosa of HIV-Infected Women. THE JOURNAL OF IMMUNOLOGY 2013; 191:3948-54. [DOI: 10.4049/jimmunol.1301220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|