1
|
Yazdanpanah S, Shafiekhani M, Emami M, Khodadadi H, Pakshir K, Zomorodian K. Exploring the anti-biofilm and gene regulatory effects of anti-inflammatory drugs on Candida albicans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03727-y. [PMID: 39731595 DOI: 10.1007/s00210-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method. Biofilm formation in C. albicans was evaluated using XTT reduction assay following exposure to different concentrations of drugs. Additionally, the expression of adhesin-related genes (ALS1, ALS3), hyphal cell wall specific genes (EAP1, HWP1), secreted aspartyl proteinase (SAP4, SAP6), and morphogenesis pathway regulatory gene (EFG1) was analyzed using quantitative RT-PCR. Betamethasone and dexamethasone markedly inhibited C. albicans biofilm formation by up to 80% at a concentration of 2 mg/mL. Moreover, the inhibition of C. albicans biofilm formation was significant at concentrations ranging from 0.6 to 10 mg/mL for piroxicam and from 0.75 to 12 mg/mL for diclofenac. The expression of key genes involved in biofilm formation including EFG1, HWP1, and ALS3 was all downregulated under hyphae-inducing conditions. Moreover, the expression proteinase genes of C. albicans were upregulated following exposure with corticosteroids. The data obtained provides valuable insights into the antifungal potential of anti-inflammatory drugs. Our novel findings indicate the downregulation of several Candida genes that are crucial for morphogenesis, pathogenesis, and biofilm formation. However, further research is necessary to fully elucidate the clinical applications and effectiveness of anti-inflammatory drugs as alternative or adjunctive therapies for Candida infections.
Collapse
Affiliation(s)
- Somayeh Yazdanpanah
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
El-Hamid MIA, Ibrahim D, Abdelfattah-Hassan A, Mohammed OB, Pet I, Khalil SS, El-Badry SM, Metwally AS, Azouz AA, Elnegiry AA, Elnahriry SS, Ahmadi M, Elazab ST. Silver nanoparticles loaded with pomegranate peel extract and hyaluronic acid mediate recovery of cutaneous wounds infected with Candida albicans. Front Cell Infect Microbiol 2024; 14:1469493. [PMID: 39679196 PMCID: PMC11638243 DOI: 10.3389/fcimb.2024.1469493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 12/17/2024] Open
Abstract
Smart innovative nanocomposites based on active ingredients and metallic nanoparticles with effective wound healing and antifungal properties are efficient in overcoming the limitations of traditional therapeutic products. Open wounds provide an ideal niche for colonization by Candida albicans (C. albicans) which poses substantial global health issues owing to delayed wound healing and disordered healing mechanisms. Therefore, proficient innovative therapies that control C. albicans infection and promote wound healing are of imperative importance for the management of wounds and prevention of infection and possible complications. This study aims to design a novel nanocarrier platform based on a hydrogel loaded with silver nanoparticles (AgNPs) and doped with pomegranate peel extract (PPE) and hyaluronic acid (HA), offering an unprecedented opportunity to achieve skin repair and manage C. albicans colonization with an efficient wound healing process. Sprague-Dawley rats (n=100) were assigned to 5 groups and infected with C. albicans and distributed as follows: control positive (untreated) and four cutaneous wound-healing model groups treated topically with commercial cream and PPE-HA-AgNPs at full, 50%, and 25% concentrations for 15 days, respectively. Our findings revealed that the severity of clinical signs, C. albicans burden, and the expression of biofilm-related genes ALS1, HYR1, and PLB1 were diminished following treatment with PPE-HA-AgNPsIII. Notably, the formulated nanocomposite was very effective in extending the release of PPE-HA-AgNPs in infected wounds with retention percentages of 65.4% for PPE-HA-AgNPsIII. Topical administration of PPE-HA-AgNPsIII successfully alleviated the extensive inflammatory response and healed wounded skin via downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 and IL-1 beta, and nitric oxide synthase (NOS) levels as shown by enzyme-linked immunosorbent (ELISA) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays. Interestingly, PPE-HA-AgNPsIII modulated angiogenic and wound healing markers as evidenced by the downregulation of MMP-9 and the upregulation of angiopoietin-1 (Ang-1), vascular endothelial growth factor (VEGF) (up to 10 days post-treatment), transforming growth factor-beta 1 (TGF-β1), bFGF, EGF, Ki-67, and collagen I and III with efficient wound closure capability. This was evidenced by the lessening of histopathological severity, which accelerated the healing of the infected skin wounds post-treatment with PPE-HA-AgNPs. Overall, our formulated PPE-HA-AgNPs provide an effective innovative therapeutic strategy for the treatment of cutaneous wounds infected with C. albicans with maximized wound healing efficacy, indicating their potential in clinical practice.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Samah S. Khalil
- Department of Biochemistry & Molecular Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Sara M. El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A. Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A. Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Palma F, Acunzo M, Della Marca R, Dell'Annunziata F, Folliero V, Chianese A, Zannella C, Franci G, De Filippis A, Galdiero M. Evaluation of antifungal spectrum of Cupferron against Candida albicans. Microb Pathog 2024; 194:106835. [PMID: 39117014 DOI: 10.1016/j.micpath.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 μg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 μg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 μg/mL against the tested strains, with a fungistatic effect until 100 μg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 μg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marina Acunzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
4
|
El-Shiekh RA, Meselhy MR, Elshimy R, Ibrahim MA, Ali ME, Hassanen EI. Plumieride as a novel anti-fungal and anti-inflammatory iridoid against superficial candidiasis in mice. BMC Complement Med Ther 2024; 24:224. [PMID: 38858704 PMCID: PMC11163697 DOI: 10.1186/s12906-024-04508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
In the past few decades, there has been a notable rise in the occurrence of several types of candidiasis. Candida albicans is the most common cause of superficial fungal infections in humans. In this study, plumieride, one of the major iridoids from Plumeria obtusa L. leaves, was isolated and investigated for its potential against Candida albicans (CA)-induced dermatitis in mice. qRT-PCR was done to assess the impact of plumieride on the expression of the major virulence genes of CA. Five groups (n = 7) of adult male BALB/c mice were categorized into: group I: non-infected mice; group II: mice infected intradermally with 107-108 CFU/mL of CA; group III: CA-infected mice treated with standard fluconazole (50 mg/kg bwt.); group IV and V: CA-infected mice treated with plumieride (25- and 50 mg/kg. bwt., respectively). All the treatments were subcutaneously injected once a day for 3 days. Skin samples were collected on the 4th day post-inoculation to perform pathological, microbial, and molecular studies. The results of the in vitro study proved that plumieride has better antifungal activity than fluconazole, manifested by a wider zone of inhibition and a lower MIC. Plumieride also downregulated the expression of CA virulence genes (ALS1, Plb1, and Hyr1). CA-infected mice showed extensive dermatitis, confirmed by strong iNOS, TNF-α, IL-1β, and NF-κB genes or immune expressions. Whereas the treatment of CA-infected mice with plumieride significantly reduced the microscopic skin lesions and modulated the expression of all measured proinflammatory cytokines and inflammatory markers in a dose-dependent manner. Plumieride interfered with the expression of C. albicans virulence factors and modulated the inflammatory response in the skin of mice infected with CA.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Meselhy Rageb Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, 12573, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
5
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Patil SB, Basrani ST, Chougule SA, Gavandi TC, Karuppayil SM, Jadhav AK. Butyl isothiocyanate exhibits antifungal and anti-biofilm activity against Candida albicans by targeting cell membrane integrity, cell cycle progression and oxidative stress. Arch Microbiol 2024; 206:251. [PMID: 38727840 DOI: 10.1007/s00203-024-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| |
Collapse
|
7
|
Lee JH, Kim YG, Lee J. Antibiofilm activity of lawsone against polymicrobial enterohemorrhagic Escherichia coli O157:H7 and Candida albicans by suppression of curli production and hyphal growth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155306. [PMID: 38176270 DOI: 10.1016/j.phymed.2023.155306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE In this study, lawsone (2‑hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Stepanov AA, Vasilchenko AV, Vasilchenko AS. Subinhibitory effects of 2,4-diacetylphloroglucinol on filamentous fungus Aspergillus fumigatus. J Appl Microbiol 2023; 134:lxad294. [PMID: 38086610 DOI: 10.1093/jambio/lxad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
AIMS Aspergillus fungi are common members of the soil microbiota. Some physiological and structural characteristics of Aspergillus species make them important participants in soil ecological processes. In this study, we aimed to evaluate the impact of 2,4-diacetylphloroglucinol (2,4-DAPG), a common metabolite of soil and rhizosphere bacteria, on the physiology of Aspergillus fumigatus. METHODS AND RESULTS Integrated analysis using microscopy, spectrophotometry, and liquid chromatography showed the following effects of 2,4-DAPG on Aspergillus physiology. It was found that A. fumigatus in the biofilm state is resistant to high concentrations of 2,4-DAPG. However, experimental exposure led to a depletion of the extracellular polymeric substance, changes in the structure of the cell wall of the mycelium (increase in the content of α- and β-glucans, chitin, and ergosterol), and conidia (decrease in the content of DHN-melanin). 2,4-DAPG significantly reduced the production of mycotoxins (gliotoxin and fumagillin) but increased the secretion of proteases and galactosaminogalactan. CONCLUSIONS Overall, the data obtained suggest that 2,4-DAPG-producing Pseudomonas bacteria are unlikely to directly eliminate A. fumigatus fungi, as they exhibit a high level of resistance when in the biofilm state. However, at low concentrations, 2,4-DAPG significantly alters the physiology of aspergilli, potentially reducing the adaptive and competitive capabilities of these fungi.
Collapse
Affiliation(s)
- Artyom A Stepanov
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| | - Anastasia V Vasilchenko
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Laboratory of Biochemistry and Ecology of Microorganisms, All-Russian Institute of Plant Protection, Pushkin 196608, Russia
| | - Alexey S Vasilchenko
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| |
Collapse
|
9
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Sato MR, Oshiro-Junior JA, Rodero CF, Boni FI, Araújo VHS, Bauab TM, Nicholas D, Callan JF, Chorilli M. Enhancing Antifungal Treatment of Candida albicans with Hypericin-Loaded Nanostructured Lipid Carriers in Hydrogels: Characterization, In Vitro, and In Vivo Photodynamic Evaluation. Pharmaceuticals (Basel) 2023; 16:1094. [PMID: 37631009 PMCID: PMC10459110 DOI: 10.3390/ph16081094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC) is a worldwide public health problem caused predominantly by the opportunistic polymorphic fungus Candida albicans, whose pathogenicity is associated with its morphological adaptability. To potentiate the treatment of C. albicans-induced VVC by an alternative method as photodynamic therapy (PDT), hypericin (Hy), a potent photosensitizer compound was incorporated into a nanostructured lipid carrier (NLC) and dispersed in hydrogel (HG). METHODS After preparation of the sonication process, an NLC loaded with Hy was dispersed in HG based on Poloxamer 407 and chitosan obtaining Hy.NLC-HG. This hydrogel system was physically and chemically characterized and its in vitro and in vivo photodynamic and antifungal effects were evaluated. RESULTS Through scanning electron microscopy, it was possible to observe a hydrogel system with a porous polymeric matrix and irregular microcavities. The Hy.NLC-HG system showed mucoadhesive properties (0.45 ± 0.08 N) and a satisfactory injectability (15.74 ± 4.75 N.mm), which indicates that it can be easily applied in the vaginal canal, in addition to a controlled and sustained Hy release profile from the NLC-HG of 28.55 ± 0.15% after 720 min. The in vitro antibiofilm assay significantly reduced the viability of C. albicans (p < 0.001) by 1.2 log10 for Hy.NLC-HG/PDT and 1.9 log10 for PS/PDT, Hy.NLC/PDT, and free RB/PDT, compared to the PBS/PDT negative control. The in vivo antifungal evaluation showed that animals treated with the vaginal cream (non-PDT) and the PDT-mediated Hy.NLC-HG system showed a significant difference of p < 0.001 in the number of C. albicans colonies (log) in the vaginal canal, compared to the inoculation control group. CONCLUSIONS Thus, we demonstrate the pharmaceutical, antifungal, and photodynamic potential of hydrogel systems for Hy vaginal administration.
Collapse
Affiliation(s)
- Mariana Rillo Sato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| | - João Augusto Oshiro-Junior
- Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Camila Fernanda Rodero
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| | - Fernanda Isadora Boni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| | - Dean Nicholas
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, UK; (D.N.); (J.F.C.)
| | - John Francis Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, UK; (D.N.); (J.F.C.)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.R.S.); (C.F.R.); (F.I.B.); (V.H.S.A.); (T.M.B.)
| |
Collapse
|
12
|
Sushmitha TJ, Rajeev M, Kathirkaman V, Shivam S, Rao TS, Pandian SK. 3-Hydroxy coumarin demonstrates anti-biofilm and anti-hyphal efficacy against Candida albicans via inhibition of cell-adhesion, morphogenesis, and virulent genes regulation. Sci Rep 2023; 13:11687. [PMID: 37468600 DOI: 10.1038/s41598-023-37851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
Candida albicans, a common fungus of human flora, can become an opportunistic pathogen and causes invasive candidiasis in immunocompromised individuals. Biofilm formation is the prime cause of antibiotic resistance during C. albicans infections and treating biofilm-forming cells is challenging due to their intractable and persistent nature. The study intends to explore the therapeutic potential of naturally produced compounds by competitive marine bacteria residing in marine biofilms against C. albicans biofilm. To this end, 3-hydroxy coumarin (3HC), a compound identified from the cell-free culture supernatant of the marine bacterium Brevundimonas abyssalis, was found to exhibit anti-biofilm and anti-hyphal activity against both reference and clinical isolates of C. albicans. The compound demonstrated significant inhibitory effects on biofilms and impaired the yeast-to-hyphal transition, wrinkle, and filament morphology at the minimal biofilm inhibitory concentration (MBIC) of 250 µg mL-1. Intriguingly, quantitative PCR analysis of 3HC-treated C. albicans biofilm revealed significant downregulation of virulence genes (hst7, ume6, efg1, cph1, ras1, als1) associated with adhesion and morphogenesis. Moreover, 3HC displayed non-fungicidal and non-toxic characteristics against human erythrocytes and buccal cells. In conclusion, this study showed that marine biofilms are a hidden source of diverse therapeutic drugs, and 3HC could be a potent drug to treat C. albicans infections.
Collapse
Affiliation(s)
- T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon, 22212, Republic of Korea
| | - Vellaisamy Kathirkaman
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Singh Shivam
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Toleti Subba Rao
- School of Arts and Sciences, Sai University, OMR, Paiyanur, Tamil Nadu, 603105, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
13
|
Ji H, Zhao L, Lv K, Zhang Y, Gao H, Gong Q, Yu W. Citrinin Is a Potential Quorum Sensing Inhibitor against Pseudomonas aeruginosa. Mar Drugs 2023; 21:md21050296. [PMID: 37233490 DOI: 10.3390/md21050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that infects patients by regulating virulence factors and biofilms through a quorum sensing (QS) system to protect itself from antibiotics and environmental stress. Therefore, the development of quorum sensing inhibitors (QSIs) is expected to become a new strategy for studying drug resistance to P. aeruginosa infections. Marine fungi are valuable resources for screening QSIs. A marine fungus, Penicillium sp. JH1, with anti-QS activity was isolated from the offshore waters of Qingdao (China), and citrinin, a novel QSI, was purified from secondary metabolites of this fungus. Citrinin could significantly inhibit the production of violacein in Chromobacterium violaceum CV12472 and the production of three virulence factors (elastase, rhamnolipid and pyocyanin) in P. aeruginosa PAO1. It could also inhibit the biofilm formation and motility of PAO1. In addition, citrinin downregulated the transcript levels of nine genes (lasI, rhlI, pqsA, lasR, rhlR, pqsR, lasB, rhlA and phzH) associated with QS. Molecular docking results showed that citrinin bound to PqsR and LasR with better affinity than the natural ligands. This study laid a foundation for the further study of the structure optimization and structure-activity relationship of citrinin.
Collapse
Affiliation(s)
- Hongrui Ji
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haibo Gao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
14
|
Nouri N, Mohammadi SR, Beardsley J, Aslani P, Ghaffarifar F, Roudbary M, Rodrigues CF. Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units-An In Vitro Study. Metabolites 2023; 13:metabo13040580. [PMID: 37110238 PMCID: PMC10143056 DOI: 10.3390/metabo13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata, a WHO 'high-priority' pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7 genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4). Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB resistant, respectively. The minimum inhibitory concentration (MIC50) of TQ against C. glabrata was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates, and EPA6 gene expression was reduced significantly at MIC50 concentration of TQ. TQ seems to have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis.
Collapse
Affiliation(s)
- Noura Nouri
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Justin Beardsley
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, NSW Health, Sydney, NSW 2145, Australia
| | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Célia Fortuna Rodrigues
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
15
|
Ruiz-Duran J, Torres R, Stashenko EE, Ortiz C. Antifungal and Antibiofilm Activity of Colombian Essential Oils against Different Candida Strains. Antibiotics (Basel) 2023; 12:antibiotics12040668. [PMID: 37107030 PMCID: PMC10135359 DOI: 10.3390/antibiotics12040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Most Candida species are opportunistic pathogens with the ability to form biofilms, which increases their resistance to antifungal drug therapies and the host immune response. Essential oils (EOs) are an alternative for developing new antimicrobial drugs, due to their broad effect on cellular viability, cell communication, and metabolism. In this work, we evaluated the antifungal and antibiofilm potential of fifty EOs on C. albicans ATCC 10231, C. parapsilosis ATCC 22019, and Candida auris CDC B11903. The EOs’ antifungal activity was measured by means of a broth microdilution technique to determine the minimum inhibitory and fungicidal concentrations (MICs/MFCs) against the different Candida spp. strains. The effects on biofilm formation were determined by a crystal violet assay using 96-well round-bottom microplates incubated for 48 h at 35 °C. The EOs from Lippia alba (Verbenaceae family) carvone-limonene chemotype and L. origanoides exhibited the highest antifungal activity against C. auris. The L. origanoides EOs also presented antifungal and antibiofilm activity against all three Candida spp., thus representing a promising alternative for developing new antifungal products focused on yeast infections, especially those related to biofilm formation, virulence factors, and antimicrobial resistance.
Collapse
|
16
|
Nile SH, Thombre D, Shelar A, Gosavi K, Sangshetti J, Zhang W, Sieniawska E, Patil R, Kai G. Antifungal Properties of Biogenic Selenium Nanoparticles Functionalized with Nystatin for the Inhibition of Candida albicans Biofilm Formation. Molecules 2023; 28:molecules28041836. [PMID: 36838823 PMCID: PMC9958786 DOI: 10.3390/molecules28041836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet-visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and 318 nm, and X-ray diffraction analysis has shown characteristic peaks at different 2θ values for SeNPs. Electron microscopy analysis has shown that biogenic SeNPs are spherical in shape with a size in the range of 220-240 nm. Fourier transform infrared spectroscopy has confirmed the functionalization of nystatin on SeNPs (formation of SeNP@PVP_Nystatin nanoconjugates), and the zeta potential has confirmed the negative charge on the nanoconjugates. Biogenic SeNPs are inactive; however, nanoconjugates have shown antifungal activities on C. albicans (inhibited growth, morphogenesis, and a biofilm). The molecular mechanism for the action of nanoconjugates via a real-time polymerase chain reaction has shown that genes involved in the RAS/cAMP/PKA signaling pathway play an important role in antifungal activity. In cytotoxic studies, nanoconjugates have inhibited only 12% growth of the human embryonic kidney cell line 293 cells, indicating that the nanocomposites are not cytotoxic. Thus, the biogenic SeNPs produced by P. terreus can be used as innovative and effective drug carriers to increase the antifungal activity of nystatin.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dipalee Thombre
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Krithika Gosavi
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad 431001, India
| | - Weiping Zhang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
- Correspondence: (R.P.); (G.K.); Tel.: +91-7875136344 (R.P.)
| | - Guoyin Kai
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence: (R.P.); (G.K.); Tel.: +91-7875136344 (R.P.)
| |
Collapse
|
17
|
Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring Anthraquinones as Antibacterial and Antifungal agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dhanush Raghuveer
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - V. Varsha Pai
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Thokur Sreepathy Murali
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Roopa Nayak
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
18
|
Kulišová M, Maťátková O, Brányik T, Zelenka J, Drábová L, Kolouchová IJ. Detection of microscopic filamentous fungal biofilms - Choosing the suitable methodology. J Microbiol Methods 2023; 205:106676. [PMID: 36693497 DOI: 10.1016/j.mimet.2023.106676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Microscopic filamentous fungi are ubiquitous microorganisms that adapt very easily to a variety of environmental conditions. Due to this adaptability, they can colonize a number of various surfaces where they are able to start forming biofilms. Life in the form of biofilms provides them with many benefits (increased resistance to desiccation, UV radiation, antimicrobial compounds, and host immune response). The aim of this study is to find a reliable and reproducible methodology to determine biofilm growth of selected microscopic filamentous fungi strains. Several methods (crystal violet staining, MTT assay, XTT assay, resazurin assay) for the determination of total biofilm biomass and its metabolic activity were tested on four fungi - Alternaria alternata, Aspergillus niger, Fusarium culmorum and Fusarium graminearum, and their biofilm was also imaged by spinning disc confocal microscopy using fluorescent dyes. A reproducible biofilm quantification method is essential for the subsequent testing of the biofilm growth suppression using antifungal agents or physical methods. Crystal violet staining was found to be a suitable method for the determination of total biofilm biomass of selected strains, and the MTT assay for the determination of metabolic activity of the biofilms. Calcofluor white and Nile red fluorescent stains successfully dyed the hyphae of microscopic fungi.
Collapse
Affiliation(s)
- Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Tomáš Brányik
- Research Institute of Brewing and Malting, Lipová 511/15, Prague 120 44, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Lucie Drábová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic.
| |
Collapse
|
19
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
20
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
21
|
In Silico and In Vitro Analysis of Sulforaphane Anti- Candida Activity. Antibiotics (Basel) 2022; 11:antibiotics11121842. [PMID: 36551499 PMCID: PMC9774275 DOI: 10.3390/antibiotics11121842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Oropharyngeal candidiasis/candidosis is a common and recurrent opportunistic fungal infection. Fluconazole (FLZ), one of the most used and effective antifungal agents, has been associated with a rise of resistant Candida species in immunocompromised patients undergoing prophylactic therapy. Sulforaphane (SFN), a compound from cruciferous vegetables, is an antimicrobial with yet controversial activities and mechanisms on fungi. Herein, the in silico and antifungal activities of SFN against C. albicans were investigated. In silico analyzes for the prediction of the biological activities and oral bioavailability of SFN, its possible toxicity and pharmacokinetic parameters, as well as the estimates of its gastrointestinal absorption, permeability to the blood-brain barrier and skin, and similarities to drugs, were performed by using different software. SFN in vitro anti-Candida activities alone and in combination with fluconazole (FLZ) were determined by the broth microdilution method and the checkerboard, biofilm and hyphae formation tests. Amongst the identified probable biological activities of SFN, nine indicated an antimicrobial potential. SFN was predicted to be highly absorbable by the gastrointestinal tract, to present good oral availability, and not to be irritant and/or hepatotoxic. SFN presented antifungal activity against C. albicans and prevented both biofilm and hyphae formation by this microorganism. SFN was additive/synergistic to FLZ. Overall, the data highlights the anti-Candida activity of SFN and its potential to be used as an adjuvant therapy to FLZ in clinical settings.
Collapse
|
22
|
Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants (Basel) 2022; 11:antiox11122451. [PMID: 36552659 PMCID: PMC9774353 DOI: 10.3390/antiox11122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Biofilms are the multicellular lifestyle of microorganisms and are present on potentially every type of biotic or abiotic surface. Detrimental biofilms are generally targeted with antimicrobial compounds. Phytochemicals at sub-lethal concentrations seem to be an exciting alternative strategy to control biofilms, as they are less likely to impose selective pressure leading to resistance. This overview gathers the literature on individual phytocompounds rather than on extracts of which the use is difficult to reproduce. To the best of our knowledge, this is the first review to target only individual phytochemicals below inhibitory concentrations against biofilm formation. We explored whether there is an overall mechanism that can explain the effects of individual phytochemicals at sub-lethal concentrations. Interestingly, in all experiments reported here in which oxidative stress was investigated, a modest increase in intracellular reactive oxygen species was reported in treated cells compared to untreated specimens. At sub-lethal concentrations, polyphenolic substances likely act as pro-oxidants by disturbing the healthy redox cycle and causing an accumulation of reactive oxygen species.
Collapse
|
23
|
Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS One 2022; 17:e0277097. [DOI: 10.1371/journal.pone.0277097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil from Rosmarinus officinalis L., a composite mixture of plant-derived secondary metabolites, exhibits antifungal activity against virulent candidal species. Here we report the impact of rosemary oil and two of its components, the monoterpene α-pinene and the monoterpenoid 1,8-cineole, against Candida albicans, which induce ROS-dependent cell death at high concentrations and inhibit hyphal morphogenesis and biofilm formation at lower concentrations. The minimum inhibitory concentrations (100% inhibition) for both rosemary oil and 1,8-cineole were 4500 μg/ml and 3125 μg/ml for α-pinene, with the two components exhibiting partial synergy (FICI = 0.55 ± 0.07). At MIC and 1/2 MIC, rosemary oil and its components induced a generalized cell wall stress response, causing damage to cellular and organelle membranes, along with elevated chitin production and increased cell surface adhesion and elasticity, leading to complete vacuolar segregation, mitochondrial depolarization, elevated reactive oxygen species, microtubule dysfunction, and cell cycle arrest mainly at the G1/S phase, consequently triggering cell death. Interestingly, the same oils at lower fractional MIC (1/8-1/4) inhibited virulence traits, including reduction of mycelium (up to 2-fold) and biofilm (up to 4-fold) formation, through a ROS-independent mechanism.
Collapse
|
25
|
Talapko J, Meštrović T, Škrlec I. Growing importance of urogenital candidiasis in individuals with diabetes: A narrative review. World J Diabetes 2022; 13:809-821. [PMID: 36311997 PMCID: PMC9606786 DOI: 10.4239/wjd.v13.i10.809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Both diabetes and fungal infections contribute significantly to the global disease burden, with increasing trends seen in most developed and developing countries during recent decades. This is reflected in urogenital infections caused by Candida species that are becoming ever more pervasive in diabetic patients, particularly those that present with unsatisfactory glycemic control. In addition, a relatively new group of anti-hyperglycemic drugs, known as sodium glucose cotransporter 2 inhibitors, has been linked with an increased risk for colonization of the urogenital region with Candida spp., which can subsequently lead to an infectious process. In this review paper, we have highlighted notable virulence factors of Candida species (with an emphasis on Candida albicans) and shown how the interplay of many pathophysiological factors can give rise to vulvovaginal candidiasis, potentially complicated with recurrences and dire pregnancy outcomes. We have also addressed an increased risk of candiduria and urinary tract infections caused by species of Candida in females and males with diabetes, further highlighting possible complications such as emphysematous cystitis as well as the risk for the development of balanitis and balanoposthitis in (primarily uncircumcised) males. With a steadily increasing global burden of diabetes, urogenital mycotic infections will undoubtedly become more prevalent in the future; hence, there is a need for an evidence-based approach from both clinical and public health perspectives.
Collapse
Affiliation(s)
- Jasminka Talapko
- Laboratory for Microbiology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Tomislav Meštrović
- University North, University Centre Varaždin, Varaždin 42000, Croatia
- Institute for Health Metrics and Evaluation, Department for Health Metrics Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Ivana Škrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| |
Collapse
|
26
|
Khalil FO, Taj MB, Ghonaim EM, Abed El-Sattar S, Elkhadry SW, El-Refai H, Ali OM, Elgawad ASA, Alshater H. Hydrothermal assisted biogenic synthesis of silver nanoparticles: A potential study on virulent candida isolates from COVID-19 patients. PLoS One 2022; 17:e0269864. [PMID: 36201485 PMCID: PMC9536612 DOI: 10.1371/journal.pone.0269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022] Open
Abstract
Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, the first time we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates were determined. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs was estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 μg/mL and MFC values ranging from 312.5 to 5,000 μg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 μg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.
Collapse
Affiliation(s)
- Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Muhammad B. Taj
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University Bahawalpur, Bahawalpur, Pakistan
- * E-mail: (MBT); (OMA)
| | - Enas M. Ghonaim
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Abed El-Sattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sally W. Elkhadry
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hala El-Refai
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif Saudi Arabia
- * E-mail: (MBT); (OMA)
| | - Ahmed Salah A. Elgawad
- Department of Clinical Pathology, National Liver Institute, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
27
|
Rakshit S, Sahu N, Nirala SK, Bhadauria M. Protective activity of purpurin against d-galactosamine and lipopolysaccharide-induced hepatorenal injury by upregulation of heme oxygenase-1 in the RBC degradation cycle. J Biochem Mol Toxicol 2022; 36:e23168. [PMID: 35838105 DOI: 10.1002/jbt.23168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure, associated with oxidative stress and sustained inflammation is the major clinical manifestation of liver diseases with a high mortality rate due to limited therapeutic options. Purpurin is a bioactive compound of Rubia cordifolia that has been used in textile staining, as a food additive, and as a treatment of multiple chronic and metabolic diseases associated with inflammation and oxidative stress. The present work aimed to investigate the protective efficacy of purpurin against hepatorenal damage. Thirty-six female albino rats were equally assigned into six groups. Purpurin was administered orally once a day for 6 days at doses of 05, 10, and 20 mg/kg, respectively. Intraperitoneal injection of lipopolysaccharide (50 μg/kg) was administered to the animals on 6th day evening, 1 h after d-galactosamine (300 mg/kg) administration to induce hepatorenal injury. The results revealed that purpurin alleviated alterations in serological and hematological parameters as well as restored histoarchitectural and cellular integrity of the liver and kidney. Purpurin restored superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione content in hepatorenal tissues. Accompanied by the diminution of increased bilirubin and biliverdin, purpurin also diminished total cholesterol, triglyceride, and lipid peroxidation in hepatorenal tissues. Purpurin markedly attenuated the elevation of CYP2E1, restored glutathione-S-transferase, and prevented DNA damage in hepatorenal tissues. Purpurin reduced iron overload by reducing heme depletion and recycling of ferritin and hemosiderin. It also reinforced biliverdin reductase, heme oxygenase-1 to employ hepatorenal protection by regulating antioxidant enzymes and other pathways that produced NADPH. Thus, it may be concluded that purpurin has protective potential against acute hepatorenal injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Nisha Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
28
|
Tartor YH, Elmowalid GA, Hassan MN, Shaker A, Ashour DF, Saber T. Promising Anti-Biofilm Agents and Phagocytes Enhancers for the Treatment of Candida albicans Biofilm–Associated Infections. Front Cell Infect Microbiol 2022; 12:807218. [PMID: 35846767 PMCID: PMC9283759 DOI: 10.3389/fcimb.2022.807218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
Little is known about the interactions among phagocytes and antifungal agents and the antifungal immunomodulatory activities on Candida species biofilms. Here, inhibition of C. albicans biofilms and the interactions among biofilms and phagocytes alone or in combination with essential oils, biological, and chemical agents, or fluconazole were investigated. Biofilm formation by a panel of 28 C. albicans clinical isolates from hospitalized patients, birds, and cattle was tested. The anti-biofilm activities of cinnamon and clove oils, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and Enterococcus faecalis cell-free supernatant (CFS) in comparison with fluconazole were investigated using crystal violet and XTT reduction assays, expression of hypha-specific and hyphal regulator genes, and scanning electron microscopy (SEM) analysis. Of the tested C. albicans isolates, 15 of 28 (53.6%) were biofilm producers. Cinnamon followed by E. faecalis–CFS, SDS, and CTAB was the most effective inhibitors of planktonic C. albicans and biofilms. Fluconazole was an ineffective inhibitor of C. albicans biofilms. Sessile minimal inhibitory concentration (SMIC50) of cinnamon, SDS, CTAB, and E. faecalis–CFS downregulated the hypha-specific and regulator genes, albeit to various extents, when compared with untreated biofilms (P < 0.001). SEM analysis revealed disruption and deformity of three-dimensional structures in cinnamon oil–treated biofilms. C. albicans sessile cells within biofilm were less susceptible to phagocytosis than planktonic cells. The additive effects of phagocytes and the tested antifungals enabled phagocytes to engulf C. albicans cells rapidly in cinnamon, E. faecalis–CFS, or SDS-treated biofilms. No differences in anti-Candida or anti-biofilm eradication activities were detected among the tested isolates. Our findings reinforce the substantial anti-biofilm activity of cinnamon oil, SDS, and E. faecalis–CFS and provide new avenues for the development of novel anti-biofilm immunotherapies or antifungals that could be used prior to or during the management of cases with biofilm-associated infections.
Collapse
Affiliation(s)
- Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Yasmine H. Tartor, ; ; orcid.org/0000-0003-1246-6548
| | - Gamal A. Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed N. Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Shaker
- Department of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Dalia F. Ashour
- Department of Public Health, Dakahlia Veterinary Medicine Directorate, Mansoura, Egypt
| | - Taisir Saber
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
29
|
Song Y, Wang Z, Long Y, Mao Y, Jiang F, Lu Y. 2-Alkyl-anthraquinones inhibit Candida albicans biofilm via inhibiting the formation of matrix and hyphae. Res Microbiol 2022; 173:103955. [PMID: 35550403 DOI: 10.1016/j.resmic.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Candida albicans can form biofilm on biotic and abiotic surfaces of medical implants to cause superficial and systemic infections under specific condition. The formation of hyphae and matrix of C. albicans are considered as probable virulence factors. We assessed the inhibitory activities of 26 anthraquinones against C. albicans biofilm formation, which were substituted by different functional groups including hydroxyl groups, amino groups, carboxyl groups, alkyl groups, and glycoside groups at C1- or C2-position. Among them, anthraquinones without substituents at other positions but only an alkyl group attached to C2-position, namely 2-alkyl-anthraquinones were determined to have significant anti-biofilm activities. Furthermore, 2-ethylanthraquinone can significantly affect genes related to extracellular matrix (PMT6 and IFD6), and hyphal formation (HWP1, ECE1 and EFG1), leading to the disrupted formation of biofilm, by detail transcriptomics analysis. We believed that 2-ethylanthraquinone could inspire more discoveries of anti-biofilm agents against C. albicans.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziqi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yijing Long
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Mao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Jiang
- State Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Memariani M, Memariani H, Poursafavi Z, Baseri Z. Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, Leung YY, Ramage G, Neelakantan P. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol 2022; 48:743-769. [PMID: 35232325 DOI: 10.1080/1040841x.2021.2025337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungi are considered "silent killers" due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections.
Collapse
Affiliation(s)
| | - Om Alkhir Alshanta
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | | |
Collapse
|
32
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
34
|
Mao X, Ma J, Jiao C, Tang N, Zhao X, Wang D, Zhang Y, Ye Z, Xu C, Jiang J, Wu S, Cui X, Zhang H, Qiu X. Faecalibacterium prausnitzii Attenuates DSS-Induced Colitis by Inhibiting the Colonization and Pathogenicity of Candida albicans. Mol Nutr Food Res 2021; 65:e2100433. [PMID: 34558816 DOI: 10.1002/mnfr.202100433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
SCOPE Intestinal commensal microbiota interactions play critical roles in the inflammatory bowel disease (IBD) development. Candida albicans (CA) can aggravate intestinal inflammation; however, whether Faecalibacterium prausnitzii (FP) can antagonize CA is unknown. METHODS AND RESULTS CA are co-cultured with bacteria (FP and Escherichia coli (EC)), bacterial supernatant, and bacterial medium, respectively. Then, the CA hyphae-specific genes' expression and CA cells' morphology are investigated. The Nod-like receptor pyrin-containing protein 6 (NLRP6) inflammasome, inflammatory cytokines, and antimicrobial peptides (AMPs) production are evaluated in intestinal epithelial cells pre-treated with bacteria, bacterial med, and bacterial supernatant and exposed without or with CA. Both bacteria significantly prohibit CA numbers, while only FP and FP supernatant prohibit the transformation and virulence factors (extracellular phospholipase, secreted aspartyl proteinase, and hemolysin) secretion of CA in a co-culture system compared with media controls. Further, FP and FP supernatant promote the production of the NLRP6 inflammasome, interleukin (IL)-1β, IL-18, and antibacterial peptides (β-defensin (BD)-2 and BD-3) and inhibit in vitro and in vivo CA growth and pathogenicity, and alleviate DSS-colitis in mice, while EC do not show the similar effect. CONCLUSION FP improve intestinal inflammation by inhibiting CA reproduction, colonization, and pathogenicity and inducing AMP secretion in the gut. This study uncovers new relationships between intestinal microbes and fungi in IBD patients.
Collapse
Affiliation(s)
- Xiaqiong Mao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Ma
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunhua Jiao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nana Tang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Wang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziping Ye
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjing Xu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyue Jiang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shasha Wu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiufang Cui
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Langa-Lomba N, Sánchez-Hernández E, Buzón-Durán L, González-García V, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. Activity of Anthracenediones and Flavoring Phenols in Hydromethanolic Extracts of Rubia tinctorum against Grapevine Phytopathogenic Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:1527. [PMID: 34451572 PMCID: PMC8399478 DOI: 10.3390/plants10081527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
In this work, the chemical composition of Rubia tinctorum root hydromethanolic extract was analyzed by GC-MS, and over 50 constituents were identified. The main phytochemicals were alizarin-related anthraquinones and flavoring phenol compounds. The antifungal activity of this extract, alone and in combination with chitosan oligomers (COS) or with stevioside, was evaluated against the pathogenic taxa Diplodia seriata, Dothiorella viticola and Neofusicoccum parvum, responsible for the so-called Botryosphaeria dieback of grapevine. In vitro mycelial growth inhibition tests showed remarkable activity for the pure extract, with EC50 and EC90 values as low as 66 and 88 μg·mL-1, respectively. Nonetheless, enhanced activity was attained upon the formation of conjugate complexes with COS or with stevioside, with synergy factors of up to 5.4 and 3.3, respectively, resulting in EC50 and EC90 values as low as 22 and 56 μg·mL-1, respectively. The conjugate with the best performance (COS-R. tinctorum extract) was then assayed ex situ on autoclaved grapevine wood against D. seriata, confirming its antifungal behavior on this plant material. Finally, the same conjugate was evaluated in greenhouse assays on grafted grapevine plants artificially inoculated with the three aforementioned fungal species, resulting in a significant reduction in the infection rate in all cases. This natural antifungal compound represents a promising alternative for developing sustainable control methods against grapevine trunk diseases.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
- Agrifood Research and Technology Centre of Aragón, Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Laura Buzón-Durán
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Vicente González-García
- Agrifood Research and Technology Centre of Aragón, Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
| |
Collapse
|
36
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
37
|
Matrose NA, Obikeze K, Belay ZA, Caleb OJ. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
The Effects of Dehydrozingerone on Growth, Biofilm Formation, and Ergosterol Biosynthesis of Candida albicans. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Singh J, Hussain Y, Luqman S, Meena A. Purpurin: A natural anthraquinone with multifaceted pharmacological activities. Phytother Res 2021; 35:2418-2428. [PMID: 33254282 DOI: 10.1002/ptr.6965] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Purpurin is a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia. Historically, it has been used as a red dye. However, its photosensitizing property and biological effects have deciphered its novel application. Purpurin shows antigenotoxic, anticancer, neuromodulatory, and antimicrobial potential associated with antioxidant action in in vivo and in vitro experiments. A robust antioxidant nature of purpurin is responsible for the majority of its pharmacological effects. It produces anti-inflammatory activity by reducing oxidative stress, which is a fundamental property to target diseases involving endoplasmic reticulum and mitochondrial stress. It can cross the blood-brain barrier and produce neuroprotective effects, including antidepressant and anti-Alzheimer action. It shows antimutagenic property via inhibiting essential CYP-450 enzymes. Interestingly, it gets photosensitized by UV-light and produces target-specific ROS-dependent apoptosis in cancer cells. Therefore, it owns cell killing and cell survival potential subject to the influence of external conditions. Hitherto, limited research studies are performed with purpurin to understand its therapeutic potential. Hence, this review describes and discusses different in vivo, in vitro, and in silico studies performed using purpurin. It also covers physicochemical, pharmacokinetics, and toxicology aspects of purpurin. Moreover, in the end, the prospect of purpurin in the management of cancer has also been proposed.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
40
|
Lombardi A, Ouanounou A. Fungal infections in dentistry: Clinical presentations, diagnosis, and treatment alternatives. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:533-546. [DOI: 10.1016/j.oooo.2020.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
41
|
Wijesinghe GK, Maia FC, de Oliveira TR, de Feiria SNB, Joia F, Barbosa JP, Boni GC, Sardi JDCO, Rosalen PL, Höfling JF. Effect of Cinnamomum verum leaf essential oil on virulence factors of Candida species and determination of the in-vivo toxicity with Galleria mellonella model. Mem Inst Oswaldo Cruz 2020; 115:e200349. [PMID: 32997002 PMCID: PMC7523505 DOI: 10.1590/0074-02760200349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Essential oils (EO) extracted from Cinnamomum verum has been used as an antimicrobial agents for centuries. The effects of C. verum leaf oil against virulence of microorganisms is not well studied yet. OBJECTIVES This study evaluates the effect of C. verum leaf oil against three virulence factors of Candida albicans, C. tropicalis and C. dubliniensis and its in-vivo toxicity. METHODS Chemical composition of EO was determined using gas chromatography-mass spectrometry (GC-MS). Minimum inhibitory concentration (MIC) was determined using clinical and laboratory standards institute (CLSI) M27-A3 broth microdilution. Effect of EO on initial adhesion was quantified using XTT assay after allowing Candida cells to adhere to the polystyrene surface for 2 h. Biofilm formation of Candida in the presence of EO was quantified using XTT viability assay. Efficacy on reduction of germ tube formation was evaluated using standard protocol. Visualisation of biofilm formation and progression under the EO treatment were done using scanning electron microscope (SEM) and Time lapses microscope respectively. In-vivo toxicity of EO was determined using Galleria mellonella larvae. Chlorhexidine digluconate: positive control. RESULTS Eugenol was the main compound of EO. MIC was 1.0 mg/mL. 50% reduction in initial adhesion was achieved by C. albicans, C. tropicalis and C. dubliniensis with 1.0, > 2.0 and 0.34 mg/mL respectively. 0.5 and 1.0 mg/mL significantly inhibit the germ tube formation. MBIC50 for forming biofilms were ≤ 0.35 mg/mL. 1.0 mg/mL prevent biofilm progression of Candida. SEM images exhibited cell wall damages, cellular shrinkages and decreased hyphal formation. No lethal effect was noted with in-vivo experiment model at any concentration tested. CONCLUSION C. verum leaf oil acts against virulence factors of Candida and does not show any toxicity.
Collapse
Affiliation(s)
- Gayan Kanchana Wijesinghe
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Flávia Camila Maia
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Thaís Rossini de Oliveira
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Simone N Busato de Feiria
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Felipe Joia
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Janaina Priscila Barbosa
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Giovana Cláudia Boni
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Farmacologia, Anestesiologia e Terapêutica, Departamento de Ciências Fisiológicas, Campinas, SP, Brasil
| | - Pedro Luiz Rosalen
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Farmacologia, Anestesiologia e Terapêutica, Departamento de Ciências Fisiológicas, Campinas, SP, Brasil
| | - José Francisco Höfling
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Microbiologia e Imunologia, Departamento de Diagnóstico Oral, Campinas SP, Brasil
| |
Collapse
|
42
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
43
|
A novel study on the inhibitory effect of marine macroalgal extracts on hyphal growth and biofilm formation of candidemia isolates. Sci Rep 2020; 10:9339. [PMID: 32518329 PMCID: PMC7283248 DOI: 10.1038/s41598-020-66000-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Biofilm formation and hyphal growth are considered to be the most serious virulence factors of Candida species in blood causing candidemia infections, which are difficult to treat due to the spread of resistant Candida isolates to most antifungal drugs. Therefore, in this study, we investigated the effect of different types and concentrations of selected macroalgal extracts from Cladostephus spongiosus (Phaeophyta), Laurencia papillosa (Rhodophyta), and Codium arabicum (Chlorophyta) in inhibiting those virulence factors of the isolated Candida. Acetone extract of C. spongiosus (AECS) showed a stronger anticandidal activity against the selected strains than ethanol extract. Candida krusei was the highest biofilm producer among the selected isolates. AECS showed an inhibition of C. krusei biofilm formation as well as a reduction in the viability of preformed biofilms. Also, AECS reduced various sugars in the candidal exo-polysaccaride layer (EPS). Scanning electron microscopy (SEM) and light microscopic images revealed an absence of hyphae and an alteration in the morphology of biofilm cells when treated with AECS. Moreover, AECS downregulated the expression of hyphal specific genes, hyphal wall protein 1 (HWP1), Agglutinin-like protein 1 (ALS1) and fourth secreted aspartyl proteinase (SAP4), which confirmed the inhibitory effect of AECS on hyphal growth and biofilm formation. Gas chromatography-mass spectrophotometer (GC-MS) analysis of AECS showed three major compounds, which were non-existent in the ethanol extract, and might be responsible for the anticandidal activity; these revealed compounds were 4-hydroxy-4-methyl-2-pentanone, n-hexadecenoic acid, and phenol, 2-methoxy-4-(2-propenyl). These active compounds of AECS may be promising for future pharmaceutical applications in the treatment of candidemia.
Collapse
|
44
|
Nejatbakhsh S, Ilkhanizadeh-Qomi M, Razzaghi-Abyaneh M, Jahanshiri Z. The Effects of Ellagic Acid on Growth and Biofilm Formation of Candida albicans. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
45
|
de Freitas MA, Silva Alves AI, Andrade JC, Leite-Andrade MC, Lucas dos Santos AT, Felix de Oliveira T, dos Santos FDAG, Silva Buonafina MD, Melo Coutinho HD, Alencar de Menezes IR, Bezerra Morais-Braga MF, Pereira Neves R. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics (Basel) 2019; 8:antibiotics8040250. [PMID: 31817228 PMCID: PMC6963540 DOI: 10.3390/antibiotics8040250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Candida sp. treatment has become a challenge due to the formation of biofilms which favor resistance to conventional antifungals, making the search for new compounds necessary. The objective of this study was to identify the composition of the Licania rigida Benth. leaf ethanolic extract and to verify its antifungal activity against Candida sp. and its biofilms. The composition identification was performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technique. The antifungal activity of extract and fluconazole against planktonic cells and biofilms was verified through the minimum inhibitory concentration (MIC) following biofilm induction and quantification in acrylic resin discs by reducing tetrazolic salt, with all isolates forming biofilms within 48 h. Six constituents were identified in the extract, and the compounds identified are derivatives from phenolic compounds such as flavonoids (epi) gallocatechin Dimer, epigallocatechin and gallocatechin, Myricetin-O-hexoside, Myricitrin, and Quercetin-O-rhamnoside. The extract reduced biofilm formation in some of the strains analyzed, namely C. tropicalis URM5732, C. krusei INCQS40042, and C. krusei URM6352. This reduction was also observed in the treatment with fluconazole with some of the analyzed strains. The extract showed significant antifungal and anti-biofilm activities with some of the strains tested.
Collapse
Affiliation(s)
- Maria Audilene de Freitas
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Adryelle Idalina Silva Alves
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Jacqueline Cosmo Andrade
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (J.C.A.); (H.D.M.C.)
| | - Melyna Chaves Leite-Andrade
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Antonia Thassya Lucas dos Santos
- Laboratory of Mycology applied of Cariri, Department of biological Sciences, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (A.T.L.d.S.); (M.F.B.M.-B.)
| | - Tatiana Felix de Oliveira
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Franz de Assis G. dos Santos
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Maria Daniela Silva Buonafina
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (J.C.A.); (H.D.M.C.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of chemical biology, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil
- Correspondence:
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Mycology applied of Cariri, Department of biological Sciences, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (A.T.L.d.S.); (M.F.B.M.-B.)
| | - Rejane Pereira Neves
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| |
Collapse
|
46
|
Bandara HMHN, Samaranayake LP. Viral, bacterial, and fungal infections of the oral mucosa: Types, incidence, predisposing factors, diagnostic algorithms, and management. Periodontol 2000 2019; 80:148-176. [PMID: 31090135 DOI: 10.1111/prd.12273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For millions of years, microbiota residing within us, including those in the oral cavity, coexisted in a harmonious symbiotic fashion that provided a quintessential foundation for human health. It is now clear that disruption of such a healthy relationship leading to microbial dysbiosis causes a wide array of infections, ranging from localized, mild, superficial infections to deep, disseminated life-threatening diseases. With recent advances in research, diagnostics, and improved surveillance we are witnessing an array of emerging and re-emerging oral infections and orofacial manifestations of systemic infections. Orofacial infections may cause significant discomfort to the patients and unnecessary economic burden. Thus, the early recognition of such infections is paramount for holistic patient management, and oral clinicians have a critical role in recognizing, diagnosing, managing, and preventing either new or old orofacial infections. This paper aims to provide an update on current understanding of well-established and emerging viral, bacterial, and fungal infections manifesting in the human oral cavity.
Collapse
Affiliation(s)
| | - Lakshman P Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
47
|
Fabricating Ultra-Smooth Diamond-Like Carbon Film and Investigating its Antifungal and Antibiofilm Activity. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.43.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diamond like carbon (DLC) a carbon-based nanomaterial has been nominated as a potential solution to prevent the biofilm formation on indwelling medical devices such as dentures and heart valves.Candidaalbicansis an opportunistic fungal pathogen where biofilms are a part of its pathogenicity which primarily utilized indwelling medical devices as platform to build up the biofilm. In this work, DLC deposited on silicon substrate was prepared to accomplish the optimal characteristics for bio-coating material (roughness, purity, uniformity) and then evaluated for their ability to prevent or reduce the biofilm formation of pathogenicC.albicans(SC5314) under conditions mimicking human body. Optimized DLC was synthesized via chemical vapor deposition, and then the film was characterized by Raman spectroscopy, scan electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The potential biofilms on DLC, silicon substrate and positive control (polyvinyl chloride-PVC) were quantified via colorimetric cell viability assay (XTT); as intact and vortexed biofilms. The characteristics of formed biofilms were carried out using confocal scanning laser microscopy (CSLM) and scan electron microscope (SEM). The result showed that DLC was successfully deposited on the silicon substrate with a root mean square (RMS) roughness of 0.183± 0.09 nm. The biofilm efficaciously grown on all samples (DLC and positive control) with thickness of 46.8 ± 6.97 μm and 42.18 ± 4.65 μm, respectively. No topological and morphological changes have been observed by SEM on biofilm-DLC compared to PVC-biofilm. Moreover, all results indicated that the hydrophobicity and roughness of DLC appeared to support the attachment and the growth ofC.albicans.In conclusion , there is no privilege of utilizing DLC over PVC in term of reduction or inhibition ofC.albicansbiofilm formation at physiological conditions. Furthermore, this study may serve as an experimental model to evaluate the potential effect of nanomaterials coating on biofilm formation at conditions mimicking human’s body.
Collapse
|
48
|
de Oliveira DBC, Silva LB, da Silva BV, Borges TC, Marques BC, Dos Santos MB, de Oliveira LF, Bolzani VS, Rodrigues ARA, Regasini LO, Andrade AA. A new acridone with antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans. J Appl Microbiol 2019; 127:1362-1372. [PMID: 31297951 DOI: 10.1111/jam.14381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
AIM The increase in the number of fungal infections worldwide, coupled with the limitations of current antifungal chemotherapy, demand the development of safe and effective new antifungals. Here, we presented the synthesis of a novel acridone (M14) and its antifungal properties against Candida and dermatophytes species. METHODS AND RESULTS A series of 17 acridones was designed, synthesized and tested for its antifungal activity. The minimum inhibitory concentration (MIC) was determined by the broth microdilution method. Only the acridone M14 showed growth-inhibitory activity against reference strains and clinical isolates of Candida and dermatophytes, with MIC range of 7·81-31·25 µg ml-1 . Moreover, M14 exhibited fungicidal activity and prevented biofilm formation by C. albicans as well as reduced the viability of preformed biofilms, even at sub-MICs. The confocal laser scanning microscopy analysis revealed that C. albicans hyphal growth was completely inhibited in the presence of M14. Similarly, there was a severe inhibition on hyphal growth of Trichophyton rubrum. We also found that M14 has relatively low toxicity to human fibroblasts. CONCLUSIONS The new acridone M14 has antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans. In addition, M14 is relatively selective to fungal cells compared to human normal cells. SIGNIFICANCE AND IMPACT OF THE STUDY Because of its in vitro antifungal activity, anti-Candida biofilm effect and moderate cytotoxicity towards normal human cell, M14 may serve as a valuable lead compound to develop a new antifungal agent.
Collapse
Affiliation(s)
- D B C de Oliveira
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - L B Silva
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - B V da Silva
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - T C Borges
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - B C Marques
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - M B Dos Santos
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - L F de Oliveira
- Discipline of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - V S Bolzani
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - A R A Rodrigues
- Discipline of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - L O Regasini
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - A A Andrade
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
49
|
Lee JH, Kim YG, Khadke SK, Yamano A, Watanabe A, Lee J. Inhibition of Biofilm Formation by Candida albicans and Polymicrobial Microorganisms by Nepodin via Hyphal-Growth Suppression. ACS Infect Dis 2019; 5:1177-1187. [PMID: 31055910 DOI: 10.1021/acsinfecdis.9b00033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Candida albicans is an opportunistic pathogenic yeast and is responsible for candidiasis. It readily colonizes host tissues and implant devices, and forms biofilms, which play an important role in pathogenesis and drug resistance. In this study, the antibiofilm, antihyphal, and antivirulence activities of nepodin, isolated from Rumex japonicus roots, were investigated against a fluconazole-resistant C. albicans strain and against polymicrobial-microorganism-biofilm formation. Nepodin effectively inhibited C. albicans biofilm formation without affecting its planktonic cell growth. Also, Rumex-root extract and nepodin both inhibited hyphal growth and cell aggregation of C. albicans. Interestingly, nepodin also showed antibiofilm activities against Candida glabrata, Candida parapsilosis, Staphylococcus aureus, and Acinetobacter baumannii strains and against dual biofilms of C. albicans and S. aureus or A. baumannii but not against Pseudomonas aeruginosa. Transcriptomic analysis performed by RNA-seq and qRT-PCR showed nepodin repressed the expression of several hypha- and biofilm-related genes (ECE1, HGT10, HWP1, and UME6) and increased the expression of several transport genes (CDR4, CDR11, and TPO2), which supported phenotypic changes. Moreover, nepodin reduced C. albicans virulence in a nematode-infection model and exhibited minimal cytotoxicity against the nematode and an animal cell line. These results demonstrate that nepodin and Rumex-root extract might be useful for controlling C. albicans infections and multispecies biofilms.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Aki Yamano
- Okinawa Research Center Company, Ltd., 12-75 Ulumasi, Okinawa 904-2234, Japan
| | - Akio Watanabe
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
50
|
Tsutsumi-Arai C, Takakusaki K, Arai Y, Terada-Ito C, Takebe Y, Imamura T, Ide S, Tatehara S, Tokuyama-Toda R, Wakabayashi N, Satomura K. Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. PLoS One 2019; 14:e0217496. [PMID: 31136636 PMCID: PMC6538181 DOI: 10.1371/journal.pone.0217496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the cleansing effects of grapefruit seed extract (GSE) on biofilms of Candida albicans (C. albicans) formed on denture-base resin and the influence of GSE on the mechanical and surface characteristics of the resin. GSE solution diluted with distilled water to 0.1% (0.1% GSE) and 1% (1% GSE) and solutions with Polident® denture cleansing tablet dissolved in distilled water (Polident) or in 0.1% GSE solution (0.1% G+P) were prepared as cleansing solutions. Discs of acrylic resin were prepared, and the biofilm of C. albicans was formed on the discs. The discs with the biofilm were treated with each solution for 5 min at 25°C. After the treatment, the biofilm on the discs was analyzed using a colony forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). In order to assess the persistent cleansing effect, the discs treated with each solution for 5 min were aerobically incubated in Yeast Nitrogen Base medium for another 24 h. After incubation, the persistent effect was assessed by CFU assay. Some specimens of acrylic resin were immersed in each solution for 7 days, and changes in surface roughness (Ra), Vickers hardness (VH), flexural strength (FS), and flexural modulus (FM) were evaluated. As a result, the treatment with 1% GSE for 5 min almost completely eliminated the biofilm formed on the resin; whereas, the treatment with 0.1% GSE, Polident, and 0.1% G+P for 5 min showed a statistically significant inhibitory effect on biofilms. In addition, 0.1% GSE and 0.1% G+P exerted a persistent inhibitory effect on biofilms. Fluorescence microscopy indicated that Polident mainly induced the death of yeast, while the cleansing solutions containing at least 0.1% GSE induced the death of hyphae as well as yeast. SEM also revealed that Polident caused wrinkles, shrinkage, and some deep craters predominantly on the cell surfaces of yeast, while the solutions containing at least 0.1% GSE induced wrinkles, shrinkage, and some damage on cell surfaces of not only yeasts but also hyphae. No significant changes in Ra, VH, FS, or FM were observed after immersion in any of the solutions. Taken together, GSE solution is capable of cleansing C. albicans biofilms on denture-base resin and has a persistent inhibitory effect on biofilm development, without any deteriorations of resin surface.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Kensuke Takakusaki
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Yusuke Takebe
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takahiro Imamura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|