1
|
Beavis AC, Dienger-Stambaugh K, Briggs K, Chen Z, Abraham M, Spearman P, He B. A J Paramyxovirus-vectored HIV vaccine induces humoral and cellular responses in mice. Vaccine 2024; 42:2347-2356. [PMID: 38443277 DOI: 10.1016/j.vaccine.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Human immunodeficiency virus (HIV) infects and depletes CD4+ T-cells, resulting in Acquired Immunodeficiency Syndrome (AIDS) and death. Despite numerous clinical trials, there is no licensed HIV vaccine. The HIV envelope glycoprotein (env) is a major target for vaccine development, especially for the development of antibody-mediated protection. In this study, we used J paramyxovirus (JPV) as a viral vector to express HIV-env. We replaced the JPV small hydrophobic (SH) gene with HIV-env (rJPV-env). Intranasal rJPV-env immunization induced anti-HIV-gp120 IgG antibodies in mice. Furthermore, we examined the immunogenicity of homologous and heterologous prime/boost regimens with rJPV-env, parainfluenza virus 5 (rPIV5)-vectored HIV-env, and HIV-Gag-Env virus-like particles (VLPs). The rJPV-env/rPIV5-env heterologous prime/boost regimen induced the strongest humoral and cellular responses. Introducing a third dose of immunization, mice that received a viral-vectored prime had high levels of HIV-env-specific cellular responses, with group rJPV-env/rPIV5-env/VLP having the highest. Together, this work indicates that a heterologous combination of viral-vectored HIV-env vaccines and a HIV-Gag-Env VLP induces high levels of humoral and cellular responses against HIV in mice.
Collapse
Affiliation(s)
- Ashley C Beavis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America
| | - Krista Dienger-Stambaugh
- Infectious Diseases Division, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, United States of America
| | - Kelsey Briggs
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America
| | - Zhenhai Chen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America
| | - Mathew Abraham
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America
| | - Paul Spearman
- Infectious Diseases Division, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, United States of America
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
2
|
Li H, Sun H, Tao M, Han Q, Yu H, Li J, Lu X, Tong Q, Pu J, Sun Y, Liu L, Liu J, Sun H. Recombinant parainfluenza virus 5 expressing clade 2.3.4.4b H5 hemagglutinin protein confers broad protection against H5Ny influenza viruses. J Virol 2024; 98:e0112923. [PMID: 38305155 PMCID: PMC10949453 DOI: 10.1128/jvi.01129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Ferrets/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N6 Subtype/chemistry
- Influenza A Virus, H5N6 Subtype/classification
- Influenza A Virus, H5N6 Subtype/genetics
- Influenza A Virus, H5N6 Subtype/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/transmission
- Influenza in Birds/virology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Pandemic Preparedness/methods
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Parainfluenza Virus 5/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Administration, Intranasal
- Poultry/virology
- Immunoglobulin A/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mengyan Tao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiqi Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Lu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Litao Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Gingerich MC, Nair N, Azevedo JF, Samanta K, Kundu S, He B, Gomes-Solecki M. Intranasal vaccine for Lyme disease provides protection against tick transmitted Borrelia burgdorferi beyond one year. NPJ Vaccines 2024; 9:33. [PMID: 38360853 PMCID: PMC10869809 DOI: 10.1038/s41541-023-00802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 02/17/2024] Open
Abstract
Strategies for disease control are necessary to reduce incidence of Lyme Disease (LD) including development of safe vaccines for human use. Parainfluenza virus 5 (PIV5) vector has an excellent safety record in animals and PIV5-vectored vaccines are currently under clinical development. We constructed PIV5-vectored LD vaccine candidates expressing OspA from B. burgdorferi (OspAB31) and a chimeric protein containing sequences from B. burgdorferi and B. afzelii (OspABPBPk). Immunogenicity and vaccine efficacy were analyzed in C3H-HeN mice after prime-boost intranasal vaccination with live PIV5-OspAB31 or PIV5-OspABPBPk, subcutaneous (s.c.) vaccination with rOspAB31+Alum, and the respective controls. Mice vaccinated intranasally with live PIV5-AB31 or PIV5-ABPBPk had higher endpoint titers of serum antibody against OspAB31 at 6- and 12- months post vaccination, compared to mice vaccinated s.c. with rOspAB31. Neutralization activity of antibody was maintained up to 18-months post-immunization, with the response greater in live PIV5-delivered OspA vaccines, than that induced by s.c. rOspAB31. Challenge with infected ticks carrying 10-19 strains of B. burgdorferi performed at 4-, 9- or 15-months post-immunization showed increased breakthrough infections in mice vaccinated with s.c. rOspAB31 compared to intranasal PIV5-AB31 or PIV5-ABPBPk at 9- and 15-months, as determined by quantification of serologic antibodies to B. burgdorferi proteins as well as flaB DNA in tissues, and by visualization of motile B. burgdorferi in culture of tissues under dark field microscope. These findings indicate that immunization of mice with PIV5 delivered OspA generates immune responses that produce longer-lasting protection ( > 1 year) against tick-transmitted B. burgdorferi than a parenteral recombinant OspA vaccine.
Collapse
Affiliation(s)
- Maria Cristina Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Nisha Nair
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
| | - Jose F Azevedo
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Kamalika Samanta
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Merck & Co., West Point, PA, USA
| | - Suman Kundu
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA.
- Immuno Technologies, Inc., Memphis, TN, USA.
| |
Collapse
|
4
|
Randall RE, Young DF, Hughes DJ, Goodbourn S. Persistent paramyxovirus infections: in co-infections the parainfluenza virus type 5 persistent phenotype is dominant over the lytic phenotype. J Gen Virol 2023; 104:001916. [PMID: 37962188 PMCID: PMC10768688 DOI: 10.1099/jgv.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Parainfluenza virus type 5 (PIV5) can either have a persistent or a lytic phenotype in cultured cells. We have previously shown that the phenotype is determined by the phosphorylation status of the phosphoprotein (P). Single amino acid substitutions at critical residues, including a serine-to-phenylalanine substitution at position 157 on P, result in a switch between persistent and lytic phenotypes. Here, using PIV5 vectors expressing either mCherry or GFP with persistent or lytic phenotypes, we show that in co-infections the persistent phenotype is dominant. Thus, in contrast to the cell death observed with cells infected solely with the lytic variant, in co-infected cells persistence is immediately established and both lytic and persistent genotypes persist. Furthermore, 10-20 % of virus released from dually infected cells contains both genotypes, indicating that PIV5 particles can package more than one genome. Co-infected cells continue to maintain both genotypes/phenotypes during cell passage, as do individual colonies of cells derived from a culture of persistently infected cells. A refinement of our model on how the dynamics of virus selection may occur in vivo is presented.
Collapse
Affiliation(s)
- Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David J. Hughes
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Steve Goodbourn
- Section for Pathogen Research, Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
5
|
Spearman P, Jin H, Knopp K, Xiao P, Gingerich MC, Kidd J, Singh K, Tellier M, Radziewicz H, Wu S, McGregor M, Freda B, Wang Z, John SP, Villinger FJ, He B. Intranasal parainfluenza virus type 5 (PIV5)-vectored RSV vaccine is safe and immunogenic in healthy adults in a phase 1 clinical study. SCIENCE ADVANCES 2023; 9:eadj7611. [PMID: 37878713 PMCID: PMC10599610 DOI: 10.1126/sciadv.adj7611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
Respiratory syncytial virus (RSV) can lead to serious disease in infants, and no approved RSV vaccine is available for infants. This first in-human clinical trial evaluated a single dose of BLB201, a PIV5-vectored RSV vaccine administrated via intranasal route, for safety and immunogenicity in RSV-seropositive healthy adults (33 to 75 years old). No severe adverse events (SAEs) were reported. Solicited local and systemic AEs were reported by <50% of participants and were mostly mild in intensity. Vaccine virus shedding was detected in 17% of participants. Nasal RSV-specific immunoglobulin A responses were detected in 48%, the highest level observed in adults among all intranasal RSV vaccines evaluated in humans. RSV-neutralizing antibodies titers in serum rose ≥1.5-fold. Peripheral blood RSV F-specific CD4+ and CD8+ T cells increased from ≤0.06% at baseline to ≥0.26 and 0.4% after vaccination, respectively, in >93% participants. The safety and immunogenicity profile of BLB201 in RSV-seropositive adults supports the further clinical development of BLB201.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Hong Jin
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Kristeene Knopp
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Jamie Kidd
- Department of Pediatrics, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Karnail Singh
- Department of Pediatrics, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Marinka Tellier
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Henry Radziewicz
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Samuel Wu
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Matthew McGregor
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Barbara Freda
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Zhaoti Wang
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| | - Susan P. John
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Biao He
- Blue Lake Biotechnology Inc., 111 Riverbend Rd., Athens, GA 30602, USA
| |
Collapse
|
6
|
Beavis AC, Wee EGT, Akis Yildirim BM, Borthwick N, He B, Hanke T. Combined intranasal and intramuscular parainfluenza 5-, simian adenovirus ChAdOx1- and poxvirus MVA-vectored vaccines induce synergistically HIV-1-specific T cells in the mucosa. Front Immunol 2023; 14:1186478. [PMID: 37529048 PMCID: PMC10390215 DOI: 10.3389/fimmu.2023.1186478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction The primary goal of this work is to broaden and enhance the options for induction of protective CD8+ T cells against HIV-1 and respiratory pathogens. Methods We explored the advantages of the parainfluenza virus 5 (PIV5) vector for delivery of pathogen-derived transgenes alone and in combination with the in-human potent regimen of simian adenovirus ChAdOx1 prime-poxvirus MVA boost delivering bi-valent mosaic of HIV-1 conserved regions designated HIVconsvX. Results We showed in BALB/c mice that the PIV5 vector expressing the HIVconsvX immunogens could be readily incorporated with the other two vaccine modalities into a single regimen and that for specific vector combinations, mucosal CD8+ T-cell induction was enhanced synergistically by a combination of the intranasal and intramuscular routes of administration. Discussion Encouraging safety and immunogenicity data from phase 1 human trials of ChAdOx1- and MVA-vectored vaccines for HIV-1, and PIV5-vectored vaccines for SARS-CoV-2 and respiratory syncytial virus pave the way for combining these vectors for HIV-1 and other indications in humans.
Collapse
Affiliation(s)
- Ashley C. Beavis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Edmund G. -T. Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Belkis M. Akis Yildirim
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
8
|
Yang M, Ma Y, Jiang Q, Song M, Kang H, Liu J, Qu L. Isolation, identification and pathogenic characteristics of tick-derived parainfluenza virus 5 in northeast China. Transbound Emerg Dis 2022; 69:3300-3316. [PMID: 35964328 DOI: 10.1111/tbed.14681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 02/07/2023]
Abstract
The number of parainfluenza virus 5 (PIV5) infection cases has increased worldwide over the past six decades; however, factors underlying this increase remain unclear. PIV5 has been emerging or re-emerging in humans and animal species. To date, no information is yet available regarding PIV5 infection in arthropod ticks. Here, we successfully isolated tick-derived PIV5 from the Ixodes persulcatus species designated as HLJ/Tick/2019 in Heilongjiang, China. Phylogenetic analysis revealed that the tick-derived PIV5 is closely related to subclade 2.2.6, which has become the dominant subtype prevalent in dogs, pigs and wildlife across China. Further experiments to understand the importance of this virus as an infectious vector revealed that a ferret animal model experimentally infected with Tick/HLJ/2019 via the oronasal and ocular inoculation routes developed moderate respiratory distress with pneumonia and neurologic tissue damage from inflammation for the first time. Further surveillance of PIV5 in vectors of viral transmission is necessary to enhance our knowledge of its ecology in reservoirs and facilitate the control of re-emerging diseases.
Collapse
Affiliation(s)
- Mingfa Yang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunyun Ma
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Jiang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiasen Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Hofmeyer KA, Bianchi KM, Wolfe DN. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines (Basel) 2022; 10:436. [PMID: 35335068 PMCID: PMC8950656 DOI: 10.3390/vaccines10030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
As the global response to COVID-19 continues, government stakeholders and private partners must keep an eye on the future for the next emerging viral threat with pandemic potential. Many of the virus families considered to be among these threats currently cause sporadic outbreaks of unpredictable size and timing. This represents a major challenge in terms of both obtaining sufficient funding to develop vaccines, and the ability to evaluate clinical efficacy in the field. However, this also presents an opportunity in which vaccines, along with robust diagnostics and contact tracing, can be utilized to respond to outbreaks as they occur, and limit the potential for further spread of the disease in question. While mRNA-based vaccines have proven, during the COVID-19 response, to be an effective and safe solution in terms of providing a rapid response to vaccine development, virus vector-based vaccines represent a class of vaccines that can offer key advantages in certain performance characteristics with regard to viruses of pandemic potential. Here, we will discuss some of the key pros and cons of viral vector vaccines in the context of preparing for future pandemics.
Collapse
Affiliation(s)
| | | | - Daniel N. Wolfe
- US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC 20201, USA; (K.A.H.); (K.M.B.)
| |
Collapse
|
10
|
Ibrahim YM, Zhang W, Werid GM, Zhang H, Pan Y, Zhang L, Xu Y, Li C, Chen H, Wang Y. Characterization of parainfluenza virus 5 from diarrheic piglet highlights its zoonotic potential. Transbound Emerg Dis 2022; 69:e1510-e1525. [PMID: 35179303 DOI: 10.1111/tbed.14482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Parainfluenza virus 5 (PIV5), a member of paramyxoviruses, causes respiratory and neurological infection in several animal species. Whereas information on PIV5 infection in digestive system is very scarce. Here, we successfully isolated one PIV5 strain from diarrhetic piglets. After four times plaque purification and ultracentrifugation, the paramyxovirus-like particles were observed by electron microscopy. The genome-wide phylogenetic analysis showed that the isolated strain was closely related to the PIV5 strain from a lesser panda and pigs in China. Therefore, we characterized this isolated PIV5 and found that this virus could hemagglutinate red blood cells from both guinea pigs and chickens. Further, we observed that this PIV5 could infect cell lines from various host species including pig, human, monkey, bovine, dog, cat, rabbit, hamster, and mouse, which was confirmed with the immunofluorescent assay. To evaluate the distribution of PIV5 in the field, we developed an indirect ELISA (iELISA) for the first time to detect the specific antibodies based on recombinant nucleocapsid protein. A total of 530 porcine serum samples were tested and the PIV5-positive rate was 75.7%. To our knowledge, this is the first report describing the full characterization of PIV5 strain isolated from a diarrheic piglet. The ability of this PIV5 strain to infect a wide range of mammalian cell types indicates that PIV5 can transmit across different species, providing a remarkable insight into potential zoonosis. The virus strain and iELISA developed in this study can be used to investigate the pathogenesis, epidemiology, and zoonotic potential of PIV5. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yassein M Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
An D, Li K, Rowe DK, Diaz MCH, Griffin EF, Beavis AC, Johnson SK, Padykula I, Jones CA, Briggs K, Li G, Lin Y, Huang J, Mousa J, Brindley M, Sakamoto K, Meyerholz DK, McCray PB, Tompkins SM, He B. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. SCIENCE ADVANCES 2021; 7:eabi5246. [PMID: 34215591 PMCID: PMC11057785 DOI: 10.1126/sciadv.abi5246] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Transmission-blocking vaccines are urgently needed to reduce transmission of SARS-CoV 2, the cause of the COVID-19 pandemic. The upper respiratory tract is an initial site of SARS-CoV-2 infection and, for many individuals, remains the primary site of virus replication. An ideal COVID-19 vaccine should reduce upper respiratory tract virus replication and block transmission as well as protect against severe disease. Here, we optimized a vaccine candidate, parainfluenza virus 5 (PIV5) expressing the SARS-CoV-2 S protein (CVXGA1), and then demonstrated that a single-dose intranasal immunization with CVXGA1 protects against lethal infection of K18-hACE2 mice, a severe disease model. CVXGA1 immunization also prevented virus infection of ferrets and blocked contact transmission. This mucosal vaccine strategy inhibited SARS-CoV-2 replication in the upper respiratory tract, thus preventing disease progression to the lower respiratory tract. A PIV5-based mucosal vaccine provides a strategy to induce protective innate and cellular immune responses and reduce SARS-CoV-2 infection and transmission in populations.
Collapse
Affiliation(s)
- Dong An
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kun Li
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Dawne K Rowe
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Maria Cristina Huertas Diaz
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Emily F Griffin
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Ashley C Beavis
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Ian Padykula
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kelsey Briggs
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Geng Li
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Yuan Lin
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jiachen Huang
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jarrod Mousa
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
- Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Melinda Brindley
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA.
- Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Xiao P, Dienger-Stambaugh K, Chen X, Wei H, Phan S, Beavis AC, Singh K, Adhikary NRD, Tiwari P, Villinger F, He B, Spearman P. Parainfluenza Virus 5 Priming Followed by SIV/HIV Virus-Like-Particle Boosting Induces Potent and Durable Immune Responses in Nonhuman Primates. Front Immunol 2021; 12:623996. [PMID: 33717130 PMCID: PMC7946978 DOI: 10.3389/fimmu.2021.623996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
The search for a preventive vaccine against HIV infection remains an ongoing challenge, indicating the need for novel approaches. Parainfluenza virus 5 (PIV5) is a paramyxovirus replicating in the upper airways that is not associated with any animal or human pathology. In animal models, PIV5-vectored vaccines have shown protection against influenza, RSV, and other human pathogens. Here, we generated PIV5 vaccines expressing HIV envelope (Env) and SIV Gag and administered them intranasally to macaques, followed by boosting with virus-like particles (VLPs) containing trimeric HIV Env. Moreover, we compared the immune responses generated by PIV5-SHIV prime/VLPs boost regimen in naïve vs a control group in which pre-existing immunity to the PIV5 vector was established. We demonstrate for the first time that intranasal administration of PIV5-based HIV vaccines is safe, well-tolerated and immunogenic, and that boosting with adjuvanted trimeric Env VLPs enhances humoral and cellular immune responses. The PIV5 prime/VLPs boost regimen induced robust and durable systemic and mucosal Env-specific antibody titers with functional activities including ADCC and neutralization. This regimen also induced highly polyfunctional antigen-specific T cell responses. Importantly, we show that diminished responses due to PIV5 pre-existing immunity can be overcome in part with VLP protein boosts. Overall, these results establish that PIV5-based HIV vaccine candidates are promising and warrant further investigation including moving on to primate challenge studies.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Line
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV-1/genetics
- HIV-1/immunology
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Macaca mulatta
- Male
- Nasal Mucosa/immunology
- Nasal Mucosa/virology
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Virion/genetics
- Virion/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Krista Dienger-Stambaugh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Xuemin Chen
- Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Huiling Wei
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ashley C. Beavis
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Nihar R. Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Pooja Tiwari
- Wallace H Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Molecular detection and whole genome characterization of Canine Parainfluenza type 5 in Thailand. Sci Rep 2021; 11:3866. [PMID: 33594165 PMCID: PMC7887266 DOI: 10.1038/s41598-021-83323-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022] Open
Abstract
Parainfluenza virus type 5 (PIV-5) causes respiratory infection in several animal species and humans. Canine parainfluenza virus type 5 (CPIV-5) causes respiratory disease in domestic dogs worldwide. In this study, we conducted a cross-sectional survey of CPIV-5 in dogs with respiratory symptoms from small animal hospitals in Thailand from November 2015 to December 2018. Our results showed that 32 out of 571 nasal swab samples (5.6%) were positive for CPIV-5 by RT-PCR specific to the NP gene. To characterize the viruses, three representative CPIV-5 were subjected to whole genome sequencing, and an additional ten CPIV-5 were subjected to HN, F, SH and V/P gene sequencing. Pairwise sequence comparison and phylogenetic analysis showed that Thai CPIV-5 was closely related to the CPIV-5 isolated from China and Korea. In conclusion, this study constitutes a whole genome characterization of CPIV-5 from dogs in Thailand. The surveillance of CPIV-5 should be further investigated at a larger scale to determine the dynamics, distribution and potential zoonotic transmission of CPIV-5.
Collapse
|
14
|
Li Z, Zaiser SA, Shang P, Heiden DL, Hajovsky H, Katwal P, DeVries B, Baker J, Richt JA, Li Y, He B, Fang Y, Huber VC. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine. Vet Microbiol 2020; 250:108859. [PMID: 33039727 PMCID: PMC7500346 DOI: 10.1016/j.vetmic.2020.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
An HA-based vaccine candidate, created by DNA shuffling (HA-113), can be immunogenic when recombinant antigen is expressed by PIV5 (PIV5-113). Immunity induced by the PIV5-113 vaccine can protect mice against infection with 4 of 5 parental HAs used to create the vaccine. Immunity induced by PIV5-113 can protect pigs against infection with an influenza virus isolate that is known to be infectious in pigs.
Pigs are an important reservoir for human influenza viruses, and influenza causes significant economic loss to the swine industry. As demonstrated during the 2009 H1N1 pandemic, control of swine influenza virus infection is a critical step toward blocking emergence of human influenza virus. An effective vaccine that can induce broadly protective immunity against heterologous influenza virus strains is critically needed. In our previous studies [McCormick et al., 2015; PLoS One, 10(6):e0127649], we used molecular breeding (DNA shuffling) strategies to increase the breadth of the variable and conserved epitopes expressed within a single influenza A virus chimeric hemagglutinin (HA) protein. Chimeric HAs were constructed using parental HAs from the 2009 pandemic virus and swine influenza viruses that had a history of zoonotic transmission to humans. In the current study, we used parainfluenza virus 5 (PIV-5) as a vector to express one of these chimeric HA antigens, HA-113. Recombinant PIV-5 expressing HA-113 (PIV5-113) were rescued, and immunogenicity and protective efficacy were tested in both mouse and pig models. The results showed that PIV5-113 can protect mice and pigs against challenge with viruses expressing parental HAs. The protective immunity was extended against other genetically diversified influenza H1-expressing viruses. Our work demonstrates that PIV5-based influenza vaccines are efficacious as vaccines for pigs. The PIV5 vaccine vector and chimeric HA-113 antigen are discussed in the context of the development of universal influenza vaccines and the potential contribution of PIV5-113 as a candidate universal vaccine.
Collapse
Affiliation(s)
- Zhuo Li
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States
| | - Sarah A Zaiser
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pengcheng Shang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Dustin L Heiden
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Heather Hajovsky
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pratik Katwal
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Baylor DeVries
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Jack Baker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Juergen A Richt
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Yanhua Li
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Biao He
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States.
| | - Ying Fang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States.
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States.
| |
Collapse
|
15
|
Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. mBio 2020; 11:mBio.00554-20. [PMID: 32265331 PMCID: PMC7157776 DOI: 10.1128/mbio.00554-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans and remains endemic in the Middle East since first being identified in 2012. There are currently no approved vaccines or therapies available for MERS-CoV. In this study, we evaluated parainfluenza virus 5 (PIV5)-based vaccine expressing the MERS-CoV envelope spike protein (PIV5/MERS-S) in a human DPP4 knockin C57BL/6 congenic mouse model (hDPP4 KI). Following a single-dose intranasal immunization, PIV5-MERS-S induced neutralizing antibody and robust T cell responses in hDPP4 KI mice. A single intranasal administration of 104 PFU PIV5-MERS-S provided complete protection against a lethal challenge with mouse-adapted MERS-CoV (MERSMA6.1.2) and improved virus clearance in the lung. In comparison, single-dose intramuscular immunization with 106 PFU UV-inactivated MERSMA6.1.2 mixed with Imject alum provided protection to only 25% of immunized mice. Intriguingly, an influx of eosinophils was observed only in the lungs of mice immunized with inactivated MERS-CoV, suggestive of a hypersensitivity-type response. Overall, our study indicated that PIV5-MERS-S is a promising effective vaccine candidate against MERS-CoV infection.IMPORTANCE MERS-CoV causes lethal infection in humans, and there is no vaccine. Our work demonstrates that PIV5 is a promising vector for developing a MERS vaccine. Furthermore, success of PIV5-based MERS vaccine can be employed to develop a vaccine for emerging CoVs such as SARS-CoV-2, which causes COVID-19.
Collapse
|
16
|
Shirvani E, Varghese BP, Paldurai A, Samal SK. A recombinant avian paramyxovirus serotype 3 expressing the hemagglutinin protein protects chickens against H5N1 highly pathogenic avian influenza virus challenge. Sci Rep 2020; 10:2221. [PMID: 32042001 PMCID: PMC7010735 DOI: 10.1038/s41598-020-59124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a devastating disease of poultry and a serious threat to public health. Vaccination with inactivated virus vaccines has been applied for several years as one of the major policies to control highly pathogenic avian influenza virus (HPAIV) infections in chickens. Viral-vectored HA protein vaccines are a desirable alternative for inactivated vaccines. However, each viral vector possesses its own advantages and disadvantages for the development of a HA-based vaccine against HPAIV. Recombinant Newcastle disease virus (rNDV) strain LaSota expressing HA protein vaccine has shown promising results against HPAIV; however, its replication is restricted only to the respiratory tract. Therefore, we thought to evaluate avian paramyxovirus serotype 3 (APMV-3) strain Netherlands as a safe vaccine vector against HPAIV, which has high efficiency replication in a greater range of host organs. In this study, we generated rAPMV-3 expressing the HA protein of H5N1 HPAIV using reverse genetics and evaluated the induction of neutralizing antibodies and protection by rAPMV3 and rNDV expressing the HA protein against HPAIV challenge in chickens. Our results showed that immunization of chickens with rAPMV-3 or rNDV expressing HA protein provided complete protection against HPAIV challenge. However, immunization of chickens with rAPMV-3 expressing HA protein induced higher level of neutralizing antibodies compared to that of rNDV expressing HA protein. These results suggest that a rAPMV-3 expressing HA protein might be a better vaccine for mass-vaccination of commercial chickens in field conditions.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
17
|
Lafontaine ER, Chen Z, Huertas-Diaz MC, Dyke JS, Jelesijevic TP, Michel F, Hogan RJ, He B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019; 1:100002. [PMID: 33826684 PMCID: PMC6668238 DOI: 10.1016/j.jvacx.2018.100002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are the causative agents of glanders and melioidosis, respectively. There is no vaccine to protect against these highly-pathogenic and intrinsically antibiotic-resistant bacteria, and there is concern regarding their use as biological warfare agents. For these reasons, B. mallei and B. pseudomallei are classified as Tier 1 organisms by the U.S. Federal Select Agent Program and the availability of effective countermeasures represents a critical unmet need. METHODS Vaccines (subunit and vectored) containing the surface-exposed passenger domain of the conserved Burkholderia autotransporter protein BatA were administered to BALB/c mice and the vaccinated animals were challenged with lethal doses of wild-type B. mallei and B. pseudomallei strains via the aerosol route. Mice were monitored for signs of illness for a period of up to 40 days post-challenge and tissues from surviving animals were analyzed for bacterial burden at study end-points. RESULTS A single dose of recombinant Parainfluenza Virus 5 (PIV5) expressing BatA provided 74% and 60% survival in mice infected with B. mallei and B. pseudomallei, respectively. Vaccination with PIV5-BatA also resulted in complete bacterial clearance from the lungs and spleen of 78% and 44% of animals surviving lethal challenge with B. pseudomallei, respectively. In contrast, all control animals vaccinated with a PIV5 construct expressing an irrelevant antigen and infected with B. pseudomallei were colonized in those tissues. CONCLUSION Our study indicates that the autotransporter BatA is a valuable target for developing countermeasures against B. mallei and B. pseudomallei and demonstrates the utility of the PIV5 viral vaccine delivery platform to elicit cross-protective immunity against the organisms.
Collapse
Affiliation(s)
- Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Maria Cristina Huertas-Diaz
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Tomislav P. Jelesijevic
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
18
|
Chen Z. Parainfluenza virus 5-vectored vaccines against human and animal infectious diseases. Rev Med Virol 2018; 28. [PMID: 29316047 PMCID: PMC7169218 DOI: 10.1002/rmv.1965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative‐sense, nonsegmented, single‐stranded RNA virus belonging to the Paramyxoviridae family. Parainfluenza virus 5 is an excellent viral vector and has been used as a live vaccine for kennel cough for many years in dogs without any safety concern. It can grow to high titers in many cell types, and its genome is stable even in the presence of foreign gene insertions. So far, PIV5 has been used to develop vaccines against influenza virus, respiratory syncytial virus, rabies virus, and Mycobacterium tuberculosis, demonstrating its ability to elicit robust and protective immune responses in preclinical animal models. Parainfluenza virus 5–based vaccines can be administered intranasally, intramuscularly, or orally. Interestingly, prior exposure of PIV5 does not prevent a PIV5‐vectored vaccine from generating robust immunity, indicating that the vector can be used more than once. Here, these encouraging results are reviewed together along with discussion of the desirable advantages of the PIV5 vaccine vector to aid future vaccine design and to accelerate progression of PIV5‐based vaccines into clinical trials.
Collapse
Affiliation(s)
- Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China
| |
Collapse
|
19
|
Fujiyuki T, Horie R, Yoneda M, Kuraishi T, Yasui F, Kwon HJ, Munekata K, Ikeda F, Hoshi M, Kiso Y, Omi M, Sato H, Kida H, Hattori S, Kohara M, Kai C. Efficacy of recombinant measles virus expressing highly pathogenic avian influenza virus (HPAIV) antigen against HPAIV infection in monkeys. Sci Rep 2017; 7:12017. [PMID: 28931922 PMCID: PMC5607339 DOI: 10.1038/s41598-017-08326-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a serious threat not only to domestic fowls but also to humans. Vaccines inducing long-lasting immunity against HPAIV are required. In the present study, we generated recombinant measles virus (MV) expressing the hemagglutinin protein of HPAIV without the multibasic site necessary for its pathogenicity in chickens using the backbone of an MV vaccine strain (rMV-Ed-H5HA) or a wild-type MV-derived mutant (rMV-HL-Vko-H5HA). We examined protective efficacy of the candidate vaccines in the monkey infection model by the challenge with a HPAIV (H5N1). Cynomolgus monkeys inoculated with the candidate vaccines produced both anti-H5 HA and anti-MV antibodies. They recovered earlier from influenza symptoms than unvaccinated monkeys after the challenge with the HPAIV strain. Chest radiography and histopathological analyses confirmed less severe pneumonia in the vaccinated monkeys. Vaccination tended to suppress viral shedding and reduced the interleukin-6 levels in the lungs. Furthermore, the vaccination with rMV-Ed-H5HA of monkeys with pre-existing anti-MV immunity induced the production of anti-H5 HA antibodies. These results suggest that both candidate vaccines effectively reduce disease severity in naïve hosts, and that rMV-Ed-H5HA is a particularly good candidate vaccine against HPAIV infection.
Collapse
Affiliation(s)
- Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Horie
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takeshi Kuraishi
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hyun-Jeong Kwon
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Fusako Ikeda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Miho Hoshi
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuri Kiso
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mio Omi
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan.
| |
Collapse
|
20
|
Genetic Stability of Parainfluenza Virus 5-Vectored Human Respiratory Syncytial Virus Vaccine Candidates after In Vitro and In Vivo Passage. J Virol 2017; 91:JVI.00559-17. [PMID: 28747497 DOI: 10.1128/jvi.00559-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading etiologic agent of lower respiratory tract infections in children, but no licensed vaccine exists. Previously, we developed two parainfluenza virus 5 (PIV5)-based RSV vaccine candidates that protect mice against RSV challenge. PIV5 was engineered to express either the RSV fusion protein (F) or the RSV major attachment glycoprotein (G) between the hemagglutinin-neuraminidase (HN) and RNA-dependent RNA polymerase (L) genes of the PIV5 genome [PIV5-RSV-F (HN-L) and PIV5-RSV-G (HN-L), respectively]. To investigate the stability of the vaccine candidates in vitro, they were passaged in Vero cells at high and low multiplicities of infection (MOIs) for 11 generations and the genome sequences, growth kinetics, and protein expression of the resulting viruses were compared with those of the parent viruses. Sporadic mutations were detected in the consensus sequences of the viruses after high-MOI passages, and mutation rates increased under low-MOI-passage conditions. None of the mutations abolished antigen expression. Increased numbers of mutations correlated with increased growth rates in vitro, indicating that the viruses evolved through the course of serial passages. We also examined the in vivo stability of the vaccine candidates after a single passage in African green monkeys. No mutations were detected in the consensus sequences of viruses collected from the bronchoalveolar lavage (BAL) fluid of the animals. In vivo, mutations in RSV G and PIV5 L were found in individual isolates of PIV5-RSV-G (HN-L), but plaque isolates of PIV5-RSV-F (HN-L) had no mutations. To improve upon the PIV5-RSV-F (HN-L) candidate, additional vaccine candidates were generated in which the gene for RSV F was inserted into earlier positions in the PIV5 genome. These insertions did not negatively impact the sequence stability of the vaccine candidates. The results suggest that the RSV F and G gene insertions are stable in the PIV5 genome. However, the function of the foreign gene insertion may need to be considered when designing PIV5-based vaccines.IMPORTANCE The genetic stability of live viral vaccines is important for safety and efficacy. PIV5 is a promising live viral vector and has been used to develop vaccines. In this work, we examined the genetic stability of a PIV5-based RSV vaccine in vitro and in vivo We found that insertions of foreign genes, such as the RSV F and G genes, were stably maintained in the PIV5 genome and there was no mutation that abolished the expression of RSV F or G. Interestingly, the function of the inserted gene may have an impact on PIV5 genome stability.
Collapse
|
21
|
A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge. J Virol 2017; 91:JVI.00066-17. [PMID: 28298602 DOI: 10.1128/jvi.00066-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 103 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 106 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate.IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys that had been infected previously. Our data suggest that PIV5-vectored vaccines could potentially protect both the pediatric and elderly populations and support continued development of the vector platform.
Collapse
|
22
|
Liu C, Li X, Zhang J, Yang L, Li F, Deng J, Tan F, Sun M, Liu Y, Tian K. Isolation and genomic characterization of a canine parainfluenza virus type 5 strain in China. Arch Virol 2017; 162:2337-2344. [DOI: 10.1007/s00705-017-3387-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
23
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
24
|
Chen Z, Gupta T, Xu P, Phan S, Pickar A, Yau W, Karls RK, Quinn FD, Sakamoto K, He B. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice. Vaccine 2015; 33:7217-7224. [PMID: 26552000 DOI: 10.1016/j.vaccine.2015.10.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/24/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development.
Collapse
Affiliation(s)
- Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Tuhina Gupta
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Adrian Pickar
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Wilson Yau
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Frederick D Quinn
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
25
|
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5. J Virol 2015; 89:11845-57. [PMID: 26378167 DOI: 10.1128/jvi.01832-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.
Collapse
|
26
|
Establishment and characterization of a telomerase-immortalized canine bronchiolar epithelial cell line. Appl Microbiol Biotechnol 2015; 99:9135-46. [PMID: 26156242 DOI: 10.1007/s00253-015-6794-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Dogs are susceptible to infectious diseases that occur primarily in the respiratory tract. The airway epithelium acts as a first line of defense and is constantly exposed to microorganisms present in the environment. Respiratory epithelial cells have recently gained wide use as a cell model for studying the pathogenesis of human, murine or swine respiratory pathogen infections. However, studies of the pathogenic mechanisms of canine pathogens have been hindered by the lack of reliable respiratory cell lines. Here, we cultured primary canine bronchiolar epithelial cells (CBECs), whose characteristics were confirmed by their expression of the epithelial cell-specific marker cytokeratin 18, and have provided protocols for their isolation and ex vivo expansion. Further, we established immortalized CBECs containing the human telomerase reverse transcriptase (hTERT) gene via transfection of primary CBECs with the recombinant plasmid pEGFP-hTERT. Immortalized bronchiolar epithelial cells (hTERT-CBECs) retain the morphological and functional features of primary CBECs, as indicated by reverse transcriptase polymerase chain reaction, proliferation assays, karyotype analysis, telomerase activity assay, and Western blotting, which demonstrate that hTERT-CBECs have higher telomerase activity, an extended proliferative lifespan, and a diploid complement of chromosomes, even after Passage 50. Moreover, this cell line is not transformed, as evaluated using soft agar assays and tumorigenicity analysis in nude mice, and can therefore be safely used in future studies. The isolation and establishment of stable hTERT-CBECs is of great importance for use as an in vitro model for mechanistic studies of canine pathogenic infections.
Collapse
|
27
|
Li Z, Gabbard JD, Johnson S, Dlugolenski D, Phan S, Tompkins SM, He B. Efficacy of a parainfluenza virus 5 (PIV5)-based H7N9 vaccine in mice and guinea pigs: antibody titer towards HA was not a good indicator for protection. PLoS One 2015; 10:e0120355. [PMID: 25803697 PMCID: PMC4372596 DOI: 10.1371/journal.pone.0120355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/08/2015] [Indexed: 12/31/2022] Open
Abstract
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - Jon D. Gabbard
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - Scott Johnson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, United States of America
- * E-mail:
| |
Collapse
|
28
|
Breiman RF, Cosmas L, Njenga M, Williamson J, Mott JA, Katz MA, Erdman DD, Schneider E, Oberste M, Neatherlin JC, Njuguna H, Ondari DM, Odero K, Okoth GO, Olack B, Wamola N, Montgomery JM, Fields BS, Feikin DR. Severe acute respiratory infection in children in a densely populated urban slum in Kenya, 2007-2011. BMC Infect Dis 2015; 15:95. [PMID: 25879805 PMCID: PMC4351931 DOI: 10.1186/s12879-015-0827-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
Background Reducing acute respiratory infection burden in children in Africa remains a major priority and challenge. We analyzed data from population-based infectious disease surveillance for severe acute respiratory illness (SARI) among children <5 years of age in Kibera, a densely populated urban slum in Nairobi, Kenya. Methods Surveillance was conducted among a monthly mean of 5,874 (range = 5,778-6,411) children <5 years old in two contiguous villages in Kibera. Participants had free access to the study clinic and their health events and utilization were noted during biweekly home visits. Patients meeting criteria for SARI (WHO-defined severe or very severe pneumonia, or oxygen saturation <90%) from March 1, 2007-February 28, 2011 had blood cultures processed for bacteria, and naso- and oro- pharyngeal swabs collected for quantitative real-time reverse transcription polymerase chain reaction testing for influenza viruses, parainfluenza viruses (PIV), respiratory syncytial virus (RSV), adenovirus, and human metapneumovirus (hMPV). Swabs collected during January 1, 2009 – February 28, 2010 were also tested for rhinoviruses, enterovirus, parechovirus, Mycoplasma pneumoniae, and Legionella species. Swabs were collected for simultaneous testing from a selected group of control-children visiting the clinic without recent respiratory or diarrheal illnesses. Results SARI overall incidence was 12.4 cases/100 person-years of observation (PYO) and 30.4 cases/100 PYO in infants. When comparing detection frequency in swabs from 815 SARI cases and 115 healthy controls, only RSV and influenza A virus were significantly more frequently detected in cases, although similar trends neared statistical significance for PIV, adenovirus and hMPV. The incidence for RSV was 2.8 cases/100 PYO and for influenza A was 1.0 cases/100 PYO. When considering all PIV, the rate was 1.1 case/100 PYO and the rate per 100 PYO for SARI-associated disease was 1.5 for adenovirus and 0.9 for hMPV. RSV and influenza A and B viruses were estimated to account for 16.2% and 6.7% of SARI cases, respectively; when taken together, PIV, adenovirus, and hMPV may account for >20% additional cases. Conclusions Influenza viruses and RSV (and possibly PIV, hMPV and adenoviruses) are important pathogens to consider when developing technologies and formulating strategies to treat and prevent SARI in children.
Collapse
|
29
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
30
|
Virus-vectored influenza virus vaccines. Viruses 2014; 6:3055-79. [PMID: 25105278 PMCID: PMC4147686 DOI: 10.3390/v6083055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Collapse
|
31
|
Mayer AE, Johnson JB, Parks GD. The neutralizing capacity of antibodies elicited by parainfluenza virus infection of African Green Monkeys is dependent on complement. Virology 2014; 460-461:23-33. [PMID: 25010267 DOI: 10.1016/j.virol.2014.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/29/2014] [Accepted: 05/04/2014] [Indexed: 11/27/2022]
Abstract
The African Green Monkey (AGM) model was used to analyze the role of complement in neutralization of parainfluenza virus. Parainfluenza virus 5 (PIV5) and human parainfluenza virus type 2 were effectively neutralized in vitro by naïve AGM sera, but neutralizing capacity was lost by heat-inactivation. The mechanism of neutralization involved formation of massive aggregates, with no evidence of virion lysis. Following inoculation of the respiratory tract with a PIV5 vector expressing HIV gp160, AGM produced high levels of serum and tracheal antibodies against gp120 and the viral F and HN proteins. However, in the absence of complement these anti-PIV5 antibodies had very poor neutralizing capacity. Virions showed extensive deposition of IgG and C1q with post- but not pre-immune sera. These results highlight the importance of complement in the initial antibody response to parainfluenza viruses, with implications for understanding infant immune responses and design of vaccine strategies for these pediatric pathogens.
Collapse
Affiliation(s)
- Anne E Mayer
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - John B Johnson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
32
|
Phan SI, Chen Z, Xu P, Li Z, Gao X, Foster SL, Teng MN, Tripp RA, Sakamoto K, He B. A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5). Vaccine 2014; 32:3050-7. [PMID: 24717150 DOI: 10.1016/j.vaccine.2014.03.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/19/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease and hospitalizations in infants and young children. It also causes significant morbidity and mortality in elderly and immune compromised individuals. No licensed vaccine currently exists. Parainfluenza virus 5 (PIV5) is a paramyxovirus that causes no known human illness and has been used as a platform for vector-based vaccine development. To evaluate the efficacy of PIV5 as a RSV vaccine vector, we generated two recombinant PIV5 viruses - one expressing the fusion (F) protein and the other expressing the attachment glycoprotein (G) of RSV strain A2 (RSV A2). The vaccine strains were used separately for single-dose vaccinations in BALB/c mice. The results showed that both vaccines induced RSV antigen-specific antibody responses, with IgG2a/IgG1 ratios similar to those seen in wild-type RSV A2 infection. After challenging the vaccinated mice with RSV A2, histopathology of lung sections showed that the vaccines did not exacerbate lung lesions relative to RSV A2-immunized mice. Importantly, both F and G vaccines induced protective immunity. Therefore, PIV5 presents an attractive platform for vector-based vaccines against RSV infection.
Collapse
Affiliation(s)
- Shannon I Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States; Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Zhuo Li
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Xiudan Gao
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Stephanie L Foster
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Michael N Teng
- Division of Allergy and Immunology, Department, Department of Internal Medicine, University of South Florida, TampaFL 33612, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA 30602, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
33
|
Lee YN, Park CK, Kim SH, Lee DS, Shin JH, Lee C. Characterization in vitro and in vivo of a novel porcine parainfluenza virus 5 isolate in Korea. Virus Res 2013; 178:423-9. [PMID: 24050998 DOI: 10.1016/j.virusres.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/05/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022]
Abstract
A novel porcine parainfluenza 5 (pPIV5), KNU-11, in the genus Rubulavirus of the subfamily Paramyxovirinae, was isolated from the lung of a piglet in Korea in 2011. To understand the importance of this virus as an infectious agent, in vitro and in vivo characteristics of KNU-11 virus was investigated. KNU-11 was remarkably cytopathogenic, showing distinct cell rounding and clumping evident in porcine alveolar macrophage (PAM), porcine kidney (PK-15), and swine testicle (ST) cells within 12h postinfection and capable of hemagglutinating guinea pig red blood cells. Interestingly, this cytopathology was found to be absent in cell lines from other mammalian species. To evaluate the in vitro immunity of the pPIV5 isolate, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM cells infected with KNU-11 by using quantitative real-time RT-PCR. Most cytokine and chemokine genes including type 1 interferons (IFN-α/β) and IFN-related antiviral genes were found to be significantly elevated in KNU-11 virus-infected PAM cells. A serum neutralization test-based serosurvey demonstrated that neutralizing antibodies against KNU-11 are readily detected in domestic swine populations, suggesting high prevalence of pPIV5 in Korean pig farms. Animal studies showed that KNU-11 fails to establish an acute respiratory illness, indicating that pPIV5 is non- or very mildly pathogenic to pigs.
Collapse
Affiliation(s)
- Yu Na Lee
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | | | |
Collapse
|
34
|
Efficacy of parainfluenza virus 5 mutants expressing hemagglutinin from H5N1 influenza A virus in mice. J Virol 2013; 87:9604-9. [PMID: 23804633 DOI: 10.1128/jvi.01289-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parainfluenza virus 5 (PIV5) is a promising viral vector for vaccine development. PIV5 is safe, stable, efficacious, cost-effective to produce and, most interestingly, it overcomes preexisting antivector immunity. We have recently reported that PIV5 expressing the hemagglutinin (HA) from highly pathogenic avian influenza (HPAI) virus H5N1 (PIV5-H5) provides sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. It is thought that induction of apoptosis can lead to enhanced antigen presentation. Previously, we have shown that deleting the SH gene and the conserved C terminus of the V gene in PIV5 results in mutant viruses (PIV5ΔSH and PIV5VΔC) that enhance induction of apoptosis. In this study, we inserted the HA gene of H5N1 into PIV5ΔSH (PIV5ΔSH-H5) or PIV5VΔC (PIV5VΔC-H5) and compared their efficacies as vaccine candidates to PIV5-H5. We have found that PIV5ΔSH-H5 induced the highest levels of anti-HA antibodies, the strongest T cell responses, and the best protection against an H5N1 lethal challenge in mice. These results suggest that PIV5ΔSH is a better vaccine vector than wild-type PIV5.
Collapse
|
35
|
Influence of antigen insertion site and vector dose on immunogenicity and protective capacity in Sendai virus-based human parainfluenza virus type 3 vaccines. J Virol 2013; 87:5959-69. [PMID: 23514887 DOI: 10.1128/jvi.00227-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant Sendai virus (rSeV) was used as a live, attenuated vaccine vector for intranasal inoculation and mucosal expression of the hemagglutinin-neuraminidase (HN) surface glycoprotein of human parainfluenza virus type 3 (HPIV3). Two vaccine candidates rSeV-HPIV3HN(P-M) and rSeV-HPIV3(F-HN) were constructed in which the HPIV3 HN open reading frame and an additional gene junction was inserted in the P-M and F-HN gene junctions of rSeV, respectively. The rSeV-HPIV3HN(P-M) virus was attenuated compared to rSeV-HPIV3(F-HN) in LLC-MK2 cells, and yet both vaccine candidates grew to similar extents in NHBE cells and in the respiratory tracts of cotton rats. These results suggest that in vitro vector growth in NHBE cells more accurately predicts virus yield in cotton rats than does growth in LLC-MK2 cells. Both vaccine vectors elicited high levels of serum neutralizing antibodies and conferred protection from HPIV3 challenge in cotton rats. Compared to vaccination with a high dose (2,000,000 PFU), intranasal inoculation with a low dose (200 PFU) resulted in a 10-fold decrease in vector growth in the nasal cavity and trachea and a 50-fold decrease in the lungs. However, low-dose vaccination resulted in only modest decreases in anti-HPIV3 antibodies in sera and was sufficient to confer complete protection from HPIV3 challenge. Varying the HPIV3 antigen insertion site and vector dose allowed fine-tuning of the in vivo growth and immunogenicity of rSeV-based vaccines, but all four vaccination strategies tested resulted in complete protection from HPIV3 challenge. These results highlight the versatility of the rSeV platform for developing intranasally administered respiratory virus vaccines.
Collapse
|
36
|
Single-dose vaccination of a recombinant parainfluenza virus 5 expressing NP from H5N1 virus provides broad immunity against influenza A viruses. J Virol 2013; 87:5985-93. [PMID: 23514880 DOI: 10.1128/jvi.00120-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses often evade host immunity via antigenic drift and shift despite previous influenza virus infection and/or vaccination. Vaccines that match circulating virus strains are needed for optimal protection. Development of a universal influenza virus vaccine providing broadly cross-protective immunity will be of great importance. The nucleoprotein (NP) of influenza A virus is highly conserved among all strains of influenza A viruses and has been explored as an antigen for developing a universal influenza virus vaccine. In this work, we generated a recombinant parainfluenza virus 5 (PIV5) containing NP from H5N1 (A/Vietnam/1203/2004), a highly pathogenic avian influenza (HPAI) virus, between HN and L (PIV5-NP-HN/L) and tested its efficacy. PIV5-NP-HN/L induced humoral and T cell responses in mice. A single inoculation of PIV5-NP-HN/L provided complete protection against lethal heterosubtypic H1N1 challenge and 50% protection against lethal H5N1 HPAI virus challenge. To improve efficacy, NP was inserted into different locations within the PIV5 genome. Recombinant PIV5 containing NP between F and SH (PIV5-NP-F/SH) or between SH and HN (PIV5-NP-SH/HN) provided better protection against H5N1 HPAI virus challenge than did PIV5-NP-HN/L. These results suggest that PIV5 expressing NP from H5N1 has the potential to be utilized as a universal influenza virus vaccine.
Collapse
|
37
|
A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J Virol 2012; 87:2986-93. [PMID: 23269806 DOI: 10.1128/jvi.02886-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines.
Collapse
|
38
|
Recombinant parainfluenza virus 5 expressing hemagglutinin of influenza A virus H5N1 protected mice against lethal highly pathogenic avian influenza virus H5N1 challenge. J Virol 2012; 87:354-62. [PMID: 23077314 DOI: 10.1128/jvi.02321-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine.
Collapse
|