1
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022; 18:2757-2780. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/09/2022]
Abstract
Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Effect of Low-Dose Ionizing Radiation on the Expression of Mitochondria-Related Genes in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 23:ijms23010261. [PMID: 35008689 PMCID: PMC8745621 DOI: 10.3390/ijms23010261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation.
Collapse
|
3
|
Nishimura K, Takata K. Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders. Int J Mol Sci 2021; 22:ijms22169047. [PMID: 34445753 PMCID: PMC8396512 DOI: 10.3390/ijms22169047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.
Collapse
|
4
|
Roth M, Holtmann C, Tillmann A, Bertram B, Geerling G. [Assessment of subjective risk of infection and willingness to vaccinate against SARS-CoV-2 among German ophthalmologists : Results of a survey by DOG and BVA]. Ophthalmologe 2021; 118:675-683. [PMID: 34019126 PMCID: PMC8139227 DOI: 10.1007/s00347-021-01425-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE After approval of the first COVID-19 vaccines in Germany, vaccination prioritization and vaccination preparedness are central topics in the discussion on strategies to end the pandemic. How ophthalmologists evaluate their risk of infection and whether they are willing to be vaccinated has not been investigated so far. The aim of this project was to assess the subjective rating of the risk of infection and the willingness to be vaccinated among German ophthalmologists. METHODS Data were collected by an anonymous online survey conducted by the Professional Association of Ophthalmologists in Germany (BVA) and the German Ophthalmological Society (DOG) under the auspices of the University Eye Hospital Düsseldorf. The questionnaire was open for participation from 22 January to 12 February 2021. The survey was addressed to all colleagues in ophthalmology. RESULTS A total of 1162 completed questionnaires were analyzed. On average, survey respondents rated their risk of infection as 7.5 ± 1.9 (scale of 1-10; 1 = very low risk, 10 = very high risk). Of the respondents 971 (83.6%) rated their risk of infection as higher compared to other disciplines and 92.9% (n = 1079) indicated they would be willing to be vaccinated. CONCLUSION The ophthalmologists interviewed consider their professional group to be exposed to an above-average risk of SARS-COV‑2 infection compared to other disciplines. They frequently criticized the prioritization ranking of the German Ministry of Health (BMG), which deviated from the suggestions of the Standing Vaccination Committee of Germany (STIKO). The willingness to be vaccinated was very high among the surveyed German ophthalmologists.
Collapse
Affiliation(s)
- M Roth
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - C Holtmann
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - A Tillmann
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - B Bertram
- Augenarztpraxis Aachen, Aachen, Deutschland
| | - G Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
5
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Rusin M, Ghobrial N, Takacs E, Willey JS, Dean D. Changes in ionizing radiation dose rate affect cell cycle progression in adipose derived stem cells. PLoS One 2021; 16:e0250160. [PMID: 33905436 PMCID: PMC8078807 DOI: 10.1371/journal.pone.0250160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
Biomedical use of radiation is utilized in effective diagnostic and treatment tools, yet can introduce risks to healthy tissues. High energy photons used for diagnostic purposes have high penetration depth and can discriminate multiple tissues based on attenuation properties of different materials. Likewise, the ability to deposit energy at various targets within tumors make the use of photons effective treatment for cancer. Radiation focused on a tumor will deposit energy when it interacts with a biological structure (e.g. DNA), which will result in cell kill should repair capacity of the tissue be overwhelmed. Likewise, damage to normal, non-cancerous tissues is a consequence of radiation that can lead to acute or late, chronic toxicity profiles. Adipose derived stem cells (ADSCs) are mesenchymal stem cells that have been proven to have similar characteristics to bone marrow derived stem cells, except that they are much easier to obtain. Within the body, ADSCs act as immunomodulators and assist with the maintenance and repair of tissues. They have been shown to have excellent differentiation capability, making them an extremely viable option for stem cell therapies and regenerative medicine applications. Due to the tissue ADSCs are derived from, they are highly likely to be affected by radiation therapy, especially when treating tumors localized to structures with relatively high ADSC content (eg., breast cancer). For this reason, the purpose behind this research is to better understand how ADSCs are affected by doses of radiation comparable to a single fraction of radiation therapy. We also measured the response of ADSCs to exposure at different dose rates to determine if there is a significant difference in the response of ADSCs to radiation therapy relevant doses of ionizing radiation. Our findings indicate that ADSCs exposed to Cesium (Cs 137)-gamma rays at a moderate dose of 2Gy and either a low dose rate (1.40Gy/min) or a high dose rate (7.31Gy/min) slow proliferation rate, and with cell cycle arrest in some populations. These responses ADSCs were not as marked as previously measured in other stem cell types. In addition, our results indicate that differences in dose rate in the Gy/min range typically utilized in small animal or cell irradiation platforms have a minimal effect on the function of ADSCs. The potential ADSCs have in the space of regenerative medicine makes them an ideal candidate for study with ionizing radiation, as they are one of the main cell types to promote tissue healing.
Collapse
Affiliation(s)
- Matthew Rusin
- Bioengineering Department, Clemson University, Clemson, South Carolina, United States of America
| | - Nardine Ghobrial
- Bioengineering Department, Clemson University, Clemson, South Carolina, United States of America
| | - Endre Takacs
- Physics and Astronomy Department, Clemson University, Clemson, South Carolina, United States of America
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Delphine Dean
- Bioengineering Department, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fong S, Li E, Violato E, Reid A, Gu Y. Impact of aerosol box on intubation during COVID-19: a simulation study of normal and difficult airways. Can J Anaesth 2021; 68:496-504. [PMID: 33033956 PMCID: PMC7544519 DOI: 10.1007/s12630-020-01825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Patients with coronavirus disease (COVID-19) are at risk of requiring mechanical ventilation, and concerns of protecting healthcare workers during aerosol-generating medical procedures has led to the design of the aerosol box. METHODS We conducted a randomized crossover mannequin-based simulation study to compare airway management with and without the aerosol box. Thirty-five anesthesiology participants and three critical care participants with more than 50 intubations with videolaryngoscopes were recruited. There were four airway simulations with and without the aerosol box (normal, pharyngeal swelling, cervical spine rigidity, and tongue edema). Each participant intubated the mannequin in eight consecutive simulations. The primary outcome of the study was time to intubation. Secondary outcomes included intubation attempts, optimization maneuvers, and personal protective equipment breaches. RESULTS Mean (standard deviation [SD]) time to intubation overall with the box was 30.9 (23.0) sec, while the time to intubation without the box was 25.1 (12.2) sec (mean difference, 5.8; 95% confidence interval [CI], -2.9 to 14.5). For the normal airway scenario, the mean (SD) time to intubation was 18.6 (3.5) sec for no box and 20.4 (3.3) sec for box (mean difference, 1.8; 95% CI, 0.2 to 3.4). During difficult airway scenarios only, the time to intubation was 34.4 (25.6) sec with the aerosol box and 27.3 (13.2) sec without the aerosol box (mean difference, 7.1; 95% CI, -2.5 to 16.7). There were more intubation attempts, personal protective equipment breaches, and optimization maneuvers during use of the aerosol box. CONCLUSIONS In this mannequin-based simulation study, the use of the aerosol box increased the time to intubation in some contexts but not others. Further studies in a clinical setting should be conducted to make appropriate modifications to the aerosol box to fully elicit its efficacy and safety prior to implementation in airway guidelines for managing patients with COVID-19.
Collapse
Affiliation(s)
- Sunny Fong
- Department of Anesthesia & Pain Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Elliott Li
- Department of Anesthesiology, Perioperative & Pain Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Efrem Violato
- Department of Educational Psychology, University of Alberta, Edmonton, AB, Canada
| | - Andrew Reid
- Alberta Health Services, Edmonton, AB, Canada
| | - Yuqi Gu
- Department of Anesthesia & Pain Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Montay-Gruel P, Markarian M, Allen BD, Baddour JD, Giedzinski E, Jorge PG, Petit B, Bailat C, Vozenin MC, Limoli C, Acharya MM. Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiat Res 2021; 194:636-645. [PMID: 32853387 DOI: 10.1667/rade-20-00067.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1-2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1-10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the "FLASH effect." Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Mineh Markarian
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Jabra D Baddour
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Patrik Goncalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| |
Collapse
|
9
|
Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front Mol Biosci 2021; 7:620677. [PMID: 33585565 PMCID: PMC7873048 DOI: 10.3389/fmolb.2020.620677] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumor with a median survival of 15 months. A population of cells with stem cell properties (glioblastoma stem cells, GSCs) drives the initiation and progression of GBM and is localized in specialized microenvironments which support their behavior. GBM are characterized as extremely resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control the cellular stability by influencing different signaling pathways. Normally, redox systems prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms are highly impaired. Herein we review the dual nature of the redox status in drug resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor progression and drug resistance in GBM. However, excess ROS production has been found to induce cell death programs such as apoptosis and autophagy. Since GBM cells have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these cells plays an essential role in resistance to oxidative stress-induced cell death. Finally, the microenvironment with the stromal components participates in the enhancement of the oxidative stress to promote tumor progression and drug resistance.
Collapse
Affiliation(s)
- Christophe Olivier
- Faculté des Sciences Pharmaceutiques et Biologiques, Nantes, France.,Université de Nantes, INSERM, CRCINA, Nantes, France
| | - Lisa Oliver
- Université de Nantes, INSERM, CRCINA, Nantes, France.,CHU de Nantes, Nantes, France
| | - Lisenn Lalier
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - François M Vallette
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| |
Collapse
|
10
|
Rikken QGH, Mikdad S, Mota MTC, De Leeuw MA, Schober P, Schwarte LA, Giannakopoulos GF. Operational experience of the Dutch helicopter emergency medical services (HEMS) during the initial phase of the COVID-19 pandemic: jeopardy on the prehospital care system? Eur J Trauma Emerg Surg 2021; 47:703-711. [PMID: 33438040 PMCID: PMC7802610 DOI: 10.1007/s00068-020-01569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022]
Abstract
Purpose The SARS-CoV-2 virus has disrupted global and local medical supply chains. To combat the spread of the virus and prevent an uncontrolled outbreak with limited resources, national lockdown protocols have taken effect in the Netherlands since March 13th, 2020. The aim of this study was to describe the incidence, type and characteristics of HEMS and HEMS-ambulance ‘Lifeliner 1’ dispatches during the initial phase of the COVID-19 pandemic compared to the same period one year prior. Methods A retrospective review of all HEMS and HEMS-ambulance ‘Lifeliner 1’ dispatches was performed from the start of Dutch nationwide lockdown orders from March 13th until May 13th, 2020 and the corresponding period one year prior. Dispatch-, operational-, patient-, injury-, and on-site treatment characteristics were extracted for analysis. In addition, the rate of COVID-19 positively tested HEMS personnel and the time physicians were unable to take call was described. Results During the initial phase of the COVID-19 pandemic, the HEMS and HEMS-ambulance was requested in 528 cases. One year prior, a total of 620 requests were received. The HEMS (helicopter and ambulance) was cancelled after deployment in 56.4% of the COVID-19 cohort and 50.7% of the historical cohort (P = 0.05). Incident location type did not differ between the two cohorts, specifically, there was no significant difference in the number of injuries that occurred at home in pandemic versus non-pandemic circumstances. Besides a decrease in the number of falls, the distribution of mechanisms of injury remained similar during the COVID-19 study period. There was no difference in self-inflicted injuries observed. Prehospital interventions remained similar during the COVID-19 pandemic compared to one year prior. Specifically, prehospital intubation did not differ between the two cohorts. The rate of COVID-19 positively tested HEMS personnel was 23.1%. Physicians who tested positive were unable to take call for a mean of 25 days (range 8–53). Conclusion A decrease in the number of deployments and increase in the number of cancelled missions was observed during the COVID-19 study period. No major differences in operational- and injury characteristics were found for HEMS and HEMS-ambulance dispatches between the initial phase of the COVID-19 pandemic in the Netherlands and the same period one year prior. These findings highlight the importance of continued operability of the HEMS, even during pandemic circumstances. Level of evidence III, retrospective comparative study.
Collapse
Affiliation(s)
- Quinten G H Rikken
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Sarah Mikdad
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Mathijs T Carvalho Mota
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marcel A De Leeuw
- Department of Anesthesiology, Location AMC and Location VUmc, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Patrick Schober
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Anesthesiology, Location AMC and Location VUmc, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Lothar A Schwarte
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Anesthesiology, Location AMC and Location VUmc, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Georgios F Giannakopoulos
- Trauma Center, Department of Surgery, Location AMC and Location VUmc, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Parotto M, Cavallin F, Bryson GL, Chin KJ. Risks to healthcare workers following tracheal intubation of patients with known or suspected COVID-19 in Canada: data from the intubateCOVID registry. Can J Anaesth 2021; 68:425-427. [PMID: 33432495 PMCID: PMC7799402 DOI: 10.1007/s12630-020-01890-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Matteo Parotto
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesia and Pain Management, Toronto General Hospital, EN 429 - 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| | | | - Gregory L Bryson
- Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ki Jinn Chin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Limoli C. Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain? Br J Radiol 2020; 93:20200245. [PMID: 32970457 DOI: 10.1259/bjr.20200245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Not surprisingly, our knowledge of the impact of radiation on the brain has evolved considerably. Decades of work have struggled with identifying the critical cellular targets in the brain, the latency of functional change and understanding how irradiation alters the balance between excitatory and inhibitory circuits. Radiation-induced cell kill following clinical fractionation paradigms pointed to both stromal and parenchymal targets but also defined an exquisite sensitivity of neurogenic populations of newly born cells in the brain. It became more and more apparent too, that acute (days) events transpiring after exposure were poorly prognostic of the late (months-years) waves of radiation injury believed to underlie neurocognitive deficits. Much of these gaps in knowledge persisted as NASA became interested in how exposure to much different radiation types, doses and dose rates that characterize the space radiation environment might impair central nervous system functionality, with possibly negative implications for deep space travel. Now emerging evidence from researchers engaged in clinical, translational and environmental radiation sciences have begun to fill these gaps and have uncovered some surprising similarities in the response of the brain to seemingly disparate exposure scenarios. This article highlights many of the commonalities between the vastly different irradiation paradigms that distinguish clinical treatments from occupational exposures in deep space.
Collapse
Affiliation(s)
- Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, United States
| |
Collapse
|
13
|
Shaw KM, Lang AL, Lozano R, Szabo M, Smith S, Wang J. Intensive care unit isolation hood decreases risk of aerosolization during noninvasive ventilation with COVID-19. Can J Anaesth 2020; 67:1481-1483. [PMID: 32458266 PMCID: PMC7250488 DOI: 10.1007/s12630-020-01721-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kendrick M Shaw
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Angela L Lang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rodrigo Lozano
- Department of Biomedical Engineering, Massachusetts General Hospital, Boston, MA, USA
| | - Michele Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Smith
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jingping Wang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Mottiar M, Hendin A, Fischer L, Roze des Ordons A, Hartwick M. End-of-life care in patients with a highly transmissible respiratory virus: implications for COVID-19. Can J Anaesth 2020; 67:1417-1423. [PMID: 32394338 PMCID: PMC7212843 DOI: 10.1007/s12630-020-01699-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
Symptom management and end-of-life care are core skills for all physicians, although in ordinary times many anesthesiologists have fewer occasions to use these skills. The current coronavirus disease (COVID-19) pandemic has caused significant mortality over a short time and has necessitated an increase in provision of both critical care and palliative care. For anesthesiologists deployed to units caring for patients with COVID-19, this narrative review provides guidance on conducting goals of care discussions, withdrawing life-sustaining measures, and managing distressing symptoms.
Collapse
Affiliation(s)
- Miriam Mottiar
- Department of Anesthesiology & Pain Medicine, Division of Palliative Medicine, Department of Medicine, The Ottawa Hospital, University of Ottawa, 501 Smyth Rd, Room 1401, Ottawa, ON, K1H 8L6, Canada.
| | - Ariel Hendin
- Department of Emergency Medicine, Division of Critical Care, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Lisa Fischer
- Department of Emergency Medicine, Division of Palliative Medicine, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Amanda Roze des Ordons
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Critical Care Medicine, Division of Palliative Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Michael Hartwick
- Division of Critical Care, Division of Palliative Medicine, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
An uncomplicated and safe technique for preventing endotracheal tube cuff damage during tracheostomy using pressure-controlled ventilation: the PCV method. Can J Anaesth 2020; 67:1879-1880. [PMID: 32779003 PMCID: PMC7417109 DOI: 10.1007/s12630-020-01783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
|
16
|
Crosby L, Crosby E. Applying the precautionary principle to personal protective equipment (PPE) guidance during the COVID-19 pandemic: did we learn the lessons of SARS? Can J Anaesth 2020; 67:1327-1332. [PMID: 32666423 PMCID: PMC7359432 DOI: 10.1007/s12630-020-01760-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lauren Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Foothills Medical Centre, University of Calgary, C222, 1403-29 St NW, Calgary, AB, T2N 2T9, Canada.
| | - Edward Crosby
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
The case for routine screening for SARS-CoV-2 before surgery. Can J Anaesth 2020; 67:1315-1320. [PMID: 32495121 PMCID: PMC7268956 DOI: 10.1007/s12630-020-01730-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
|
18
|
Lee S, Meyler P, Mozel M, Tauh T, Merchant R. Asymptomatic carriage and transmission of SARS-CoV-2: What do we know? Can J Anaesth 2020; 67:1424-1430. [PMID: 32488493 PMCID: PMC7266417 DOI: 10.1007/s12630-020-01729-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Risk to healthcare workers treating asymptomatic patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the operating room depends on multiple factors. This review examines the evidence for asymptomatic or pre-symptomatic carriage of SARS-CoV-2, the risk of transmission from asymptomatic patients, and the specific risks associated with aerosol-generating procedures. Protective measures, such as minimization of aerosols and use of personal protective equipment in the setting of treating asymptomatic patients, are also reviewed. Source We examined the published literature as well as Societal guidelines. Principal findings There is evidence that a proportion of those infected with SARS-CoV-2 have detectable viral loads prior to exhibiting symptoms, or without ever developing symptoms. The degree of risk of transmission from asymptomatic patients to healthcare providers will depend on the prevalence of disease in the population, which is difficult to assess without widespread population screening. Aerosol-generating procedures increase the odds of viral transmission from infected symptomatic patients to healthcare providers, but transmission from asymptomatic patients has not been reported. Techniques to minimize aerosolization and appropriate personal protective equipment may help reduce the risk to healthcare workers in the operating room. Some societal guidelines recommend the use of airborne precautions during aerosol-generating procedures on asymptomatic patients during the coronavirus disease pandemic, although evidence supporting this practice is limited. Conclusion Viral transmission from patients exhibiting no symptoms in the operating room is plausible and efforts to reduce risk to healthcare providers include reducing aerosolization and wearing appropriate personal protective equipment, the feasibility of which will vary based on geographic risk and equipment availability.
Collapse
Affiliation(s)
- Susan Lee
- Department of Anesthesia and Perioperative Medicine, Royal Columbian Hospital, 330 E Columbia, New Westminster, BC, V3L 3W7, Canada.
- Department of Anesthesiology, Pharmacology, and Therapeutics, UBC Faculty of Medicine, Vancouver, BC, Canada.
| | - Paula Meyler
- Department of Anesthesia and Perioperative Medicine, Royal Columbian Hospital, 330 E Columbia, New Westminster, BC, V3L 3W7, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, UBC Faculty of Medicine, Vancouver, BC, Canada
| | - Michelle Mozel
- Department of Anesthesia and Perioperative Medicine, Royal Columbian Hospital, 330 E Columbia, New Westminster, BC, V3L 3W7, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, UBC Faculty of Medicine, Vancouver, BC, Canada
| | - Tonia Tauh
- Department of Anesthesia and Perioperative Medicine, Royal Columbian Hospital, 330 E Columbia, New Westminster, BC, V3L 3W7, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, UBC Faculty of Medicine, Vancouver, BC, Canada
| | - Richard Merchant
- Department of Anesthesia and Perioperative Medicine, Royal Columbian Hospital, 330 E Columbia, New Westminster, BC, V3L 3W7, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, UBC Faculty of Medicine, Vancouver, BC, Canada
| |
Collapse
|
19
|
Personal protective equipment (PPE) for anesthesiologists: the need for national guidelines. Can J Anaesth 2020; 67:919-923. [PMID: 32347459 PMCID: PMC7187663 DOI: 10.1007/s12630-020-01675-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022] Open
|
20
|
Personal protective equipment (PPE) for both anesthesiologists and other airway managers: principles and practice during the COVID-19 pandemic. Can J Anaesth 2020; 67:1005-1015. [PMID: 32329014 PMCID: PMC7178924 DOI: 10.1007/s12630-020-01673-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 01/25/2023] Open
Abstract
Healthcare providers are facing a coronavirus disease pandemic. This pandemic may last for many months, stressing the Canadian healthcare system in a way that has not previously been seen. Keeping healthcare providers safe, healthy, and available to work throughout this pandemic is critical. The consistent use of appropriate personal protective equipment (PPE) will help assure its availability and healthcare provider safety. The purpose of this communique is to give both anesthesiologists and other front-line healthcare providers a framework from which to understand the principles and practices surrounding PPE decision-making. We propose three types of PPE including: 1) PPE for droplet and contact precautions, 2) PPE for general airborne, droplet, and contact precautions, and 3) PPE for those performing or assisting with high-risk aerosol-generating medical procedures.
Collapse
|
21
|
Mokrani S, Granotier-Beckers C, Etienne O, Kortulewski T, Grisolia C, de Villartay JP, Boussin FD. Higher chromosome stability in embryonic neural stem and progenitor cells than in fibroblasts in response to acute or chronic genotoxic stress. DNA Repair (Amst) 2020; 88:102801. [PMID: 32032862 DOI: 10.1016/j.dnarep.2020.102801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 11/16/2022]
Abstract
High fidelity of genetic transmission in neural stem and progenitor cells (NSPCs) has been long time considered to be crucial for brain development and homeostasis. However, recent studies have identified recurrent DSB clusters in dividing NSPCs, which may underlie the diversity of neuronal cell types. This raised the interest in understanding how NSPCs sense and repair DSBs and how this mechanism could be altered by environmental genotoxic stress caused by pollutants or ionizing radiation. Here, we show that embryonic mouse neural stem and progenitor cells (NSPCs) have significantly higher capacity than mouse embryonic fibroblasts (MEFs) to maintain their chromosome stability in response to acute (γ-radiation) and chronic (tritiated thymidine -3H-T- incorporation into DNA) genotoxic stress. Cells deficient for XLF/Cernunnos, which is involved in non-homologous end joining DNA (NHEJ) repair, highlighted important variations in fidelity of DNA repair pathways between the two cell types. Strikingly, a progressive and generalized chromosome instability was observed in MEFs cultured with 3H-T at long-term, whereas NSPCs cultured in the same conditions, preserved their chromosome stability thanks to higher DNA repair activity further enhanced by an adaptive response and also to the elimination of damaged cells by apoptosis. This specific DNA damage response of NSPCs may rely on the necessity for preservation of their genome stability together with their possible function in creating neuronal genetic diversity.
Collapse
Affiliation(s)
- Sofiane Mokrani
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | - Christine Granotier-Beckers
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France.
| | - Olivier Etienne
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | | | - Jean-Pierre de Villartay
- Genome Dynamics in the Immune System Laboratory, Inserm, UMR 1163, Institut Imagine, Université Paris-Descartes, Sorbonne Paris-Cité, France
| | - François D Boussin
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France.
| |
Collapse
|
22
|
di Bello G, Vendemiale G, Bellanti F. Redox cell signaling and hepatic progenitor cells. Eur J Cell Biol 2018; 97:546-556. [PMID: 30278988 DOI: 10.1016/j.ejcb.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic diseases are widespread in the world and organ transplantation is currently the only treatment for liver failure. New cell-based approaches have been considered, since stem cells may represent a possible source to treat liver diseases. Acute and chronic liver diseases are characterized by high production of reactive oxygen and nitrogen species, with consequent oxidative modifications of cellular macromolecules and alteration of signaling pathways, metabolism and cell cycle. Although considered harmful molecules, reactive species are involved in cell growth and differentiation processes, modulating the activity of transcription factors, which take part in stemness/proliferation. It is conceivable that redox balance may regulate the development of hepatic progenitor cells, function and survival in synchrony with metabolism during chronic liver diseases. This review aims to summarize diverse redox-sensitive signaling pathways involved in stem cell fate, highlighting the important role of hepatic progenitor cells as a possible source to treat end-stage liver disease for organ regeneration.
Collapse
Affiliation(s)
- Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy.
| |
Collapse
|
23
|
Mujoo K, Pandita RK, Tiwari A, Charaka V, Chakraborty S, Singh DK, Hambarde S, Hittelman WN, Horikoshi N, Hunt CR, Khanna KK, Kots AY, Butler EB, Murad F, Pandita TK. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination. Stem Cell Reports 2017; 9:1660-1674. [PMID: 29103969 PMCID: PMC5831054 DOI: 10.1016/j.stemcr.2017.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The nitric oxide (NO)-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR) to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR) repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1). Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18), which causes stem cell differentiation has no effect on double-strand break (DSB) repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells. Spontaneous and S-phase-specific chromosome aberrations in differentiated cells Higher frequency of residual γ-H2AX foci after exposure to DNA-damaging agents Higher frequency of cells with 53BP1 and RIF1 co-localization in differentiated cells Higher frequency of cells with a reduced number of RAD51 or BRCA1 foci
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA; Institute of Molecular Medicine, University of Texas Health at Houston, Houston, TX 77030, USA.
| | - Raj K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Dharmendra Kumar Singh
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | | | - E Brian Butler
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Ferid Murad
- The George Washington University, Washington, DC 20037, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Inui S, Minami K, Ito E, Imaizumi H, Mori S, Koizumi M, Fukushima S, Miyagawa S, Sawa Y, Matsuura N. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells. JOURNAL OF RADIATION RESEARCH 2017; 58:430-438. [PMID: 28340154 PMCID: PMC5570064 DOI: 10.1093/jrr/rrw124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/27/2016] [Indexed: 05/30/2023]
Abstract
Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explore the prevention of tumor formation in human iPS (hiPS) cells, we tested the effects of irradiation on tumor-associated factors such as radiosensitivity, pluripotency and cell death in hiPS cells. The irradiated hiPS cells showed much higher radiosensitivity, because the survival fraction of hiPS cells irradiated with 2 Gy was < 10%, and there was no change of pluripotency. Irradiation with 2 and 4 Gy caused substantial cell death, which was mostly the result of apoptosis. Irradiation with 2 Gy was detrimental enough to cause loss of proliferation capability and trigger substantial cell death in vitro. The hiPS cells irradiated with 2 Gy were injected into NOG mice (NOD/Shi-scid, IL-2 Rγnull) for the analysis of tumor formation. The group of mice into which hiPS cells irradiated with 2 Gy was transplanted showed significant suppression of tumor formation in comparison with that of the group into which non-irradiated hiPS cells were transplanted. It can be presumed that this diminished rate of tumor formation was due to loss of proliferation and cell death caused by irradiation. Our findings suggest that tumor formation following cell therapy or organ transplantation induced by hiPS cells may be prevented by irradiation.
Collapse
Affiliation(s)
- Shoki Inui
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cadiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, Japan
| | - Kazumasa Minami
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Seiji Mori
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka, Japan
- Department of Clinical Laboratory, Morinomiya University of Medical Sciences, Suminoe-ku, Osaka, Japan
| | - Masahiko Koizumi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nariaki Matsuura
- Department of Radiation Oncology, Osaka Medical Center for Cancer and Cadiovascular Diseases, Nakamichi 1-3-3, Higashinari-ku, Osaka, Japan
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka, Japan
| |
Collapse
|
25
|
Effect of ionizing radiation on the proliferation of human embryonic stem cells. Sci Rep 2017; 7:43995. [PMID: 28266624 PMCID: PMC5339810 DOI: 10.1038/srep43995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022] Open
Abstract
We studied the effect of ionizing radiation (IR) on continuous growth of seven hESC lines. Cells were exposed to 0, 0.2, or 1 Gy of X-rays, and the growth rates of cell populations were assessed by measuring areas of the same individual colonies versus time. The population doubling times (DT) of sham-irradiated cells varied from 18.9 to 28.7 hours for different cell lines. All cell lines showed similar reaction to IR, i.e. cell populations dropped within 24–48 hours post IR; after that they recovered and grew with the same rate as the sham-irradiated cells. The relative cell survival (RCS), i.e. the ratio of normalized cell population in the irradiated samples to that of the sham-irradiated ones varied from 0.6 to 0.8 after 0.2 Gy, and from 0.1 to 0.2 after 1 Gy IR for different cell lines. We found that the RCS values of hESC lines correlated directly with their DT, i.e. the faster cells grow the more radiosensitive they are. We also found that DT and RCS values of individual colonies varied significantly within all hESC lines. We believe that the method developed herein can be useful for assessing other cytotoxic insults on cultures of hESC.
Collapse
|
26
|
Luft S, Arrizabalaga O, Kulish I, Nasonova E, Durante M, Ritter S, Schroeder IS. Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors. Stem Cells Dev 2016; 26:341-352. [PMID: 27937745 DOI: 10.1089/scd.2016.0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure of the embryo to ionizing radiation (IR) is detrimental as it can cause genotoxic stress leading to immediate and latent consequences such as functional defects, malformations, or cancer. Human embryonic stem (hES) cells can mimic the preimplantation embryo and help to assess the biological effects of IR during early development. In this study, we describe the alterations H9 hES cells exhibit after X-ray irradiation in respect to cell cycle progression, apoptosis, genomic stability, stem cell signaling, and their capacity to differentiate into definitive endoderm. Early postirradiation, hES cells responded with an arrest in G2/M phase, elevated apoptosis, and increased chromosomal aberrations. Significant downregulation of stem cell signaling markers of the TGF beta-, Wnt-, and Hedgehog pathways was observed. Most prominent were alterations in the expression of activin receptors. However, hES cells responded differently depending on the culture conditions chosen for maintenance. Enzymatically passaged cells were less sensitive to IR than mechanically passaged ones showing fewer apoptotic cells and fewer changes in the stem cell signaling 24 h after irradiation, but displayed higher levels of chromosomal aberrations. Even though many of the observed changes were transient, surviving hES cells, which were differentiated 4 days postirradiation, showed a lower efficiency to form definitive endoderm than their mock-irradiated counterparts. This was demonstrated by lower expression levels of SOX17 and microRNA miR-375. In conclusion, hES cells are a suitable tool for the IR risk assessment during early human development. However, careful choice of the culture methods and a vigorous monitoring of the stem cell quality are mandatory for the use of these cells. Exposure to IR influences the stem cell properties of hES cells even when immediate radiation effects are overcome. This warrants consideration in the risk assessment of radiation effects during the earliest stages of human development.
Collapse
Affiliation(s)
- Sabine Luft
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Onetsine Arrizabalaga
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Ireen Kulish
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany .,2 Technical University Darmstadt , Darmstadt, Germany
| | - Elena Nasonova
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany .,3 Laboratory of Radiation Biology, Joint Institute for Nuclear Research , Dubna, Russia
| | - Marco Durante
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Sylvia Ritter
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| | - Insa S Schroeder
- 1 Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research , Darmstadt, Germany
| |
Collapse
|
27
|
Mujoo K, Butler EB, Pandita RK, Hunt CR, Pandita TK. Pluripotent Stem Cells and DNA Damage Response to Ionizing Radiations. Radiat Res 2016; 186:17-26. [PMID: 27332952 PMCID: PMC4963261 DOI: 10.1667/rr14417.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells, are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimal risk of rejection. Radiation-induced DNA damage, ultraviolet light, genotoxic stress and other intrinsic and extrinsic factors triggers a series of biochemical reactions known as DNA damage response. To maintain genomic stability and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling, a contrast to somatic cells. Stem cell transplantation may protect against radiation-induced late effects. In particular, this review focuses on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - E. Brian Butler
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| |
Collapse
|
28
|
Acharya MM, Baulch JE, Lusardi TA, Allen BD, Chmielewski NN, Baddour AAD, Limoli CL, Boison D. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Front Mol Neurosci 2016; 9:42. [PMID: 27375429 PMCID: PMC4891332 DOI: 10.3389/fnmol.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Theresa A Lusardi
- R. S. Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Barrett D Allen
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | | | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Detlev Boison
- R. S. Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| |
Collapse
|
29
|
Katsukawa M, Nakajima Y, Fukumoto A, Doi D, Takahashi J. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells Dev 2016; 25:815-25. [DOI: 10.1089/scd.2015.0394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mitsuko Katsukawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Signal Transductions, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yusuke Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akiko Fukumoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Clinical Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Sharlow ER, Leimgruber S, Lira A, McConnell MJ, Norambuena A, Bloom GS, Epperly MW, Greenberger JS, Lazo JS. A Small Molecule Screen Exposes mTOR Signaling Pathway Involvement in Radiation-Induced Apoptosis. ACS Chem Biol 2016; 11:1428-37. [PMID: 26938669 DOI: 10.1021/acschembio.5b00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Individuals are at risk of exposure to acute ionizing radiation (IR) from a nuclear accident or terrorism, but we lack effective therapies to mitigate the lethal IR effects. In the current study, we exploited an optimized, cell-based, high throughput screening assay to interrogate a small molecule library comprising 3437 known pharmacologically active compounds for mitigation against IR-induced apoptosis. Thirty-three library compounds significantly reduced apoptosis when administered 1 h after 4 Gy IR. Two- or three-dimensional computational structural analyses of the compounds indicated only one or two chemical clusters with most of the compounds being unique structures. The mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, was the most potent compound, and it mitigated apoptosis by 50% at 200 ± 50 pM. Other mTOR inhibitors, namely everolimus, AZD8055, and torin 1, also suppressed apoptosis, providing additional pharmacological evidence for mTOR pathway involvement in regulating cell death after IR. Everolimus and torin 1 treatment after IR decreased the S phase population and enforced both G1 and G2 phase arrest. This prorogation of cell cycle progression was accompanied by decreased IR-induced DNA damage measured by γH2AX phosphorylation at Ser139. RNA interference-mediated knockdown of the respective mTORC1 and mTORC2 subunits, Raptor or Rictor, also mitigated IR-induced apoptosis. Collectively, this study suggests a central role for the mTOR signaling in the cytotoxic response to IR and offers a useful platform to probe for additional agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W. Epperly
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S. Greenberger
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|
31
|
Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day WA, Espinoza I, Vijayakumar S, Gomez CR. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem 2015; 117:1308-18. [PMID: 26505164 DOI: 10.1002/jcb.25419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022]
Abstract
Despite progression in diagnosis and treatment, prostate cancer (PCa) still represents the main cause of cancer-related mortality and morbidity in men. Although radiation therapy offers clinical benefit over other therapeutic modalities, the success of this therapeutic modality is commonly hampered by the resistance of advanced tumors. So far, the mechanisms governing tumor resistance to radiotherapy are not discussed in detail. Here, we demonstrate for the first time that the resistance of PCa to radiation therapy is attributed to elevated expression of Hepatoma Up-Regulated Protein (HURP). In PCa cells, the induction of HURP expression suppresses γ-irradiation-induced apoptosis. γ-irradiation-induced apoptosis of PCa cells is associated with expression of E2F1, p53, p21 proteins together with the phosphorylation of apoptosis signal-regulating kinase1 (ASK1), c-jun-N-terminal kinase (JNK) and Ataxia-telangiectasia mutated (ATM) and histone family member X (H2AX). Whereas, the induction of HURP expression is able to suppress γ-irradiation-induced effects on E2F1, p53, p21, ATM, ASK1, JNK and ATM, and H2AX. Also, inhibition of γ-irradiation-induced- cytochrome c release, cleavage of caspase-9, caspase-3, PARP, and reactive oxygen species (ROS) were noted in PCa cells induced for HURP expression. The observed radio-resistance of PCa is thought to be the consequence of HURP-mediated destabilization of p53 and ATM proteins that are essential for the modulation of γ-irradiation-induced apoptosis. Thus, based on our findings, PCa resistance to radiation therapy results from the deregulation of ASK1/ JNK; ATM/ H2AX; ATM/p53 and checkpoint kinase 2 (Chk2)/ E2F-1 in response to the elevated expression of HURP.
Collapse
Affiliation(s)
- Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Abdelouahid El Khattouti
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Ahmed Ejaeidi
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Tangeng Ma
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - William A Day
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Biology, Belhaven University, 1500 Peachtree Street Jackson, Mississippi, 39202
| | - Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Biochemistry, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Srinivasan Vijayakumar
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Pathology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N State St. Jackson, Mississippi, 39216
| |
Collapse
|
32
|
Isono M, Yoshida Y, Takahashi A, Oike T, Shibata A, Kubota Y, Kanai T, Ohno T, Nakano T. Carbon-ion beams effectively induce growth inhibition and apoptosis in human neural stem cells compared with glioblastoma A172 cells. JOURNAL OF RADIATION RESEARCH 2015; 56:856-61. [PMID: 26070322 PMCID: PMC4577002 DOI: 10.1093/jrr/rrv033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
Carbon-ion radiotherapy (CIRT) holds promise in the treatment of glioblastoma, an aggressive X-ray-resistant brain tumor. However, since glioblastoma cells show a highly invasive nature, carbon-ion (C-ion) irradiation of normal tissues surrounding the tumor is inevitable. Recent studies have revealed the existence of neural stem cells in the adult brain. Therefore, the damaging effect of C-ion beams on the neural stem cells has to be carefully considered in the treatment planning of CIRT. Here, we investigated the growth and death mode of human neural stem cells (hNSCs) and glioblastoma A172 cells after X-ray or C-ion beam irradiation. The X-ray dose resulting in a 50% growth rate (D(50)) was 0.8 Gy in hNSCs and 3.0 Gy in A172 cells, while the D(50) for C-ion beams was 0.4 Gy in hNSCs and 1.6 Gy in A172 cells; the relative biological effectiveness value of C-ion beams was 2.0 in hNSCs and 1.9 in A172 cells. Importantly, both X-rays and C-ion beams preferentially induced apoptosis, not necrosis, in hNSCs; however, radiation-induced apoptosis was less evident in A172 cells. The apoptosis-susceptible nature of the irradiated hNSCs was associated with prolonged upregulation of phosphorylated p53, whereas the apoptosis-resistant nature of A172 cells was associated with a high basal level of nuclear factor kappa B expression. Taken together, these data indicate that apoptosis is the major cell death pathway in hNSCs after irradiation. The high sensitivity of hNSCs to C-ion beams underscores the importance of careful target volume delineation in the treatment planning of CIRT for glioblastoma.
Collapse
Affiliation(s)
- Mayu Isono
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
33
|
Mieloch AA, Suchorska WM. The concept of radiation-enhanced stem cell differentiation. Radiol Oncol 2015; 49:209-16. [PMID: 26401125 PMCID: PMC4577216 DOI: 10.1515/raon-2015-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. CONCLUSIONS In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types.
Collapse
Affiliation(s)
- Adam A. Mieloch
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| | - Wiktoria M. Suchorska
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| |
Collapse
|
34
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
35
|
Liedtke S, Biebernick S, Radke TF, Stapelkamp D, Coenen C, Zaehres H, Fritz G, Kogler G. DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Transl Med 2015; 4:576-89. [PMID: 25900727 DOI: 10.5966/sctm.2014-0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. SIGNIFICANCE The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent stem cells (iPSCs). The data suggest developmental age-dependent differences in DNA damage repair capacity. In iPSCs (closest to embryonic stem cells), the highest expression level of DNA damage response and repair genes was found, followed by neonatal stromal cells and adult stromal cells with the lowest overall expression. In addition, a differentiation-dependent downregulation of repair capacity was observed during osteogenic differentiation in neonatal stromal cells. Notably, the impact of genotoxic stress on osteogenic differentiation depended on the time the genotoxic insult took place and, moreover, was agent-specific. These results strongly support the necessity of offering and establishing adequate cell sources for informative toxicological testing matching to the developmental age and differentiation status of the respective cell of interest.
Collapse
Affiliation(s)
- Stefanie Liedtke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sophie Biebernick
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Teja Falk Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Stapelkamp
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Carolin Coenen
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gerhard Fritz
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
36
|
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015; 3:2. [PMID: 25699255 PMCID: PMC4313779 DOI: 10.3389/fcell.2015.00002] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.
Collapse
Affiliation(s)
- Vimal K Singh
- INSPIRE Faculty, Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| |
Collapse
|
37
|
Ke C, Tran K, Chen Y, Di Donato AT, Yu L, Hu Y, Linskey ME, Wang PH, Limoli CL, Zhou YH. Linking differential radiation responses to glioma heterogeneity. Oncotarget 2015; 5:1657-65. [PMID: 24722169 PMCID: PMC4039238 DOI: 10.18632/oncotarget.1823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The phenotypic and genetic diversity that define tumor subpopulations within high-grade glioma can lead to therapeutic resistance and tumor recurrence. Given that cranial irradiation is a frontline treatment for malignant glioma, understanding how irradiation selectively effects different cellular subpopulations within these heterogeneous cancers should help identify interventions targeted to better combat this deadly disease. To analyze the radiation response of distinct glioma subpopulations, 2 glioma cells lines (U251, A172) were cultured under conditions that promoted either adherence or non-adherent spheroids. Past work has demonstrated that subpopulations derived from defined culture conditions exhibit differences in karyotype, proliferation, gene expression and tumorigenicity. Spheroid cultures from each of the glioma cell lines were found to be more radiosensitive, which was consistent with higher levels of oxidative stress and lower levels of both oxidative phosphorylation and glycolytic metabolism 1 week following irradiation. In contrast, radioresistant non-spheroid parental cultures showed increased glycolytic activity in response to irradiation, while oxidative phosphorylation was affected to a lesser extent. Overall these data suggest that prolonged radiation-induced oxidative stress can compromise the metabolic state of certain glioma subpopulations thereby altering their sensitivity to an important therapeutic intervention used routinely for the control of glioma.
Collapse
Affiliation(s)
- Chao Ke
- Neurological Surgery, University of California, Irvine, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stem cells: the pursuit of genomic stability. Int J Mol Sci 2014; 15:20948-67. [PMID: 25405730 PMCID: PMC4264205 DOI: 10.3390/ijms151120948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells harbor significant potential for regenerative medicine as well as basic and clinical translational research. Prior to harnessing their reparative nature for degenerative diseases, concerns regarding their genetic integrity and mutation acquisition need to be addressed. Here we review pluripotent and multipotent stem cell response to DNA damage including differences in DNA repair kinetics, specific repair pathways (homologous recombination vs. non-homologous end joining), and apoptotic sensitivity. We also describe DNA damage and repair strategies during reprogramming and discuss potential genotoxic agents that can reduce the inherent risk for teratoma formation and mutation accumulation. Ensuring genomic stability in stem cell lines is required to achieve the quality control standards for safe clinical application.
Collapse
|
39
|
Asensi KD, Fortunato RS, dos Santos DS, Pacheco TS, de Rezende DF, Rodrigues DC, Mesquita FCP, Kasai-Brunswick TH, de Carvalho ACC, Carvalho DP, Carvalho AB, Goldenberg RCDS. Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress. J Cell Mol Med 2014; 18:824-31. [PMID: 24528612 PMCID: PMC4119388 DOI: 10.1111/jcmm.12226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood-derived mesenchymal stem cells (mb-iPSC), embryonic stem cells (H9) and adult menstrual blood-derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb-iPSC were 10-fold less resistant to H(2)O(2), which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb-iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb-iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb-iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb-iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS.
Collapse
Affiliation(s)
- Karina D Asensi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Danúbia S dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Thaísa S Pacheco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Danielle F de Rezende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Deivid C Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Fernanda C P Mesquita
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Tais H Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Antonio C Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de CardiologiaRio de Janeiro, Brazil
| | - Denise P Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Adriana B Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Regina C dos S Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- *Correspondence to: Regina C. dos S. GOLDENBERG, Av Carlos Chagas Filho 373, Sala G2-053, Rio de Janeiro 21941-902, Brazil. Tel.: +55 21 2562-6559 Fax: +55 21 2280-8193 E-mail:
| |
Collapse
|
40
|
Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, Limoli CL. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal 2014; 20:1410-22. [PMID: 23802883 PMCID: PMC3936501 DOI: 10.1089/ars.2012.5134] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Redox homeostasis is critical in regulating the fate and function of multipotent cells in the central nervous system (CNS). Here, we investigated whether low dose charged particle irradiation could elicit oxidative stress in neural stem and precursor cells and whether radiation-induced changes in redox metabolism would coincide with cognitive impairment. RESULTS Low doses (<1 Gy) of charged particles caused an acute and persistent oxidative stress. Early after (<1 week) irradiation, increased levels of reactive oxygen and nitrogen species were generally dose responsive, but were less dependent on dose weeks to months thereafter. Exposure to ion fluences resulting in less than one ion traversal per cell was sufficient to elicit radiation-induced oxidative stress. Whole body irradiation triggered a compensatory response in the rodent brain that led to a significant increase in antioxidant capacity 2 weeks following exposure, before returning to background levels at week 4. Low dose irradiation was also found to significantly impair novel object recognition in mice 2 and 12 weeks following irradiation. INNOVATION Data provide evidence that acute exposure of neural stem cells and the CNS to very low doses and fluences of charged particles can elicit a persisting oxidative stress lasting weeks to months that is associated with impaired cognition. CONCLUSIONS Exposure to low doses of charged particles causes a persistent oxidative stress and cognitive impairment over protracted times. Data suggest that astronauts subjected to space radiation may develop a heightened risk for mission critical performance decrements in space, along with a risk of developing long-term neurocognitive sequelae.
Collapse
Affiliation(s)
- Bertrand P Tseng
- 1 Department of Internal Medicine, Duke University Medical Center , Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alexandrou AT, Li JJ. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal 2014; 20:1463-80. [PMID: 24180340 PMCID: PMC3936506 DOI: 10.1089/ars.2013.5684] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. RECENT ADVANCES Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. CRITICAL ISSUES The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. FUTURE DIRECTIONS Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Collapse
Affiliation(s)
- Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis , Sacramento, California
| | | |
Collapse
|
42
|
Wang Q, Fan H, Liu Y, Yin Z, Cai H, Liu J, Wang Z, Shao M, Sun X, Diao J, Liu Y, Tong L, Fan Q. Curcumin enhances the radiosensitivity in nasopharyngeal carcinoma cells involving the reversal of differentially expressed long non-coding RNAs. Int J Oncol 2013; 44:858-64. [PMID: 24379026 DOI: 10.3892/ijo.2013.2237] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/02/2013] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are aberrantly expressed and have important functions in pathological processes. The present study investigated the lncRNA profiles and the effects of curcumin (Cur) on the radiosensitivity of nasopharyngeal carcinoma (NPC) cells. The lncRNA and mRNA profiles of each cell group were described by microarray analysis. Numerous differentially expressed genes were observed by microarrays in three cell groups. Cur significantly reversed the IR-induced lncRNA and mRNA expression signatures, shown by clustering analysis. Moreover, 116 of these IR-induced and Cur-reversed differentially expressed lncRNAs were obtained. Six lncRNAs (AF086415, AK095147, RP1-179N16.3, MUDENG, AK056098 and AK294004) were confirmed by qPCR. Furthermore, functional studies showed that lncRNA AK294004 exhibited a negative effect on cyclin D1 (CCND1), indicating that CCND1 might be a direct target of AK294004. IR-induced differentially expressed lncRNAs were reversed during Cur-enhanced radiosensitization in NPC cells, suggesting that lncRNAs have important functions in IR-induced radioresistance. Thus, Cur could serve as a good radiosensitizer.
Collapse
Affiliation(s)
- Qirui Wang
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Haoning Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Ying Liu
- Department of Radiotherapy, NanFang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhixin Yin
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Hongbing Cai
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jie Liu
- Department of Radiotherapy, NanFang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhiyuan Wang
- Department of Radiotherapy, NanFang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Meng Shao
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xuegang Sun
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianxin Diao
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yuanliang Liu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Li Tong
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Qin Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
43
|
Vinarsky V, Krivanek J, Rankel L, Nahacka Z, Barta T, Jaros J, Andera L, Hampl A. Human embryonic and induced pluripotent stem cells express TRAIL receptors and can be sensitized to TRAIL-induced apoptosis. Stem Cells Dev 2013; 22:2964-74. [PMID: 23806100 DOI: 10.1089/scd.2013.0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Death ligands and their tumor necrosis factor receptor (TNFR) family receptors are the best-characterized and most efficient inducers of apoptotic signaling in somatic cells. In this study, we analyzed whether these prototypic activators of apoptosis are also expressed and able to be activated in human pluripotent stem cells. We examined human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC) and found that both cell types express primarily TNF-related apoptosis-inducing ligand (TRAIL) receptors and TNFR1, but very low levels of Fas/CD95. We also found that although hESC and hiPSC contain all the proteins required for efficient induction and progression of extrinsic apoptotic signaling, they are resistant to TRAIL-induced apoptosis. However, both hESC and hiPSC can be sensitized to TRAIL-induced apoptosis by co-treatment with protein synthesis inhibitors such as the anti-leukemia drug homoharringtonine (HHT). HHT treatment led to suppression of cellular FLICE inhibitory protein (cFLIP) and Mcl-1 expression and, in combination with TRAIL, enhanced processing of caspase-8 and full activation of caspase-3. cFLIP likely represents an important regulatory node, as its shRNA-mediated down-regulation significantly sensitized hESC to TRAIL-induced apoptosis. Thus, we provide the first evidence that, irrespective of their origin, human pluripotent stem cells express canonical components of the extrinsic apoptotic system and on stress can activate death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Vladimir Vinarsky
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still ahead of us. Int J Mol Sci 2013; 14:15695-723. [PMID: 23899786 PMCID: PMC3759881 DOI: 10.3390/ijms140815695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/16/2022] Open
Abstract
Human stem cells (hSC) possess several distinct characteristics that set them apart from other cell types. First, hSC are self-renewing, capable of undergoing both asymmetric and symmetric cell divisions. Second, these cells can be coaxed to differentiate into various specialized cell types and, as such, hold great promise for regenerative medicine. Recent progresses in hSC biology fostered the characterization of the responses of hSC to genotoxic stresses, including ionizing radiation (IR). Here, we examine how different types of hSC respond to IR, with a special emphasis on their radiosensitivity, cell cycle, signaling networks, DNA damage response (DDR) and DNA repair. We show that human embryonic stem cells (hESCs) possess unique characteristics in how they react to IR that clearly distinguish these cells from all adult hSC studied thus far. On the other hand, a manifestation of radiation injuries/toxicity in human bodies may depend to a large extent on hSC populating corresponding tissues, such as human mesenchymal stem cells (hMSC), human hematopoietic stem cells (hHSC), neural hSC, intestine hSC, etc. We discuss here that hSC responses to IR differ notably across many types of hSC which may represent the distinct roles these cells play in development, regeneration and/or maintenance of homeostasis.
Collapse
|
45
|
Liao AC, Craver BM, Tseng BP, Tran KK, Parihar VK, Acharya MM, Limoli CL. Mitochondrial-targeted human catalase affords neuroprotection from proton irradiation. Radiat Res 2013; 180:1-6. [PMID: 23672429 DOI: 10.1667/rr3339.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Significant past work has linked radiation exposure of the CNS to elevated levels of oxidative stress and inflammation. These secondary reactive processes are both dynamic and persistent and are believed to compromise the functionality of the CNS, in part, by disrupting endogenous neurogenesis in the hippocampus. While evidence has shown neurogenesis to be sensitive to irradiation and redox state, the mechanistic basis underlying these effects is incompletely understood. To clarify the role of reactive oxygen species (ROS) in mediating radiation-induced changes in neurogenesis we have analyzed transgenic mice that overexpress human catalase localized to the mitochondria. With this model, we investigated the consequences of low dose and clinically relevant proton irradiation on neurogenesis, and how that process is modified in response to genetic disruption of mitochondrial ROS levels. In unirradiated animals, basal neurogenesis was improved significantly by reductions in mitochondrial ROS. In animals subjected to proton exposure, hippocampal progenitor cell proliferation was attenuated significantly by overexpression of human catalase in the mitochondria. Furthermore, expression of the MCAT transgene significantly improved neurogenesis in WT animals after low-dose proton exposure (0.5 Gy), with similar trends observed at higher dose (2 Gy). Our report documents for the first time the impact of proton irradiation on hippocampal neurogenesis, and the neuroprotective properties of reducing mitochondrial ROS through the targeted overexpression of catalase.
Collapse
Affiliation(s)
- Alicia C Liao
- Department of Radiation Oncology, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|