1
|
Huang Y, Stankevych M, Gujrati V, Klemm U, Mohammed A, Wiesner D, Saccomano M, Tost M, Feuchtinger A, Mishra K, Bruns O, Geerlof A, Ntziachristos V, Stiel AC. Photoswitching protein-XTEN fusions as injectable optoacoustic probes. Acta Biomater 2025; 195:536-546. [PMID: 39914636 DOI: 10.1016/j.actbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Optoacoustic imaging (OAI) is a unique in vivo imaging technique combining deep tissue penetration with high resolution and molecular sensitivity. OAI relying on strong intrinsic contrast, such as blood hemoglobin, already shows its value in medical diagnostics. However, OAI sensitivity to current extrinsic contrast agents is insufficient and limits its role in detecting disease-related biomarkers. The recently introduced concept of photoswitching and temporal unmixing techniques for OAI allows detecting extrinsic contrast with high sensitivity, allowing the visualization of small populations of cells labeled with photoswitching proteins deep within the tissue. However, transgene modification might not be permitted in some cases, such as for diagnostic use. Therefore, it is desirable to leverage the concept of photoswitching OAI towards injectable formulations. Since photoswitchable synthetic dyes are mainly excited by blue wavelengths unsuited for imaging in tissue, we propose exploiting the addition of XTENs to photoswitching proteins towards yielding injectable agents. The addition of XTEN to a protein enhances its plasma half-life and bioavailability, thus allowing its use, for example, in targeted labeling approaches. In this pilot study, we show that intravenously injected near-infrared absorbing photoswitchable proteins, ReBphP-PCM, coupled to XTEN, allow highly sensitive optoacoustic visualization of a tumor xenograft in vivo. The sensitivity to XTENs-ReBphP-PCM determined by ex vivo analysis of labeled cells is one to two orders of magnitude beyond conventional synthetic dyes used currently in OAI. The enhanced sensitivity afforded by photoswitching OAI, in combination with the increased bioavailability and biocompatibility of XTENs-ReBphP-PCM, makes this fusion protein a promising tool for facilitating sensitive detection of biomarkers in OAI with a potential for future use in diagnostics. STATEMENT OF SIGNIFICANCE: Optoacoustic imaging (OAI) is a unique in vivo imaging technique that combines deep tissue penetration with high resolution. OAI, which relies on intrinsic contrast, such as blood hemoglobin, could already be valuable in medical diagnostics. However, the use of extrinsic contrast agents to augment disease-related biomarkers in research and diagnostics suffers from very limited sensitivity of the generated contrast agent. We present an intravenously injected photoswitchable protein, ReBphP-PCM, coupled to XTEN, allowing highly sensitive OAI. The sensitivity is one to two orders of magnitude greater than that of conventional synthetic dyes used currently in OA imaging. The high sensitivity afforded by photoswitching together with the enhanced bioavailability and biocompatibility of the XTENs-ReBphP-PCM make this a standard agent for high-quality detection of OAI with potential for clinical use.
Collapse
Affiliation(s)
- Yishu Huang
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Mariia Stankevych
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Azeem Mohammed
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - David Wiesner
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mara Saccomano
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Monica Tost
- Core Facility Pathology & Tissue Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
| | - Oliver Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich for Environmental Health, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Protein Engineering for Superresolution Microscopy Lab, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Gong B, Wang T, Sun L. Evolution and therapeutic potential of glucagon-like peptide 2 analogs. Biochem Pharmacol 2025; 233:116758. [PMID: 39842552 DOI: 10.1016/j.bcp.2025.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Glucagon-like peptide 2 (GLP-2) is a proglucagon-derived peptide released by intestinal endocrine cells. However, its therapeutic potential is limited by rapid inactivation via dipeptidyl peptidase-IV. The elucidation of three-dimensional structures of G-protein-coupled receptors, including GLP-2 receptor, has facilitated the rational design of novel peptide therapeutics. Recent studies have explored various structural modifications based on the structure of GLP-2, such as amino acid substitution, lipidation, and fusion with proteins, to extend the half-life of GLP-2 and enhance its biological activity. One promising avenue involves the development of multifunctional molecules targeting multiple pharmacological systems to boost therapeutic efficacy. This paper reviews the recent advancements in understanding GLP-2, including its physiological roles and structure-activity relationships, and evaluates the development prospects of GLP-2 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, PR China
| | - Ting Wang
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; Taizhou Hospital, Zhejiang University, Taizhou 317000, PR China.
| |
Collapse
|
3
|
Bennett JI, Boit MO, Gregorio NE, Zhang F, Kibler RD, Hoye JW, Prado O, Rapp PB, Murry CE, Stevens KR, DeForest CA. Genetically Encoded XTEN-based Hydrogels with Tunable Viscoelasticity and Biodegradability for Injectable Cell Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301708. [PMID: 38477407 PMCID: PMC11200090 DOI: 10.1002/advs.202301708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/08/2024] [Indexed: 03/14/2024]
Abstract
While direct cell transplantation holds great promise in treating many debilitating diseases, poor cell survival and engraftment following injection have limited effective clinical translation. Though injectable biomaterials offer protection against membrane-damaging extensional flow and supply a supportive 3D environment in vivo that ultimately improves cell retention and therapeutic costs, most are created from synthetic or naturally harvested polymers that are immunogenic and/or chemically ill-defined. This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN - a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to "eXTENd" the in vivo half-life of fused protein therapeutics. By flanking XTEN with self-associating coil domains derived from cartilage oligomeric matrix protein, single-component physically crosslinked hydrogels exhibiting rapid shear thinning and self-healing through homopentameric coiled-coil bundling are formed. Individual and combined point mutations that variably stabilize coil association enables a straightforward method to genetically program material viscoelasticity and biodegradability. Finally, these materials protect and sustain viability of encapsulated human fibroblasts, hepatocytes, embryonic kidney (HEK), and embryonic stem-cell-derived cardiomyocytes (hESC-CMs) through culture, injection, and transcutaneous implantation in mice. These injectable XTEN-based hydrogels show promise for both in vitro cell culture and in vivo cell transplantation applications.
Collapse
Affiliation(s)
| | - Mary O'Kelly Boit
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | | | - Fan Zhang
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ryan D. Kibler
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
| | - Jack W. Hoye
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | - Olivia Prado
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Peter B. Rapp
- Flagship Labs 83, Inc.135 Morrissey Blvd.BostonMA02125USA
| | - Charles E. Murry
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
- Department of Medicine/CardiologyUniversity of WashingtonSeattleWA98109USA
| | - Kelly R. Stevens
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of ChemistryUniversity of WashingtonSeattleWA98105USA
- Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWA98105USA
| |
Collapse
|
4
|
Nikravesh FY, Gholami P, Bayat E, Talebkhan Y, Mirabzadeh E, Damough S, Aliabadi HAM, Nematollahi L, Ardakani YH. Expression, Purification, and Biological Evaluation of XTEN-GCSF in a Neutropenic Rat Model. Appl Biochem Biotechnol 2024; 196:804-820. [PMID: 37209276 DOI: 10.1007/s12010-023-04522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.
Collapse
Affiliation(s)
| | - Parisa Gholami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Shadi Damough
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
5
|
Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv 2024; 21:1-12. [PMID: 38116624 DOI: 10.1080/17425247.2023.2297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Tripathy RK, Anakha J, Pande AH. Towards development of biobetter: L-asparaginase a case study. Biochim Biophys Acta Gen Subj 2024; 1868:130499. [PMID: 37914146 DOI: 10.1016/j.bbagen.2023.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
7
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Cattaruzza F, Nazeer A, To M, Hammond M, Koski C, Liu LY, Pete Yeung V, Rennerfeldt DA, Henkensiefken A, Fox M, Lam S, Morrissey KM, Lange Z, Podust VN, Derynck MK, Irving BA, Schellenberger V. Precision-activated T-cell engagers targeting HER2 or EGFR and CD3 mitigate on-target, off-tumor toxicity for immunotherapy in solid tumors. NATURE CANCER 2023; 4:485-501. [PMID: 36997747 PMCID: PMC10132983 DOI: 10.1038/s43018-023-00536-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
To enhance the therapeutic index of T-cell engagers (TCEs), we engineered masked, precision-activated TCEs (XPAT proteins), targeting a tumor antigen (human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR)) and CD3. Unstructured XTEN polypeptide masks flank the N and C termini of the TCE and are designed to be released by proteases in the tumor microenvironment. In vitro, unmasked HER2-XPAT (uTCE) demonstrates potent cytotoxicity, with XTEN polypeptide masking providing up to 4-log-fold protection. In vivo, HER2-XPAT protein induces protease-dependent antitumor activity and is proteolytically stable in healthy tissues. In non-human primates, HER2-XPAT protein demonstrates a strong safety margin (>400-fold increase in tolerated maximum concentration versus uTCE). HER2-XPAT protein cleavage is low and similar in plasma samples from healthy and diseased humans and non-human primates, supporting translatability of stability to patients. EGFR-XPAT protein confirmed the utility of XPAT technology for tumor targets more widely expressed in healthy tissues.
Collapse
Affiliation(s)
- Fiore Cattaruzza
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Ayesha Nazeer
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Milton To
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Mikhail Hammond
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Caitlin Koski
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Lucas Y Liu
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - V Pete Yeung
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | | | | | - Michael Fox
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Sharon Lam
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Kari M Morrissey
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Zachary Lange
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Vladimir N Podust
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Mika K Derynck
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | - Bryan A Irving
- Amunix Pharmaceuticals, a Sanofi Company, South San Francisco, CA, USA
| | | |
Collapse
|
10
|
Mahmood T, Shahbaz A, Hussain N, Ali R, Bashir H, Rizwan K. Recent advancements in fusion protein technologies in oncotherapy: A review. Int J Biol Macromol 2023; 230:123161. [PMID: 36610574 DOI: 10.1016/j.ijbiomac.2023.123161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Cancer is a complicated, adaptable, and heterogeneous disease caused by a wide variety of genetic changes that might impair ability of cells to function normally. The majority of the tumors can only be shrunk using conventional oncology therapies like chemotherapy, radiation, and surgical resection, and the tumor often recurs. The inability of conventional cancer therapies to completely destroy the Cancer Stem Cells (CSCs) that otherwise lead to therapy resistance is thus addressed by therapeutic approaches that concentrate on targeting CSCs and their micro-environmental niche. In this review, we summarize approaches that are used for the development of fusion proteins and their therapeutic applications for treating cancer. The main purpose of making advancements towards the fusion technology instead of using conventional treatment methods is to achieve a prolonged half-life of the therapeutic drugs. The fusion of drugs to the immune response enhancing cytokines or the fusion of antibody and cytokines not only increases half-life but also increase the stability of the anti-tumor drug. Several molecules including different fragments of antibodies, cytokines, Human Serum Albumin, transferrin, XTEN polymers, Elastin-like polypeptides (ELPs) can be employed as a fusion partner and the resulting fusion proteins are reported to show enhanced anti-tumor response.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-azam University, Islamabad, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.
| | - Rahat Ali
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Hamid Bashir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan.
| |
Collapse
|
11
|
Hall DB, Vakkasoglu AS, Hales LM, Soliman TM. D-VITylation: Harnessing the biology of vitamin D to improve the pharmacokinetic properties of peptides and small proteins. Int J Pharm 2022; 624:122031. [PMID: 35863594 DOI: 10.1016/j.ijpharm.2022.122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Peptides have great potential to be potent and specific therapeutics, yet their small size leads to rapid glomerular filtration, which severely limits therapeutic applications. Although conjugation of small proteins to large polymers typically results in longer residence times, these conjugates often have a significant loss of biological activity due to steric hindrance. Here, we improve the pharmacokinetics (PK) of peptide therapeutics by harnessing the biology of vitamin D. Attachment of a small vitamin D-based molecule (D-VITylation) protects the conjugated peptide or protein from renal clearance by virtue of reversible binding to the serum-circulating vitamin D binding protein (DBP), without compromising bioactivity. Varying the conjugation site on vitamin D affects the binding to DBP, with higher affinity corresponding to a longer plasma half-life. We also demonstrate the important contribution of the peptide to the overall PK, likely due to alternative clearance mechanisms such as protease degradation and receptor-mediated cellular uptake. With a Fab antibody fragment, for which these alternate clearance mechanisms are not significant, D-VITylation increases the half-life of elimination from 14 to 61 h in rats. The PK profile in minipigs and projected lifetime in humans suggest that D-VITylation is a viable strategy to achieve once-weekly dosing of peptide therapeutics in humans.
Collapse
|
12
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
13
|
Thinking Quantitatively of RNA-Based Information Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs. Pharmaceutics 2021; 13:pharmaceutics13111931. [PMID: 34834346 PMCID: PMC8617734 DOI: 10.3390/pharmaceutics13111931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are 50–1000 nm vesicles secreted by virtually any cell type in the body. They are expected to transfer information from one cell or tissue to another in a short- or long-distance way. RNA-based transfer of information via EVs at long distances is an interesting well-worn hypothesis which is ~15 years old. We review from a quantitative point of view the different facets of this hypothesis, ranging from natural RNA loading in EVs, EV pharmacokinetic modeling, EV targeting, endosomal escape and RNA delivery efficiency. Despite the unique intracellular delivery properties endowed by EVs, we show that the transfer of RNA naturally present in EVs might be limited in a physiological context and discuss the lessons we can learn from this example to design efficient RNA-loaded engineered EVs for biotherapies. We also discuss other potential EV mediated information transfer mechanisms, among which are ligand–receptor mechanisms.
Collapse
|
14
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
15
|
Abstract
Abstract
Introduction Short bowel syndrome (SBS) refers to the malabsorptive state that occurs following extensive intestinal resection and is associated with several complications.
Methods The research for this review was conducted in the Pubmed database. Relevant scientific articles dated between 1991 and 2015 and written in Portuguese, Spanish or English were selected.
Results Several therapies, including nutritional support, pharmacological options and surgical procedures have been used in these patients.
Conclusions Over the last decades new surgical and pharmacological approaches emerged, increasing survival and quality of life (QoL) in patients with SBS. All SBS patients ought to have an individualized and multidisciplinary care that promotes intestinal rehabilitation.
Collapse
Affiliation(s)
- Rosário Eça
- Universidade do Porto, Faculdade de Medicina, Porto, Portugal
| | - Elisabete Barbosa
- Universidade do Porto, Faculdade de Medicina, Porto, Portugal
- Centro Hospitalar de São João, Serviço de Cirurgia Geral, Porto, Portugal
| |
Collapse
|
16
|
An IB, Byun MS, Yang SI, Choi Y, Woo JW, Jang HC, Sung YC. A glycosylated Fc-fused glucagon-like peptide-1 receptor agonist exhibits equivalent glucose lowering to but fewer gastrointestinal side effects than dulaglutide. Diabetes Obes Metab 2020; 22:1455-1468. [PMID: 32314505 PMCID: PMC7383507 DOI: 10.1111/dom.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
AIM To evaluate the pharmacokinetic and pharmacodynamic properties of a novel glycosylated Fc-fused glucagon-like peptide-1(GLP-1-gFc) receptor agonist with distinctive receptor binding affinity, designed to improve in vivo stability and safety relative to the commercial GLP-1 analogue dulaglutide, and assess its safety profile and pharmacokinetics in healthy humans. MATERIALS AND METHODS We constructed GLP-1-gFc and determined its binding affinity and potency using in vitro instrumental and cell-based analyses followed by in vivo comparison of the glucose-lowering and gastrointestinal side effects between GLP-1-gFc and dulaglutide. A phase 1 clinical trial was conducted to confirm the efficacy and safety profile of GLP-1-gFc. RESULTS GLP-1-gFc showed 10-fold less binding affinity and 4-fold less potency than dulaglutide in in vitro. A potency-adjusted dose delayed HbA1c increase comparable with that of dulaglutide (Change for 6 weeks: 2.4 mg/kg GLP-1-gFc, 4.34 ± 0.40 vs. 0.6 mg/kg dulaglutide, 4.26 ± 0.22; n.s.). However, the equivalent efficacy dose and higher dose did not induce malaise-related responses (blueberry bar consumption, g/mouse: 2.4 mg/kg GLP-1-gFc, 0.15% ± 0.03% vs. 0.6 mg/kg dulaglutide, 0.04% ± 0.01%; P < .01) or QT interval changes (mean at 14-20 hours, mSc: 0.28 mg/kg GLP-1-gFc, 0.0-8.0 vs. 0.07 mg/kg dulaglutide, 8.0-27.7; n.s.), observed as safety variables in rats and monkeys, compared with those of dulaglutide. Glucose reductions in an oral glucose tolerance test were significant at day 3 postdose without severe gastrointestinal adverse events and pulse rate changes in healthy subjects. CONCLUSIONS These results suggest that GLP-1-gFc could be used as a novel GLP-1 receptor agonist with better safety than dulaglutide to maximize therapeutic benefits in subjects with type 2 diabetes.
Collapse
Affiliation(s)
- In Bok An
- Seoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamRepublic of Korea
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Mi Sun Byun
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Sang In Yang
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Yuri Choi
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Jung Won Woo
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Hak Chul Jang
- Seoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamRepublic of Korea
| | - Young Chul Sung
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
- Department of Life SciencePohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
17
|
Hargrove DM, Alagarsamy S, Croston G, Laporte R, Qi S, Srinivasan K, Sueiras-Diaz J, Wiśniewski K, Hartwig J, Lu M, Posch AP, Wiśniewska H, Schteingart CD, Rivière PJM, Dimitriadou V. Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome. J Pharmacol Exp Ther 2020; 373:193-203. [PMID: 32075870 DOI: 10.1124/jpet.119.262238] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33-amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS. SIGNIFICANCE STATEMENT: Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.
Collapse
Affiliation(s)
- Diane M Hargrove
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Sudarkodi Alagarsamy
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Glenn Croston
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Steve Qi
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Karthik Srinivasan
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Javier Sueiras-Diaz
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Kazimierz Wiśniewski
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Jennifer Hartwig
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Mark Lu
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Alexander P Posch
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Halina Wiśniewska
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Claudio D Schteingart
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Pierre J-M Rivière
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| | - Violetta Dimitriadou
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California (D.M.H., S.A., G.C., R.L., S.Q., K.S., J.S.-D., K.W., J.H., M.L., A.P.P., H.W., C.D.S., P.J.-M.R.) and VectivBio AG, Basel, Switzerland (V.D.)
| |
Collapse
|
18
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
19
|
Tan H, Su W, Zhang W, Wang P, Sattler M, Zou P. Recent Advances in Half-life Extension Strategies for Therapeutic Peptides and Proteins. Curr Pharm Des 2019; 24:4932-4946. [PMID: 30727869 DOI: 10.2174/1381612825666190206105232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/26/2019] [Indexed: 12/16/2022]
Abstract
Peptides and proteins are two classes of molecules with attractive possibilities for therapeutic applications. However, the bottleneck for the therapeutic application of many peptides and proteins is their short halflives in vivo, typically just a few minutes to hours. Half-life extension strategies have been extensively studied and many of them have been proven to be effective in the generation of long-acting therapeutics with improved pharmacokinetic and pharmacodynamic properties. In this review, we summarize the recent advances in half-life extension strategies, illustrate their potential applications and give some examples, highlighting the strategies that have been used in approved drugs and for drugs in clinical trials. Meanwhile, several novel strategies that are still in the process of discovery or at a preclinical stage are also introduced. In these strategies, the two most frequently used half-life extension methods are the reduction in the rate of renal clearance or the exploitation of the recycling mechanism of FcRn by binding to the albumin or IgG-Fc. Here, we discuss half-life extension strategies of recombinant therapeutic protein via genetic fusion, rather than chemical conjugation such as PEGylation. With the rapid development of genetic engineering and protein engineering, novel strategies for half-life extension have been emerged consistently. Some of these will be evaluated in clinical trials and may become viable alternatives to current strategies for making next-generation biodrugs.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pengju Wang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
20
|
Suzuki R, Brown GA, Christopher JA, Scully CCG, Congreve M. Recent Developments in Therapeutic Peptides for the Glucagon-like Peptide 1 and 2 Receptors. J Med Chem 2019; 63:905-927. [PMID: 31577440 DOI: 10.1021/acs.jmedchem.9b00835] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2) are proglucagon derived peptides that are released from gut endocrine cells in response to nutrient intake. These molecules are rapidly inactivated by the action of dipeptidyl peptidase IV (DPP-4) which limits their use as therapeutic agents. The recent emergence of three-dimensional structures of GPCRs such as GLP-1R and glucagon receptor has helped to drive the rational design of innovative peptide molecules that hold promise as novel peptide therapeutics. One emerging area is the discovery of multifunctional molecules that act at two or more pharmacological systems to enhance therapeutic efficacy. In addition, drug discovery efforts are also focusing on strategies to improve patient convenience through alternative routes of peptide delivery. These novel strategies highlight the broad utility of peptide-based therapeutics in human disease settings where unmet needs still exist.
Collapse
Affiliation(s)
- Rie Suzuki
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Giles A Brown
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - John A Christopher
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Conor C G Scully
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Miles Congreve
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| |
Collapse
|
21
|
Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein Chimerization: A New Frontier for Engineering Protein Therapeutics with Improved Pharmacokinetics. J Pharmacol Exp Ther 2019; 370:703-714. [PMID: 31010843 DOI: 10.1124/jpet.119.257063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 03/08/2025] Open
Abstract
With the advancement of medicine, the utility of protein therapeutics is increasing exponentially. However, a significant number of protein therapeutics suffer from grave limitations, which include their subpar pharmacokinetics. In this study, we have reviewed the emerging field of protein chimerization for improving the short circulatory half-life of protein therapeutics. We have discussed various aspects of protein therapeutics aiming at their mechanism of clearance and various approaches used to increase their short circulatory half-life with principal focus on the concept of chimerization. Furthermore, we have comprehensively reviewed various components of chimera, such as half-life extension partners and linkers, their shortcomings, and prospective work to be undertaken for developing effective chimeric protein therapeutics.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Shreya Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Snehal Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
22
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
23
|
Xu B, He Y, Lu Y, Ren W, Shen J, Wu K, Xu K, Wu J, Hu Y. Glucagon like peptide 2 has a positive impact on osteoporosis in ovariectomized rats. Life Sci 2019; 226:47-56. [PMID: 30959027 DOI: 10.1016/j.lfs.2019.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
AIMS In this study, we evaluate the effects of glucagon-like peptide 2 (GLP-2) on bone microarchitecture, bone turnover markers (BTMs) and inflammation markers in ovariectomized (OVX) rats. MATERIAL AND METHODS In total, 31 Sprague-Dawley rats were divided into the following three groups: sham (control sham-operated with vehicle, n = 7), OV (OVX with vehicle, n = 12), and GLP-2 (OVX with GLP-2, n = 12). Intervention began at the 12th week after surgery and lasted for 4 weeks. The dosage of the GLP-2 was 160 μg/kg/d through subcutaneous injections, and normal saline was used as the vehicle agent. After 4 weeks of treatment, serum BTM and inflammation marker levels were measured by ELISA, and femora samples were analyzed by qRT-PCR, micro-CT, histology and histomorphometry. KEY FINDINGS After 4 weeks of treatment, serum TRAcP-5b and RANKL levels as well as the CTX-1/P1NP ratio in the GLP-2 group decreased, and ALP activity, P1NP level, and OPG/RANKL ratio increased significantly; qRT-PCR analysis showed that mRNA levels of RANKL decreased, and Runx2, ALP, and Col-1 levels as well as the OPG/RANKL ratio increased significantly in the GLP-2 group compared with the OV group. In bone histology analysis, GLP-2 significantly decreased the AV/MV, Oc.N and Oc.S but increased the Ob.N, BFR and MAR. Analysis with μ-CT showed that the BMD, BV/TV, Tb.N and Conn.D increased significantly in the GLP-2 group compared with the OV group. The levels of serum inflammation markers TNF-α, IL-1β and IL-6 decreased, and TGF-β levels increased in the GLP-2 group compared with the OV group. SIGNIFICANCE GLP-2 may have a positive impact on osteoporosis by promoting bone formation, inhibiting bone resorption and decreasing circulatory inflammation in ovariectomized rats.
Collapse
Affiliation(s)
- Bing'er Xu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuting He
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Lu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiying Ren
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiping Shen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kefen Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kan Xu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayu Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Evidence Based Medicine and Clinical Epidemiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
25
|
Gu J, Liu J, Huang T, Zhang W, Jia B, Mu N, Zhang K, Hao Q, Li W, Liu W, Zhang W, Zhang Y, Xue X, Zhang C, Li M. The protective and anti-inflammatory effects of a modified glucagon-like peptide-2 dimer in inflammatory bowel disease. Biochem Pharmacol 2018; 155:425-433. [PMID: 30040929 DOI: 10.1016/j.bcp.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and remitting inflammatory disease resulting from immune dysregulation in the gut. As a clinically frequent disease, it can affect individuals throughout their lives, with multiple complications. Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. However, native GLP-2 has a relatively short half-life in human circulation because of extensive renal clearance and rapid degradation by the proteolytic enzyme dipeptidyl peptidase-IV (DPP-IV). Previously, We prepared a recombinant GLP-2 variant (GLP-2②), which has increased half-life and activity as compared to the [Gly2]GLP-2 monomer. The aim of the present study was to investigate the protective potential of GLP-2② in IBD models. LPS-induced in vitro model and dextran sulfate sodium (DSS)-induced in vivo model were used to study the anti-inflammatory and therapeutic effect of GLP-2②. We found that treated with GLP-2② showed a significantly reduction in the secretion of inflammatory cytokines. Furthermore, GLP-2② alleviated symptoms of DSS-induced colitis. GLP-2② treated mice displayed an increase in body weight, lower colitis scores, and fewer mucosal damage compared with GLP-2 treated mice. MPO activities, protein expression of NLRP3 and COX2 in the colon tissues were significantly reduced in GLP-2② groups. Importantly, the ameliorative effect of GLP-2② was related to anti-apoptosis effect in colon tissues. These findings demonstrated that GLP-2② may offer a superior therapeutic benefit over [Gly2]GLP-2 monomer for treatment of IBD.
Collapse
Affiliation(s)
- Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tonglie Huang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- Department of Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Yang PY, Zou H, Lee C, Muppidi A, Chao E, Fu Q, Luo X, Wang D, Schultz PG, Shen W. Stapled, Long-Acting Glucagon-like Peptide 2 Analog with Efficacy in Dextran Sodium Sulfate Induced Mouse Colitis Models. J Med Chem 2018. [PMID: 29528634 DOI: 10.1021/acs.jmedchem.7b00768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide 2 (GLP-2) is a hormone that has been shown to stimulate intestinal growth and attenuate intestinal inflammation. Despite being efficacious in a variety of animal models of disease, its therapeutic potential is hampered by the short half-life in vivo. We now describe a highly potent, stapled long-acting GLP-2 analog, peptide 10, that has a more than 10-fold longer half-life than teduglutide and improved intestinotrophic and anti-inflammatory effects in mouse models of DSS-induced colitis.
Collapse
Affiliation(s)
- Peng-Yu Yang
- California Institute for Biomedical Research , La Jolla , California 92037 , United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Huafei Zou
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Candy Lee
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Avinash Muppidi
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Elizabeth Chao
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Qiangwei Fu
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Xiaozhou Luo
- Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Danling Wang
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Peter G Schultz
- California Institute for Biomedical Research , La Jolla , California 92037 , United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Weijun Shen
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| |
Collapse
|
27
|
GLP2 Promotes Directed Differentiation from Osteosarcoma Cells to Osteoblasts and Inhibits Growth of Osteosarcoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:292-303. [PMID: 29499942 PMCID: PMC5862135 DOI: 10.1016/j.omtn.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide that is involved in the regulation of energy absorption and exerts beneficial effects on glucose metabolism. However, the exact mechanisms underlying the GLP2 during osteogenic differentiation has not been illustrated. Herein, we indicated that GLP2 was demonstrated to result in positive action during the osteogenic differentiation of human osteosarcoma cells. Our findings demonstrate that GLP2 inhibis the growth of osteosarcoma cells in vivo and in vitro. Mechanistic investigations reveal GLP2 inhibits the expression and activity of nuclear factor κB (NF-κB), triggering the decrease of c-Myc, PKM2, and CyclinD1 in osteosarcoma cells. In particular, rescued NF-κB abrogates the functions of GLP2 in osteosarcoma cells. Strikingly, GLP2 overexpression significantly increased the expression of osteogenesis-associated genes (e.g., Ocn and PICP) dependent on c-Fos-BMP signaling, which promotes directed differentiation from osteosarcoma cells to osteoblasts with higher alkaline phosphatase activity. Taken together, our results suggested that GLP2 could be a valuable drug to promote directed differentiation from osteosarcoma cells to osteoblasts, which may provide potential therapeutic targets for the treatment of osteosarcoma.
Collapse
|
28
|
Costa BP, Gonçalves AC, Abrantes AM, Matafome P, Seiça R, Sarmento-Ribeiro AB, Botelho MF, Castro-Sousa F. Teduglutide effects on gene regulation of fibrogenesis on an animal model of intestinal anastomosis. J Surg Res 2017; 216:87-98. [DOI: 10.1016/j.jss.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
|
29
|
Gu J, Liu S, Mu N, Huang T, Zhang W, Zhao H, Shu Z, Zhang C, Hao Q, Li W, Xue X, Zhang W, Zhang Y. A DPP-IV-resistant glucagon-like peptide-2 dimer with enhanced activity against radiation-induced intestinal injury. J Control Release 2017; 260:32-45. [PMID: 28522195 DOI: 10.1016/j.jconrel.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Although radiotherapy is a highly effective treatment for abdominal or pelvic cancer patients, it can increase the incidence of severe gastrointestinal (GI) toxicity. As an intestinal growth factor, glucagon-like peptide 2 (GLP-2) has been shown to improve the preclinical models of both short bowel syndrome and inflammatory bowel disease by stimulating intestinal growth. Teduglutide ([Gly2]GLP-2), a recombinant human GLP-2 variant, has a prolonged half-life and stability as compared to the native GLP-2 peptide, but still requires daily application in the clinic. Here, we designed and prepared a new degradation-resistant GLP-2 analogue dimer, designated GLP-2②, with biotechnological techniques. The purity of GLP-2②reached 97% after ammonium sulphate precipitation and anion exchange chromatography purification, and the purification process was simple and cost-effective. We next confirmed that the GLP-2② exhibited enhanced activities compared with [Gly2]GLP-2, the long-acting, degradation-resistant analogue. Notably, GLP-2② offers a pharmacokinetic and therapeutic advantage in the treatment of radiation-induced intestinal injury over [Gly2]GLP-2. We further demonstrated that GLP-2② rapidly activates divergent intracellular signaling pathways involved in cell survival and apoptosis. Taken together, our data revealed a potential novel and safe peptide drug for limiting the adverse effect of radiotherapy on the gastrointestinal system.
Collapse
Affiliation(s)
- Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shuo Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tonglie Huang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Shu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
30
|
Effects of teduglutide on histological parameters of intestinal anastomotic healing. Eur Surg 2017. [DOI: 10.1007/s10353-017-0478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Costa BP, Gonçalves AC, Abrantes AM, Alves R, Matafome P, Seiça R, Sarmento-Ribeiro AB, Botelho MF, Castro-Sousa F. Intestinal Epithelial Stem Cells: Distinct Behavior After Surgical Injury and Teduglutide Administration. J INVEST SURG 2017; 31:243-252. [PMID: 28362133 DOI: 10.1080/08941939.2017.1294217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies suggest that intestinal epithelial stem cells (IESC), critical drivers of homeostasis and regeneration, include two subpopulations: crypt-based columnar and "position +4" stem cells, identified by Lgr5 and Bmi1 biomarkers, respectively. Teduglutide is an enterotrophic counterpart of glucagon-like peptide 2. This study aimed to investigate the response of putative IESC to surgical injury and teduglutide administration on an animal model of intestinal resection and anastomosis. METHODS Wistar rats (n = 59) were distributed into four groups: "Ileal Resection" versus "Laparotomy", subsequently subdivided into "Postoperative Teduglutide Administration" versus "No Treatment"; and sacrificed at third or seventh days, with ileal sample harvesting. Flow cytometry was used to analyze epithelial stem cells with monoclonal antibodies against Lgr5, Bmi1 and also CD44, CD24, CD166, and Grp78 surface markers. RESULTS Surgical trauma induced an increase of epithelial stem cells population at third day (9.0 ± 0.3 versus 5.7 ± 0.3%, p = 0.0001), which was more intense and involved all subpopulations after ileal resection. At seventh day, teduglutide was significantly associated with higher proportion of Lgr5+/Bmi1- cells (5.8 ± 0.1 versus 2.9 ± 0.3%, p = 0.005) and, on the contrary, lower percentage of Lgr5-/Bmi1+ cells (0.03 ± 0.01 versus 1.9 ± 0.1%, p = 0.049) after ileal resection; and higher proportion of Lgr5+/Bmi1+ cells (1.7 ± 0.1 versus 1.1 ± 0.2%, p = 0.028) after isolated laparotomy. After surgery, Lgr5+/Bmi1- and Lgr5-/Bmi1+ subpopulations demonstrated an inverse correlation and both correlated negatively with Grp78 labeling index. Lgr5-/Bmi1+ and CD44+/CD24low/CD166+/Grp78+ cells proportions exhibited a high grade positive correlation. CONCLUSION Those observations support the existence of two epithelial stem cells subpopulations with distinct behavior after surgical injury and teduglutide treatment.
Collapse
Affiliation(s)
- Beatriz P Costa
- a Department of Surgery A , Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, EPE , Coimbra , Portugal.,b University Clinic of Surgery , Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana C Gonçalves
- c Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology Unit, Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,e Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Ana M Abrantes
- d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,e Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,f Institute of Biophysics, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Raquel Alves
- c Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology Unit, Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,e Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Paulo Matafome
- d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,g Institute of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Raquel Seiça
- d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,g Institute of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Ana B Sarmento-Ribeiro
- c Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology Unit, Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,e Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,h Department of Clinical Hematology , Coimbra University Hospital, Centro Hospitalar e Universitário de Coimbra, EPE , Coimbra , Portugal
| | - M Filomena Botelho
- d Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine , University of Medicine , Coimbra , Portugal.,e Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,f Institute of Biophysics, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Francisco Castro-Sousa
- a Department of Surgery A , Hospital da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, EPE , Coimbra , Portugal.,b University Clinic of Surgery , Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
32
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
33
|
Qi KK, Lv JJ, Wu J, Xu ZW. Therapeutic effects of different doses of polyethylene glycosylated porcine glucagon-like peptide-2 on ulcerative colitis in male rats. BMC Gastroenterol 2017; 17:34. [PMID: 28259136 PMCID: PMC5336612 DOI: 10.1186/s12876-017-0593-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2) considerably increases half-life and stability compared with the native pGLP-2, but the effective dose for intestinal damage is still unclear. This study aims to evaluate the available dose of polyethylene glycosylated porcine glucagon-like peptide-2 (PEG-pGLP-2), a modified, long-acting form of pGLP-2 in an experimental rat model of ulcerative colitis. METHODS Thirty-five male rats were randomly assigned into five groups: control, dextran sodium sulphate (DSS), DSS + PEG-pGLP-2(L), DSS + PEG-pGLP-2(M) and DSS + PEG-pGLP-2(H). Rats in control group received only water; other rats were fed with 5% (w/v) DSS and intraperitoneally administered with 12.5, 25 and 100 nmol/kg PEG-pGLP-2 daily for 6 days. RESULTS Compared with the control treatment, DSS treatment significantly (p < 0.05) decreased body weight change, colonic length, duodenal villus height and expression of zonula occludens-1, whereas significantly (p < 0.05) increased colonic damage score and expression of claudin-1, interleukin (IL)-1, IL-7, IL-10, interferon-γ and tumour necrosis factor (TNF)-α in colon. However, the three doses of PEG-pGLP-2 all reduced these effects; these treatments significantly (p < 0.05) increased body weight change and duodenal villus height, whereas significantly (p < 0.05) decreased colonic damage score and expression of IL-1, IL-7 and TNF-α in colon. Specifically, low-dose (12.5 nmol/kg/d) PEG-pGLP-2 was effective. CONCLUSIONS These results indicated that PEG-pGLP-2 is a novel and potentially effective therapy for intestinal healing in a relatively low dose.
Collapse
Affiliation(s)
- Ke-Ke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Jia-Jia Lv
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Zi-Wei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China.
| |
Collapse
|
34
|
Wu J, Qi KK, Xu ZW. Porcine glucagon-like peptide-2 microspheres ameliorate inflammation in lipopolysaccharide-challenged weaning piglets1. J Anim Sci 2016; 94:5286-5294. [DOI: 10.2527/jas.2016-1007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2016; 79:233-249. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. METHODS This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. RESULTS Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. CONCLUSION This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Collapse
Affiliation(s)
- Bronwen J Mayo
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma H Bateman
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Connor EE, Evock-Clover CM, Wall EH, Baldwin RL, Santin-Duran M, Elsasser TH, Bravo DM. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest Anim Endocrinol 2016; 56 Suppl:S56-65. [PMID: 27345324 DOI: 10.1016/j.domaniend.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of these enteric peptides are only beginning to be uncovered. One peptide in particular, glucagon-like peptide 2 (GLP-2) produced by enteroendocrine L cells, has been fairly well characterized in rodent and swine models in terms of its ability to improve nutrient absorption and healing of the gut after injury. In fact, a long-acting form of GLP-2 recently has been approved for the management and treatment of human conditions like inflammatory bowel disease and short bowel syndrome. However, novel functions of GLP-2 within the gut continue to be demonstrated, including its beneficial effects on intestinal barrier function and reducing intestinal inflammation. As knowledge continues to grow about GLP-2's effects on the gut and its mechanisms of release, the potential to use GLP-2 to improve gut function and health of food animals becomes increasingly more apparent. Thus, the purpose of this review is to summarize: (1) the current understanding of GLP-2's functions and mechanisms of action within the gut; (2) novel applications of GLP-2 (or stimulators of its release) to improve general health and production performance of food animals; and (3) recent findings, using dairy calves as a model, that suggest the therapeutic potential of GLP-2 to reduce the pathogenesis of intestinal protozoan infections.
Collapse
Affiliation(s)
- E E Connor
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA.
| | - C M Evock-Clover
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - R L Baldwin
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - M Santin-Duran
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - T H Elsasser
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - D M Bravo
- Pancosma S.A., CH-1218 Geneva, Switzerland
| |
Collapse
|
37
|
Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J Control Release 2016; 244:184-193. [PMID: 27369864 DOI: 10.1016/j.jconrel.2016.06.040] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
The technique of attaching the polymer polyethylene glycol (PEG), or PEGylation, has brought more than ten protein drugs into market. The surface conjugation of PEG on proteins prolongs their blood circulation time and reduces immunogenicity by increasing their hydrodynamic size and masking surface epitopes. Despite this success, an emerging body of literature highlights the presence of antibodies produced by the immune system that specifically recognize and bind to PEG (anti-PEG Abs), including both pre-existing and treatment-induced Abs. More importantly, the existence of anti-PEG Abs has been correlated with loss of therapeutic efficacy and increase in adverse effects in several clinical reports examining different PEGylated therapeutics. To better understand the nature of anti-PEG immunity, we summarize a number of clinical reports and some critical animal studies regarding pre-existing and treatment-induced anti-PEG Abs. Various anti-PEG detection methods used in different studies were provided. Several protein modification technologies beyond PEGylation were also highlighted.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Fang Sun
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Sijun Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
38
|
XTEN as Biological Alternative to PEGylation Allows Complete Expression of a Protease-Activatable Killin-Based Cytostatic. PLoS One 2016; 11:e0157193. [PMID: 27295081 PMCID: PMC4905650 DOI: 10.1371/journal.pone.0157193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Increased effectiveness and reduced side effects are general goals in drug research, especially important in cancer therapy. The aim of this study was to design a long-circulating, activatable cytostatic drug that is completely producible in E. coli. Crucial for this goal was the novel unstructured polypeptide XTEN, which acts like polyethylene glycol (PEG) but has many important advantages. Most importantly, it can be produced in E. coli, is less immunogenic, and is biodegradable. We tested constructs containing a fragment of Killin as cytostatic/cytotoxic element, a cell-penetrating peptide, an MMP-2 cleavage site for specific activation, and XTEN for long blood circulation and deactivation of Killin. One of three sequence variants was efficiently expressed in E. coli. As typical for XTEN, it allowed efficient purification of the E. coli lysate by a heat step (10 min 75°C) and subsequent anion exchange chromatography using XTEN as purification tag. After 24 h XTEN-Killin reduced the number of viable cells of HT-1080 tumor cell line to 3.8 ±2.0% (p<0.001) compared to untreated controls. In contrast, liver derived non-tumor cells (BRL3A) did not show significant changes in viability. Our results demonstrate the feasibility of completely producing a complex protease-activatable, potentially long-circulating cytostatic/cytotoxic prodrug in E. coli—a concept that could lead to efficient production of highly multifunctional drugs in the future.
Collapse
|
39
|
Connor EE, Evock-Clover CM, Walker MP, Elsasser TH, Kahl S. COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants. J Anim Sci 2016; 93:492-501. [PMID: 26020740 DOI: 10.2527/jas.2014-8577] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as daily administration because of the hormone's short half-life. Thus, practical means of administration and alternative strategies to enhance basal GLP-2 secretion (e.g., through specific feed additives), which are more likely to achieve consumer acceptance, are needed. Opportunities to address these challenges are discussed.
Collapse
|
40
|
Podust VN, Balan S, Sim BC, Coyle MP, Ernst U, Peters RT, Schellenberger V. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release 2015; 240:52-66. [PMID: 26497931 DOI: 10.1016/j.jconrel.2015.10.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
Abstract
XTEN™ is a class of unstructured hydrophilic, biodegradable protein polymers designed to increase the half-lives of therapeutic peptides and proteins. XTEN polymers and XTEN fusion proteins are typically expressed in Escherichia coli and purified by conventional protein chromatography as monodisperse polypeptides of exact length and sequence. Unstructured XTEN polypeptides have hydrodynamic volumes significantly larger than typical globular proteins of similar mass, thus imparting a bulking effect to the therapeutic payloads attached to them. Since their invention, XTEN polypeptides have been utilized to extend the half-lives of a variety of peptide- and protein-based therapeutics. Multiple clinical and preclinical studies and related drug discovery and development efforts are in progress. This review details the most current understanding of physicochemical properties and biological behavior of XTEN and XTENylated molecules. Additionally, the development path and status of several advanced drug discovery and development efforts are highlighted.
Collapse
Affiliation(s)
| | - Sibu Balan
- Amunix, 500 Ellis Street, Mountain View, CA 94043, USA
| | - Bee-Cheng Sim
- Amunix, 500 Ellis Street, Mountain View, CA 94043, USA
| | | | - Ulrich Ernst
- Amunix, 500 Ellis Street, Mountain View, CA 94043, USA
| | | | | |
Collapse
|
41
|
Qi Y, Chilkoti A. Protein-polymer conjugation-moving beyond PEGylation. Curr Opin Chem Biol 2015; 28:181-93. [PMID: 26356631 DOI: 10.1016/j.cbpa.2015.08.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/09/2023]
Abstract
In this review, we summarize-from a materials science perspective-the current state of the field of polymer conjugates of peptide and protein drugs, with a focus on polymers that have been developed as alternatives to the current gold standard, poly(ethylene glycol) (PEG). PEGylation, or the covalent conjugation of PEG to biological therapeutics to improve their therapeutic efficacy by increasing their circulation half-lives and stability, has been the gold standard in the pharmaceutical industry for several decades. After years of research and development, the limitations of PEG, specifically its non-degradability and immunogenicity have become increasingly apparent. While PEG is still currently the best polymer available with the longest clinical track record, extensive research is underway to develop alternative materials in an effort to address these limitations of PEG. Many of these alternative materials have shown promise, though most of them are still in an early stage of development and their in vivo distribution, mechanism of degradation, route of elimination and immunogenicity have not been investigated to a similar extent as for PEG. Thus, further in-depth in vivo testing is essential to validate whether any of the alternative materials discussed in this review qualify as a replacement for PEG.
Collapse
Affiliation(s)
- Yizhi Qi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
42
|
Abstract
The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.
Collapse
Affiliation(s)
- William R Strohl
- Janssen BioTherapeutics, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, SH31-21757, 1400 Welsh and McKean Roads, PO Box 776, Spring House, PA, 19477, USA,
| |
Collapse
|
43
|
Wu J, Qi K, Xu Z, Wan J. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model. J Microencapsul 2015. [PMID: 26218715 DOI: 10.3109/02652048.2015.1065923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jie Wu
- a Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences , Hangzhou , People's Republic of China
| | | | | | | |
Collapse
|
44
|
Early implementation of QbD in biopharmaceutical development: a practical example. BIOMED RESEARCH INTERNATIONAL 2015; 2015:605427. [PMID: 26075248 PMCID: PMC4449898 DOI: 10.1155/2015/605427] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
In drug development, the “onus” of the low R&D efficiency has been put traditionally onto the drug discovery process (i.e., finding the right target or “binding” functionality). Here, we show that manufacturing is not only a central component of product success, but also that, by integrating manufacturing and discovery activities in a “holistic” interpretation of QbD methodologies, we could expect to increase the efficiency of the drug discovery process as a whole. In this new context, early risk assessment, using developability methodologies and computational methods in particular, can assist in reducing risks during development in a cost-effective way. We define specific areas of risk and how they can impact product quality in a broad sense, including essential aspects such as product efficacy and patient safety. Emerging industry practices around developability are introduced, including some specific examples of applications to biotherapeutics. Furthermore, we suggest some potential workflows to illustrate how developability strategies can be introduced in practical terms during early drug development in order to mitigate risks, reduce drug attrition and ultimately increase the robustness of the biopharmaceutical supply chain. Finally, we also discuss how the implementation of such methodologies could accelerate the access of new therapeutic treatments to patients in the clinic.
Collapse
|
45
|
|
46
|
Furman JL, Chiu M, Hunter MJ. Early engineering approaches to improve peptide developability and manufacturability. AAPS JOURNAL 2014; 17:111-20. [PMID: 25338742 DOI: 10.1208/s12248-014-9681-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 02/08/2023]
Abstract
Downstream success in Pharmaceutical Development requires thoughtful molecule design early in the lifetime of any potential therapeutic. Most therapeutic monoclonal antibodies are quite similar with respect to their developability properties. However, the properties of therapeutic peptides tend to be as diverse as the molecules themselves. Analysis of the primary sequence reveals sites of potential adverse posttranslational modifications including asparagine deamidation, aspartic acid isomerization, methionine, tryptophan, and cysteine oxidation and, potentially, chemical and proteolytic degradation liabilities that can impact the developability and manufacturability of a potential therapeutic peptide. Assessing these liabilities, both biophysically and functionally, early in a molecule's lifetime can drive a more effective path forward in the drug discovery process. In addition to these potential liabilities, more complex peptides that contain multiple disulfide bonds can pose particular challenges with respect to production and manufacturability. Approaches to reducing the disulfide bond complexity of these peptides are often explored with mixed success. Proteolytic degradation is a major contributor to decreased half-life and efficacy. Addressing this aspect of peptide stability early in the discovery process increases downstream success. We will address aspects of peptide sequence analysis, molecule complexity, developability analysis, and manufacturing routes that drive the decision making processes during peptide therapeutic development.
Collapse
Affiliation(s)
- Jennifer L Furman
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California, 92121, USA
| | | | | |
Collapse
|
47
|
Ding S, Song M, Sim BC, Gu C, Podust VN, Wang CW, McLaughlin B, Shah TP, Lax R, Gast R, Sharan R, Vasek A, Hartman MA, Deniston C, Srinivas P, Schellenberger V. Multivalent antiviral XTEN-peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjug Chem 2014; 25:1351-9. [PMID: 24932887 PMCID: PMC4157762 DOI: 10.1021/bc500215m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
XTENs are unstructured, nonrepetitive
protein polymers designed
to prolong the in vivo half-life of pharmaceuticals by introducing
a bulking effect similar to that of poly(ethylene glycol). While XTEN
can be expressed as a recombinant fusion protein with bioactive proteins
and peptides, therapeutic molecules of interest can also be chemically
conjugated to XTEN. Such an approach permits precise control over
the positioning, spacing, and valency of bioactive moieties along
the length of XTEN. We have demonstrated the attachment of T-20, an
anti-retroviral peptide indicated for the treatment of HIV-1 patients
with multidrug resistance, to XTEN. By reacting maleimide-functionalized
T-20 with cysteine-containing XTENs and varying the number and positioning
of cysteines in the XTENs, a library of different peptide–polymer
combinations were produced. The T-20-XTEN conjugates were tested using
an in vitro antiviral assay and were found to be effective in inhibiting
HIV-1 entry and preventing cell death, with the copy number and spacing
of the T-20 peptides influencing antiviral activity. The peptide–XTEN
conjugates were also discovered to have enhanced solubilities in comparison
with the native T-20 peptide. The pharmacokinetic profile of the most
active T-20-XTEN conjugate was measured in rats, and it was found
to exhibit an elimination half-life of 55.7 ± 17.7 h, almost
20 times longer than the reported half-life for T-20 dosed in rats.
As the conjugation of T-20 to XTEN greatly improved the in vivo half-life
and solubility of the peptide, the XTEN platform has been demonstrated
to be a versatile tool for improving the properties of drugs and enabling
the development of a class of next-generation therapeutics.
Collapse
Affiliation(s)
- Sheng Ding
- Amunix Operating Inc. , 500 Ellis Street, Mountain View, California 94043 United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Levy OE, Jodka CM, Ren SS, Mamedova L, Sharma A, Samant M, D’Souza LJ, Soares CJ, Yuskin DR, Jin LJ, Parkes DG, Tatarkiewicz K, Ghosh SS. Novel exenatide analogs with peptidic albumin binding domains: potent anti-diabetic agents with extended duration of action. PLoS One 2014; 9:e87704. [PMID: 24503632 PMCID: PMC3913652 DOI: 10.1371/journal.pone.0087704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/01/2014] [Indexed: 11/19/2022] Open
Abstract
The design, synthesis and pharmacology of novel long-acting exenatide analogs for the treatment of metabolic diseases are described. These molecules display enhanced pharmacokinetic profile and potent glucoregulatory and weight lowering actions compared to native exenatide. [Leu(14)]exenatide-ABD is an 88 residue peptide amide incorporating an Albumin Binding Domain (ABD) scaffold. [Leu(14)]exenatide-ABP is a 53 residue peptide incorporating a short Albumin Binding Peptide (ABP). [Leu(14)]exenatide-ABD and [Leu(14)]exenatide-ABP exhibited nanomolar functional GLP-1 receptor potency and were metabolically stable in vitro in human plasma and in a pancreatic digestive enzyme mixture. Both molecules displayed picomolar and nanomolar binding association with albumin across multiple species and circulating half lives of 16 and 11 hours, respectively, post a single IV dose in rats. Unlike exenatide, both molecules elicited robust glucose lowering when injected 1 day prior to an oral glucose tolerance test, indicative of their extended duration of action. [Leu(14)]exenatide-ABD was compared to exenatide in a Lep (ob/ob) mouse model of diabetes. Twice-weekly subcutaneously dosed [Leu(14)]exenatide-ABD displayed superior glucose lowering and weight loss in diabetic mice when compared to continuously infused exenatide at the same total weekly dose. A single oral administration of each molecule via an enteric coated capsule to cynomolgus monkeys showed superior pharmacokinetics for [Leu(14)]exenatide-ABD as compared to [Leu(14)]exenatide-ABP with detectable exposure longer than 14 days. These studies support the potential use of these novel long acting exenatide analogs with different routes of administration for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Odile E. Levy
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Carolyn M. Jodka
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Shijun Steven Ren
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Lala Mamedova
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Abhinandini Sharma
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Manoj Samant
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | | | | | - Diane R. Yuskin
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - Li Jenny Jin
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | - David G. Parkes
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
| | | | - Soumitra S. Ghosh
- Amylin Pharmaceuticals LLC, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 2013; 76:561-83. [PMID: 24161075 DOI: 10.1146/annurev-physiol-021113-170317] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a 33-amino-acid proglucagon-derived peptide secreted from enteroendocrine L cells. GLP-2 circulates at low basal levels in the fasting period, and plasma levels rise rapidly after food ingestion. Renal clearance and enzymatic inactivation control the elimination of bioactive GLP-2. GLP-2 increases mesenteric blood flow and activates proabsorptive pathways in the gut, facilitating nutrient absorption. GLP-2 also enhances gut barrier function and induces proliferative and cytoprotective pathways in the small bowel. The actions of GLP-2 are transduced via a single G protein-coupled receptor (GLP-2R), expressed predominantly within the gastrointestinal tract. Disruption of GLP-2R signaling increases susceptibility to gut injury and impairs the adaptive mucosal response to refeeding. Sustained augmentation of GLP-2R signaling reduces the requirement for parenteral nutrition in human subjects with short-bowel syndrome. Hence GLP-2 integrates nutrient-derived signals to optimize mucosal integrity and energy absorption.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5; ,
| | | |
Collapse
|
50
|
Podust VN, Sim BC, Kothari D, Henthorn L, Gu C, Wang CW, McLaughlin B, Schellenberger V. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer. Protein Eng Des Sel 2013; 26:743-53. [PMID: 24133142 DOI: 10.1093/protein/gzt048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XTEN, unstructured biodegradable proteins, have been used to extend the in vivo half-life of genetically fused therapeutic proteins and peptides. To expand the applications of XTEN technology to half-life extension of other classes of molecules, XTEN protein polymers and methods for chemical XTENylation were developed. Two XTEN precursors were engineered to contain enzymatically removable purification tags. The proteins were readily expressed in bacteria and purified to homogeneity by chromatography techniques. As proof-of-principle, GLP2-2G peptide was chemically conjugated to each of the two XTEN protein polymers using maleimide-thiol chemistry. The monodisperse nature of XTEN protein polymer enabled reaction monitoring as well as the detection of peptide modifications in the conjugated state using reverse phase-high performance liquid chromatography (RP-HPLC) and electrospray ionization mass spectrometry. The resulting GLP2-2G-XTEN conjugates were purified by preparative RP-HPLC to homogeneity. In comparison with recombinantly fused GLP2-2G-XTEN, chemically conjugated GLP2-2G-XTEN molecules exhibited comparable in vitro activity, in vitro plasma stability and pharmacokinetics in rats. These data suggest that chemical XTENylation could effectively extend the half-life of a wide spectrum of biologically active molecules, therefore broadening its applicability.
Collapse
Affiliation(s)
- Vladimir N Podust
- Amunix Operating Inc., 500 Ellis Street, Mountain View, CA 94043, USA
| | | | | | | | | | | | | | | |
Collapse
|