1
|
Tang H, Xia Y, Hua L, Dai Z, Wang X, Yao Z, Lu Q. Electrophysiological predictors of early response to antidepressants in major depressive disorder. J Affect Disord 2024; 365:509-517. [PMID: 39187184 DOI: 10.1016/j.jad.2024.08.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Psychomotor retardation (PMR) is a core feature of major depressive disorder (MDD), which is characterized by abnormalities in motor control and cognitive processes. PMR in MDD can predict a poor antidepressant response, suggesting that PMR may serve as a marker of the antidepressant response. However, the neuropathological relationship between treatment outcomes and PMR remains uncertain. Thus, this study examined electrophysiological biomarkers associated with poor antidepressant response in MDD. METHODS A total of 142 subjects were enrolled in this study, including 49 healthy controls (HCs) and 93 MDD patients. All participants performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. Patients who exhibited at least a 50 % reduction in disorder severity at the endpoint (>2 weeks) were considered to be responders. Motor-related beta desynchronization (MRBD) and inter- and intra-hemispheric functional connectivity were measured in the bilateral motor network. RESULTS An increased MRBD and decreased inter- and intra-hemispheric functional connectivity in the motor network during movement were observed in non-responders, relative to responders and HCs. This dysregulation predicted the potential antidepressant response. CONCLUSION Abnormal local activity and functional connectivity in the motor network indicate poor psychomotor function, which might cause insensitivity to antidepressant treatment. This could be regarded as a potential neural mechanism for the prediction of a patient's treatment response.
Collapse
Affiliation(s)
- Hao Tang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Song XM, Liu D, Hirjak D, Hu X, Han J, Roe AW, Yao D, Tan Z, Northoff G. Motor versus Psychomotor? Deciphering the Neural Source of Psychomotor Retardation in Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403063. [PMID: 39207086 PMCID: PMC11515905 DOI: 10.1002/advs.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Major depressive disorder (MDD) is characterized by psychomotor retardation whose underlying neural source remains unclear. Psychomotor retardation may either be related to a motor source like the motor cortex or, alternatively, to a psychomotor source with neural changes outside motor regions, like input regions such as visual cortex. These two alternative hypotheses in main (n = 41) and replication (n = 18) MDD samples using 7 Tesla MRI are investigated. Analyzing both global and local connectivity in primary motor cortex (BA4), motor network and middle temporal visual cortex complex (MT+), the main findings in MDD are: 1) Reduced local and global synchronization and increased local-to-global output in motor regions, which do not correlate with psychomotor retardation, though. 2) Reduced local-to-local BA4 - MT+ functional connectivity (FC) which correlates with psychomotor retardation. 3) Reduced global synchronization and increased local-to-global output in MT+ which relate to psychomotor retardation. 4) Reduced variability in the psychophysical measures of MT+ based motion perception which relates to psychomotor retardation. Together, it is shown that visual cortex MT+ and its relation to motor cortex play a key role in mediating psychomotor retardation. This supports psychomotor over motor hypothesis about the neural source of psychomotor retardation in MDD.
Collapse
Affiliation(s)
- Xue Mei Song
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
| | - Dong‐Yu Liu
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
- Key Laboratory of Biomedical Engineering of Ministry of EducationQiushi Academy for Advanced StudiesCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
| | - Dusan Hirjak
- Department of Psychiatry and PsychotherapyCentral Institute of Mental HealthMedical Faculty MannheimUniversity of Heidelberg69117MannheimGermany
| | - Xi‐Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Jin‐Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated HospitalInterdisciplinary Institute of Neuroscience and TechnologySchool of MedicineZhejiang UniversityHangzhou310029China
| | - De‐Zhong Yao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zhong‐Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's HospitalSchool of MedicineZhejiang UniversityHangzhou310013China
| | - Georg Northoff
- University of Ottawa Institute of Mental Health ResearchUniversity of OttawaOttawaONK1Z 7K4Canada
| |
Collapse
|
3
|
Bracht T, Mertse N, Breit S, Federspiel A, Wiest R, Soravia LM, Walther S, Denier N. Alterations of perfusion and functional connectivity of the cingulate motor area are associated with psychomotor retardation in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01896-8. [PMID: 39297976 DOI: 10.1007/s00406-024-01896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Psychomotor retardation, characterized by slowing of speech, thoughts, and a decrease of movements, is frequent in patients with major depressive disorder (MDD). However, its neurobiological correlates are still poorly understood. This study aimed to explore if cerebral blood flow (CBF) and resting state functional connectivity (rs-FC) of the motor network are altered in patients with MDD and if these changes are associated with psychomotor retardation. Thirty-six right-handed patients with depression and 19 right-handed healthy controls (HC) that did not differ regarding age and sex underwent arterial spin labelling (ASL) and resting-state functional MRI (rs-fMRI) scans. Psychomotor retardation was assessed with the motoric items of the core assessment of psychomotor change (CORE) questionnaire. Patients with MDD had more pronounced psychomotor retardation scores than HC. Patients with MDD had reduced CBF in bilateral cingulate motor area (CMA) and increased resting-state functional connectivity (rs-FC) between the cluster in the CMA and a cluster localized in bilateral supplementary motor areas (SMA). Furthermore, increased rs-FC between the CMA and the left SMA was associated with more pronounced psychomotor retardation. Our results suggest that reduced perfusion of the CMA and increased rs-FC between the CMA and the SMA are associated with psychomotor retardation in patients with depression.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland.
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Ho FYY, Poon CY, Wong VWH, Chan KW, Law KW, Yeung WF, Chung KF. Actigraphic monitoring of sleep and circadian rest-activity rhythm in individuals with major depressive disorder or depressive symptoms: A meta-analysis. J Affect Disord 2024; 361:224-244. [PMID: 38851435 DOI: 10.1016/j.jad.2024.05.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Disrupted sleep and rest-activity pattern are common clinical features in depressed individuals. This meta-analysis compared sleep and circadian rest-activity rhythms in people with major depressive disorder (MDD) or depressive symptoms and healthy controls. METHODS Eligible studies were identified in five databases up to December 2023. The search yielded 53 studies with a total of 11,115 participants, including 4000 depressed participants and 7115 healthy controls. RESULTS Pooled meta-analyses demonstrated that depressed individuals have significantly longer sleep latency (SMD = 0.23, 95 % CI: 0.12 to 0.33) and wake time after sleep onset (SMD = 0.37, 95 % CI: 0.22 to 0.52), lower sleep efficiency (SMD = -0.41, 95 % CI: -0.56 to -0.25), more nocturnal awakenings (SMD = 0.58, 95 % CI: 0.29 to 0.88), lower MESOR (SMD = -0.54, 95 % CI: -0.81 to -0.28), amplitude (SMD = -0.33, 95 % CI: -0.57 to -0.09), and interdaily stability (SMD = -0.17, 95 % CI: -0.28 to -0.05), less daytime (SMD = -0.79, 95 % CI: -1.08 to -0.49) and total activities (SMD = -0.89, 95 % CI: -1.28 to -0.50) when compared with healthy controls. LIMITATIONS Most of the included studies reported separate sleep and activity parameters instead of 24-hour rest-activity rhythms. The variabilities among actigraphy devices and the types of participants recruited also impede precise comparisons. CONCLUSIONS The findings emerging from this study offered a better understanding of sleep and rest-activity rhythm in individuals with MDD or depressive symptoms. Future studies could advocate for deriving objective, distinctive 24-hour rest-activity profiles contributing to the risk of depression. PROSPERO REGISTRATION NUMBER CRD42021259780.
Collapse
Affiliation(s)
- Fiona Yan-Yee Ho
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.
| | - Chun-Yin Poon
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | | | - Ka-Wai Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Ka-Wai Law
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Ka-Fai Chung
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Wüthrich F, Lefebvre S, Mittal VA, Shankman SA, Alexander N, Brosch K, Flinkenflügel K, Goltermann J, Grotegerd D, Hahn T, Jamalabadi H, Jansen A, Leehr EJ, Meinert S, Nenadić I, Nitsch R, Stein F, Straube B, Teutenberg L, Thiel K, Thomas-Odenthal F, Usemann P, Winter A, Dannlowski U, Kircher T, Walther S. The neural signature of psychomotor disturbance in depression. Mol Psychiatry 2024; 29:317-326. [PMID: 38036604 PMCID: PMC11116107 DOI: 10.1038/s41380-023-02327-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Graduate School of Health Science, University of Bern, Bern, Switzerland.
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Northwestern University, Institute for Innovations in Developmental Sciences, Evanston/Chicago, IL, USA
- Northwestern University, Institute for Policy Research, Evanston, IL, USA
- Northwestern University, Medical Social Sciences, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brain imaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Robert Nitsch
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Chen X, Chu Q, Meng Q, Xu P, Zhang S. Alterations in white matter fiber tracts and their correlation with flying cadet behavior. Cereb Cortex 2024; 34:bhad548. [PMID: 38236724 DOI: 10.1093/cercor/bhad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
An increasing number of studies have shown that flight training alters the human brain structure; however, most studies have focused on gray matter, and the exploration of white matter structure has been largely neglected. This study aimed to investigate the changes in white matter structure induced by flight training and estimate the correlation between such changes and psychomotor and flight performance. Diffusion tensor imaging data were obtained from 25 flying cadets and 24 general college students. Data were collected in 2019 and 2022 and analyzed using automated fiber quantification. This study found no significant changes in the flight group in 2019. However, in 2022, the flight group exhibited significant alterations in the diffusion tensor imaging of the right anterior thalamic radiation, left cingulum cingulate, bilateral superior longitudinal fasciculus, and left arcuate fasciculus. These changes occurred within local nodes of the fiber tracts. In addition, we found that changes in fiber tracts in the 2022 flight group were correlated with the reaction time of the psychomotor test task and flight duration. These findings may help improve flight training programs and provide new ideas for the selection of excellent pilots.
Collapse
Affiliation(s)
- Xi Chen
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qi Chu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qingbin Meng
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Peiran Xu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Shicong Zhang
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| |
Collapse
|
7
|
Xia Y, Hua L, Dai Z, Han Y, Du Y, Zhao S, Zhou H, Wang X, Yan R, Wang X, Zou H, Sun H, Huang Y, Yao Z, Lu Q. Attenuated post-movement beta rebound reflects psychomotor alterations in major depressive disorder during a simple visuomotor task: a MEG study. BMC Psychiatry 2023; 23:395. [PMID: 37270511 DOI: 10.1186/s12888-023-04844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Psychomotor alterations are a common symptom in patients with major depressive disorder (MDD). The primary motor cortex (M1) plays a vital role in the mechanism of psychomotor alterations. Post-movement beta rebound (PMBR) in the sensorimotor cortex is abnormal in patients with motor abnormalities. However, the changes in M1 beta rebound in patients with MDD remain unclear. This study aimed to primarily explore the relationship between psychomotor alterations and PMBR in MDD. METHODS One hundred thirty-two subjects were enrolled in the study, comprising 65 healthy controls (HCs) and 67 MDD patients. All participants performed a simple right-hand visuomotor task during MEG scanning. PMBR was measured in the left M1 at the source reconstruction level with the time-frequency analysis method. Retardation factor scores and neurocognitive test performance, including the Digit Symbol Substitution Test (DSST), the Making Test Part A (TMT-A), and the Verbal Fluency Test (VFT), were used to measure psychomotor functions. Pearson correlation analyses were used to assess relationships between PMBR and psychomotor alterations in MDD. RESULTS The MDD group showed worse neurocognitive performance than the HC group in all three neurocognitive tests. The PMBR was diminished in patients with MDD compared to HCs. In a group of MDD patients, the reduced PMBR was negatively correlated with retardation factor scores. Further, there was a positive correlation between the PMBR and DSST scores. PMBR is negatively associated with the TMT-A scores. CONCLUSION Our findings suggested that the attenuated PMBR in M1 could illustrate the psychomotor disturbance in MDD, possibly contributing to clinical psychomotor symptoms and deficits of cognitive functions.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Yinglin Han
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Xumiao Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - HaoWen Zou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hao Sun
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - YingHong Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
8
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Letkiewicz AM, Cochran AL, Mittal VA, Walther S, Shankman SA. Reward-based reinforcement learning is altered among individuals with a history of major depressive disorder and psychomotor retardation symptoms. J Psychiatr Res 2022; 152:175-181. [PMID: 35738160 PMCID: PMC10185002 DOI: 10.1016/j.jpsychires.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Reward-based reinforcement learning impairments are common in major depressive disorder, but it is unclear which aspects of reward-based reinforcement learning are disrupted in remitted major depression (rMDD). Given that the neurobiological substrates that implement reward-based RL are also strongly implicated in psychomotor retardation (PmR), the present study sought to test whether reward-based reinforcement learning is altered in rMDD individuals with a history of PmR. Three groups of individuals (1) rMDD with past PmR (PmR+, N = 34), (2) rMDD without past PmR (PmR-, N = 44), and (3) healthy controls (N = 90) completed a reward-based reinforcement learning task. Computational modeling was applied to test for group differences in model-derived parameters - specifically, learning rates and reward sensitivity. Compared to controls, rMDD PmR + exhibited lower learning rates, but not reduced reward sensitivity. By contrast, rMDD PmR- did not significantly differ from controls on either of the model-derived parameters. Follow-up analyses indicated that the results were not due to current psychopathology symptoms. Results indicate that a history of PmR predicts altered reward-based reinforcement learning in rMDD. Abnormal reward-related reinforcement learning may reflect a scar of past depressive episodes that contained psychomotor symptoms, or a trait-like deficit that preceded these episodes.
Collapse
Affiliation(s)
- Allison M Letkiewicz
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA.
| | - Amy L Cochran
- Department of Mathematics, University of Wisconsin, Madison, WI, USA; Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Wüthrich F, Nabb CB, Mittal VA, Shankman SA, Walther S. Actigraphically measured psychomotor slowing in depression: systematic review and meta-analysis. Psychol Med 2022; 52:1208-1221. [PMID: 35550677 PMCID: PMC9875557 DOI: 10.1017/s0033291722000903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Psychomotor slowing is a key feature of depressive disorders. Despite its great clinical importance, the pathophysiology and prevalence across different diagnoses and mood states are still poorly understood. Actigraphy allows unbiased, objective, and naturalistic assessment of physical activity as a marker of psychomotor slowing. Yet, the true effect-sizes remain unclear as recent, large systematic reviews are missing. We conducted a novel meta-analysis on actigraphically measured slowing in depression with strict inclusion and exclusion criteria for diagnosis ascertainment and sample duplications. Medline/PubMed and Web-of-Science were searched with terms combining mood-keywords and actigraphy-keywords until September 2021. Original research measuring actigraphy for ⩾24 h in at least two groups of depressed, remitted, or healthy participants and applying operationalized diagnosis was included. Studies in somatically ill patients, N < 10 participants/group, and studies using consumer-devices were excluded. Activity-levels between groups were compared using random-effects models with standardized-mean-differences and several moderators were examined. In total, 34 studies (n = 1804 patients) were included. Patients had lower activity than controls [standardized mean difference (s.m.d.) = -0.78, 95% confidence interval (CI) -0.99 to -0.57]. Compared to controls, patients with unipolar and bipolar disorder had lower activity than controls whether in depressed (unipolar: s.m.d. = -0.82, 95% CI -1.07 to -0.56; bipolar: s.m.d. = -0.94, 95% CI -1.41 to -0.46), or remitted/euthymic mood (unipolar: s.m.d. = -0.28, 95% CI -0.56 to 0.0; bipolar: s.m.d. = -0.92, 95% CI -1.36 to -0.47). None of the examined moderators had any significant effect. To date, this is the largest meta-analysis on actigraphically measured slowing in mood disorders. They are associated with lower activity, even in the remitted/euthymic mood-state. Studying objective motor behavior via actigraphy holds promise for informing screening and staging of affective disorders.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carver B Nabb
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
12
|
Damme KS, Park JS, Vargas T, Walther S, Shankman SA, Mittal VA. Motor abnormalities, depression risk, and clinical course in adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:61-69. [PMID: 35419552 PMCID: PMC9000199 DOI: 10.1016/j.bpsgos.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/02/2023] Open
Abstract
Background Motor abnormalities, such as psychomotor agitation and retardation, are widely recognized as core features of depression. However, it is not currently known if motor abnormalities connote risk for depression. Methods Using data from the Adolescent Brain Cognitive Development (ABCD) Study, a nationally representative sample of youth (n=10,835, 9-11 years old), the present paper examines whether motor abnormalities are associated with (a) depression symptoms in early adolescence, (b) familial risk for depression (familial risk loading), and (c) future depression symptoms. Motor abnormalities measures included traditional (DSM) motor signs such as psychomotor agitation and retardation as well as other motor domains such as developmental motor delays and dyscoordination. Results Traditional motor abnormalities were less prevalent (agitation=3.2%, retardation=0.3%) than non-traditional domains (delays=13.79%, coordination=35.5%) among adolescents. Motor dysfunction was associated with depression symptoms (Cohen's ds=0.02 to 0.12). Familial risk for depression was related to motor abnormalities (Cohen's ds=0.08 to 0.27), with the exception of motor retardation. Family vulnerability varied in sensitivity to depression risk (e.g., retardation: .53%; dyscoordination: 32.05%). Baseline endorsement of motor abnormalities predicted future depression symptoms at one-year follow-up. Conclusions These findings suggest that motor signs reflect a novel, promising future direction for examining vulnerability to depression risk in early adolescence.
Collapse
Affiliation(s)
- Katherine S.F. Damme
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
| | - Jadyn S. Park
- Department of Psychology, Northwestern University, Evanston, Illinois
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Stewart A. Shankman
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
- Medical Social Sciences, Northwestern University, Chicago, Illinois
- Institute for Policy Research, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Okon M, Blum B, Nathaniel TI. Risk factors and ambulatory outcome in ischemic stroke patients with pre-stroke depression. JOURNAL OF VASCULAR NURSING 2021; 39:91-99. [PMID: 34865727 DOI: 10.1016/j.jvn.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE It is well known that post-stroke depression might be a negative factor for stroke recovery, however there is limited evidence to establish the link between pre-stroke depression and stroke outcome such motor recovery. The objective is to determine clinical risk factors in ischemic stroke patients with pre-stroke depression that are associated functional ambulatory outcome. METHODS Data from acute ischemic patients from a regional stroke registry were collected for consecutive recombinant tissue plasminogen activator(rtPA)-treated acute ischemic stroke patients between January 2010 and June 2016. Logistic regression model was used to predict risk factors that served as predictive variables, while the increase or reduce odds of improvement in ambulatory outcome was considered as the primary outcome. Multicollinearity and possible interactions among the independent variables were analyzed using the variance inflation factor. RESULTS A total of 1446 patients were eligible for recombinant tissue plasminogen activator (rtPA) and 596 of these patients received rtPA. Of the 596 ischemic stroke patients, 286 patients presented with recent pre-stroke depression, 310 had no pre-stroke depression. Carotid artery stenosis (OR = 11.577, 95% CI, 1.281-104.636, P = 0.029) and peripheral vascular disease (OR = 18.040, 95% CI, 2.956-110.086, P = 0.002) were more likely to be associated with increase odds of improvement in ambulation in patients with no pre-stroke depression treated with rtPA, while antihypertensive medications (OR = 0.192, 95% CI, 0.035-1.067, P = 0.050),previous TIA (OR = 0.177, 95% CI, 0.038-0.818, P = 0.027), and congestive heart failure (OR = 0. 0.160, 95% CI, 0.030-0.846, P = 0.031) were associated with reduced odds of improvement in ambulation. In addition, carotid artery stenosis (OR = 0.078, 95% CI, 0.10-0.614, P = 0.015, congestive heart failure (OR = 0.217, 95% CI, 0.318-0.402, P = 0.030), previous TIA (OR = 0.444, 95% CI, 0.517-0.971, P = 0.012), higher NIHSS scores ((OR = 0.887, 95% CI, 0.830-0.948, P < 0.001), and antihypertensive medications (OR = 0.810, 95% CI, 0.401-0.529, P = 0.019) were associated with the reduced odd of improvement in ambulation in an ischemic stroke population with pre-stroke depression treated with rtPA. CONCLUSION Our findings indicate that more risk factors were associated with the decreased odds of an improvement in ambulation following thrombolytic therapy in an ischemic stroke population with pre-stroke depression when compared with those without pre-stroke depression. This finding maybe helpful in the development of management strategies to increase the use of thrombolytic therapy for pre-stroke depressed ischemic stroke to increased their eligibility for rtPA.
Collapse
Affiliation(s)
- Marvin Okon
- Department of Public Health, Clemson University, Clemson, SC 29631
| | - Brice Blum
- University of South Carolina School of Medicine, School of Medicine-Greenville, Greenville, SC 29605, USA
| | - Thomas I Nathaniel
- University of South Carolina School of Medicine, School of Medicine-Greenville, Greenville, SC 29605, USA.
| |
Collapse
|
14
|
Goghari VM, Kusi M, Shakeel MK, Beasley C, David S, Leemans A, De Luca A, Emsell L. Diffusion kurtosis imaging of white matter in bipolar disorder. Psychiatry Res Neuroimaging 2021; 317:111341. [PMID: 34411810 DOI: 10.1016/j.pscychresns.2021.111341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
White matter pathology likely contributes to the pathogenesis of bipolar disorder (BD). Most studies of white matter in BD have used diffusion tensor imaging (DTI), but the advent of more advanced multi-shell diffusion MRI imaging offers the possibility to investigate other aspects of white matter microstructure. Diffusion kurtosis imaging (DKI) extends the DTI model and provides additional measures related to diffusion restriction. Here, we investigated white matter in BD by applying whole-brain voxel-based analysis (VBA) and a network-based connectivity approach using constrained spherical deconvolution tractography to assess differences in DKI and DTI metrics between BD (n = 25) and controls (n = 24). The VBA showed lower mean kurtosis in the corona radiata and posterior association fibers in BD. Regional differences in connectivity were indicated by lower mean kurtosis and kurtosis anisotropy in streamlines traversing the temporal and occipital lobes, and lower mean axial kurtosis in the right cerebellar, thalamo-subcortical pathways in BD. Significant differences were not seen in DTI metrics following FDR-correction. The DKI findings indicate altered connectivity across cortical, subcortical and cerebellar areas in BD. DKI is sensitive to different microstructural properties and is a useful complementary technique to DTI to more fully investigate white matter in BD.
Collapse
Affiliation(s)
- Vina M Goghari
- Department of Psychology & Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Mavis Kusi
- Department of Psychology & Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed K Shakeel
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Clare Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Szabolcs David
- Image Sciences Institute, UMC Utrecht, Utrecht, the Netherlands; Department of Radiation Oncology, UMC Utrecht, Utrecht, the Netherlands
| | | | - Alberto De Luca
- Image Sciences Institute, UMC Utrecht, Utrecht, the Netherlands; Neurology Department, Brain Center, UMC Utrecht, Utrecht, the Netherlands
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center, KU Leuven, Leuven, Belgium; Department of Imaging and Pathology and Department of Neurosciences, Translational MRI and Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Kliamovich D, Jones SA, Chiapuzio AM, Baker FC, Clark DB, Nagel BJ. Sex-specific patterns of white matter microstructure are associated with emerging depression during adolescence. Psychiatry Res Neuroimaging 2021; 315:111324. [PMID: 34273656 PMCID: PMC8387429 DOI: 10.1016/j.pscychresns.2021.111324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Prior research has demonstrated associations between adolescent depression and alterations in the white matter microstructure of fiber tracts implicated in emotion regulation. Using diffusion tensor imaging, this study explored premorbid, sex-specific white matter microstructural features that related to future emergence of major depressive disorder (MDD) during adolescence and young adulthood. Adolescents from the National Consortium on Alcohol and Neurodevelopment in Adolescence study, who were 12-21 years old at study entry and had not experienced major depression as of the baseline assessment, were selected for inclusion (N = 462, n = 223 female adolescents). Over five years of annual follow-up, 63 participants developed a diagnosis of MDD, as determined by the Computerized Semi-Structured Assessment for the Genetics of Alcoholism (n = 39 female adolescents). A whole-brain multivariate modeling approach was used to examine the relationship between fractional anisotropy (FA) at baseline and emergence into MDD, as a function of sex, controlling for age at baseline. Among female adolescents, those who developed MDD had significantly lower baseline FA in a portion of left precentral gyrus white matter, while male adolescents exhibited the opposite pattern. These results may serve as indirect microstructural markers of risk and targets for the prevention of depression during adolescence.
Collapse
Affiliation(s)
- Dakota Kliamovich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | | | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
16
|
Dynamic functional network connectivity associated with post-traumatic stress symptoms in COVID-19 survivors. Neurobiol Stress 2021; 15:100377. [PMID: 34377750 PMCID: PMC8339567 DOI: 10.1016/j.ynstr.2021.100377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence shows that Coronavirus Disease 19 (COVID-19) survivors may encounter prolonged mental issues, especially post-traumatic stress symptoms (PTSS). Despite manifesting a plethora of behavioral or mental issues in COVID-19 survivors, previous studies illustrated that static brain functional networks of these survivors remain intact. The insignificant results could be due to the conventional statistic network analysis was unable to reveal information that can vary considerably in different temporal scales. In contrast, time-varying characteristics of the dynamic functional networks may help reveal important brain abnormalities in COVID-19 survivors. To test this hypothesis, we assessed PTSS and collected functional magnetic resonance imaging (fMRI) with COVID-19 survivors discharged from hospitals and matched controls. Results showed that COVID-19 survivors self-reported a significantly higher PTSS than controls. Tapping into the moment-to-moment variations of the fMRI data, we captured the dynamic functional network connectivity (dFNC) states, and three discriminative reoccurring brain dFNC states were identified. First of all, COVID-19 survivors showed an increased occurrence of a dFNC state with heterogeneous patterns between sensorimotor and visual networks. More importantly, the occurrence rate of this state was significantly correlated with the severity of PTSS. Finally, COVID-19 survivors demonstrated decreased topological organizations in this dFNC state than controls, including the node strength, degree, and local efficiency of the supplementary motor area. To conclude, our findings revealed the altered temporal characteristics of functional networks and their associations with PTSS due to COVID- 19. The current results highlight the importance of evaluating dynamic functional network changes with COVID-19 survivors.
Collapse
|
17
|
The causal interaction in human basal ganglia. Sci Rep 2021; 11:12989. [PMID: 34155321 PMCID: PMC8217174 DOI: 10.1038/s41598-021-92490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
The experimental study of the human brain has important restrictions, particularly in the case of basal ganglia, subcortical centers whose activity can be recorded with fMRI methods but cannot be directly modified. Similar restrictions occur in other complex systems such as those studied by Earth system science. The present work studied the cause/effect relationships between human basal ganglia with recently introduced methods to study climate dynamics. Data showed an exhaustive (identifying basal ganglia interactions regardless of their linear, non-linear or complex nature) and selective (avoiding spurious relationships) view of basal ganglia activity, showing a fast functional reconfiguration of their main centers during the execution of voluntary motor tasks. The methodology used here offers a novel view of the human basal ganglia which expands the perspective provided by the classical basal ganglia model and may help to understand BG activity under normal and pathological conditions.
Collapse
|
18
|
Hadoush H, Alqudah A, Banihani SA, Al-Jarrah M, Amro A, Aldajah S. Melatonin serum level, sleep functions, and depression level after bilateral anodal transcranial direct current stimulation in patients with Parkinson's disease: a feasibility study. Sleep Sci 2021; 14:25-30. [PMID: 34917270 PMCID: PMC8663735 DOI: 10.5935/1984-0063.20200083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Parkinson's disease (PD) is associated with non-motor complications such as sleep disturbance and depression. Transcranial direct current stimulation (tDCS) showed therapeutic effects on the motor dysfunctions. However, the potential effects of tDCS therapy on melatonin hormone, sleep dysfunctions, and depression in patients with PD still unclear. This feasibility study aimed to identify any potential changes in melatonin serum level, sleep functions and depression after the bilateral anodal tDCS in patients with PD. Material and Methods Tensessions of bilateral anodal tDCS stimulation applied over left and right prefrontal and motor areas were given to twenty-five patients with PD. Melatonin serum level, Pittsburgh sleep quality index, and geriatric depression scale examined before and after tDCS stimulation. Results After bilateral anodal tDCS, there was a significant reduction in melatonin serum level, improvement in depression, improvements in overall sleep quality, and sleep latency. Correlations test showed significant associations between melatonin serum level reduction and changes in subjective sleep quality, and sleep duration, as well as between improvements in depression and overall sleep quality, sleep latency, and sleep disturbance. Conclusion Bilateral anodal tDCS therapy was a feasible and safe tool that showed potential therapeutic effects on melatonin serum level, sleep quality, and depression level in patients with PD. Although the further large scale and randomized-control trial studies are crucially needed, there is still a need for such a feasibility study to be established before such trials can be implemented as is recommended in the new medical research council guidelines.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Jordan University of Science and Technology, Rehabilitation Sciences -Irbid - Irbid - Jordan
| | - Ansam Alqudah
- Jordan University of Science and Technology, Rehabilitation Sciences -Irbid - Irbid - Jordan
| | - Saleem A Banihani
- Jordan University of Science and Technology, Medical Laboratory Sciences - Irbid - Irbid - Jordan
| | - Muhammed Al-Jarrah
- Jordan University of Science and Technology, Rehabilitation Sciences -Irbid - Irbid - Jordan
| | - Akram Amro
- Al-Quds University, Physiotherapy - Jerusalem - Jerusalem - Palestinian Territories
| | - Salameh Aldajah
- Isra University, Rehabilitation Sciences -Amman - Amman - Jordan
| |
Collapse
|
19
|
Altmann U, Knitter LA, Meier J, Brümmel M, Strauß B. Nonverbale Korrelate depressiver Störungen. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE 2020. [DOI: 10.1026/1616-3443/a000602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zusammenfassung. Theoretischer Hintergrund: Psychische Störungen gehen mit Veränderungen des nonverbalen Verhaltens einher. Fragestellung: Die Pilotstudie untersuchte, inwiefern Charakteristika von Mimik, Körper- und Kopfbewegungen als diagnostische Kriterien depressiver Störungen geeignet sind und testete dabei computerbasierte Messungen des nonverbalen Verhaltens. Methode: Die Stichprobe umfasste N = 15 Patient_innen mit depressiver Störung und N = 15 gesunde Kontrollpersonen. Mit Fragebögen wurden Depressivität (PHQ-9), Ängstlichkeit (GAD-7) und Schmerzbeeinträchtigung (PDI) erfasst. Strukturierte Anamneseinterviews zu körperlichen Beschwerden wurden mit Video aufgezeichnet. Mimik und Bewegungen wurden automatisch mit OpenFace und Motion Energy Analysis kodiert. Ergebnisse: Hypothesenkonform lächelten depressive Personen seltener (Hedges g = 1.56) und bewegten ihren Kopf weniger ( g = 0.79) als Gesunde. Expressionen von Trauer sowie Häufigkeit, Dauer und Geschwindigkeit von Körperbewegungen waren nicht für die Gruppenzugehörigkeit prädiktiv. Schlussfolgerungen: Es lässt sich schlussfolgern, dass computerbasierte Messungen des nonverbalen Verhaltens zur Untersuchung nonverbaler Korrelate depressiver Störungen geeignet sind und dass psychomotorische Hemmung und emotionale Eintrübung nicht bei allen nonverbalen Charakteristika zu Tage treten.
Collapse
Affiliation(s)
- Uwe Altmann
- Institut für Psychosoziale Medizin, Psychotherapie und Psychoonkologie, Universitätsklinikum Jena
| | - Lukas A. Knitter
- Institut für Psychologie, Lehrstuhl für psychologische Methodenlehre, Friedrich-Schiller-Universität Jena
| | - Julija Meier
- Institut für Psychosoziale Medizin, Psychotherapie und Psychoonkologie, Universitätsklinikum Jena
| | - Maria Brümmel
- Institut für Psychosoziale Medizin, Psychotherapie und Psychoonkologie, Universitätsklinikum Jena
| | - Bernhard Strauß
- Institut für Psychosoziale Medizin, Psychotherapie und Psychoonkologie, Universitätsklinikum Jena
| |
Collapse
|
20
|
Pang Y, Zhang H, Cui Q, Yang Q, Lu F, Chen H, He Z, Wang Y, Wang J, Chen H. Combined static and dynamic functional connectivity signatures differentiating bipolar depression from major depressive disorder. Aust N Z J Psychiatry 2020; 54:832-842. [PMID: 32456443 DOI: 10.1177/0004867420924089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Bipolar disorder in the depressive phase (BDd) may be misdiagnosed as major depressive disorder (MDD), resulting in poor treatment outcomes. To identify biomarkers distinguishing BDd from MDD is of substantial clinical significance. This study aimed to characterize specific alterations in intrinsic functional connectivity (FC) patterns in BDd and MDD by combining whole-brain static and dynamic FC. METHODS A total of 40 MDD and 38 BDd patients, and 50 age-, sex-, education-, and handedness-matched healthy controls (HCs) were included in this study. Static and dynamic FC strengths (FCSs) were analyzed using complete time-series correlations and sliding window correlations, respectively. One-way analysis of variance was performed to test group effects. The combined static and dynamic FCSs were then used to distinguish BDd from MDD and to predict clinical symptom severity. RESULTS Compared with HCs, BDd patients showed lower static FCS in the medial orbitofrontal cortex and greater static FCS in the caudate, while MDD patients exhibited greater static FCS in the medial orbitofrontal cortex. BDd patients also demonstrated greater static and dynamic FCSs in the thalamus compared with both MDD patients and HCs, while MDD patients exhibited greater dynamic FCS in the precentral gyrus compared with both BDd patients and HCs. Combined static and dynamic FCSs yielded higher accuracy than either static or dynamic FCS analysis alone, and also predicted anhedonia severity in BDd patients and negative mood severity in MDD patients. CONCLUSION Altered FC within frontal-striatal-thalamic circuits of BDd patients and within the default mode network/sensorimotor network of MDD patients accurately distinguishes between these disorders. These unique FC patterns may serve as biomarkers for differential diagnosis and provide clues to the pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huangbin Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing, China
| |
Collapse
|
21
|
Walther S, Alexaki D, Schoretsanitis G, Weiss F, Vladimirova I, Stegmayer K, Strik W, Schäppi L. Inhibitory Repetitive Transcranial Magnetic Stimulation to Treat Psychomotor Slowing: A Transdiagnostic, Mechanism-Based Randomized Double-Blind Controlled Trial. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Psychomotor slowing is frequently distressing patients with depression and schizophrenia. Increased neural activity within premotor cortices is linked to psychomotor slowing. This transdiagnostic study tested whether add-on inhibitory repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) may alleviate psychomotor slowing. Forty-five patients with severe psychomotor slowing (26 psychosis, 19 major depression) were randomized in this transdiagnostic, double-blind, parallel-group, sham-controlled trial of 15 daily sessions of add-on rTMS over 3 weeks. Treatment arms included inhibitory 1 Hz stimulation of the SMA, facilitatory intermittent theta burst stimulation (iTBS) of the SMA, facilitatory 15 Hz stimulation of the left dorsolateral prefrontal cortex (DLPFC), and sham stimulation of the occipital cortex. The primary outcome was response (>30% reduction from baseline) according to the Salpêtrière Retardation Rating Scale (SRRS). Secondary outcomes were course of SRRS and further symptom rating scales. Last-observation carried forward method was applied to all subjects with baseline data. Response rates differed between protocols: 82% with inhibitory 1 Hz rTMS of the SMA, 0% with facilitatory iTBS of the SMA, 30% with sham, and 33% with 15 Hz DLPFC rTMS (χ 2 = 16.6, P < .001). Dropouts were similarly distributed across protocols. Response rates were similar in the completer analysis. This transdiagnostic trial of rTMS demonstrates that inhibitory SMA stimulation may ameliorate psychomotor slowing in severely ill patients. It further provides proof-of-concept that motor inhibition is linked to increased neural activity in the SMA because the inhibitory protocol performed best in reducing symptoms.
Trial registration: NCT03275766 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Georgios Schoretsanitis
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY
| | - Florian Weiss
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Irena Vladimirova
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
23
|
Abstract
Major depressive disorder (MDD) is a serious public health problem that has, at best, modest treatment response—potentially due to its heterogeneous clinical presentation. One way to parse the heterogeneity is to investigate the role of particular features of MDD, an endeavor that can also help identify novel and focal targets for treatment and prevention efforts. Our R01 focuses on the feature of psychomotor disturbance (e.g., psychomotor agitation (PmA) and retardation (PmR)), a particularly pernicious feature of MDD, that has not been examined extensively in MDD. Aim 1 is comparing three groups of individuals—those with current MDD (n = 100), remitted MDD (n = 100), and controls (n = 50)—on multiple measures of PmR and PmA (assessed both in the lab and in the subjects’ natural environment). Aim 2 is examining the structural (diffusion MRI) and functional (resting state fMRI) connectivity of motor circuitry of the three groups as well as the relation between motor circuitry and the proposed indicators of PmR and PmA. Aim 3 is following up with subjects three times over 18 months to evaluate whether motor symptoms change in tandem with overall depressive symptoms and functioning over time and/or whether baseline PmR/PmA predicts course of depression and functioning. Aim 3 is particularly clinically significant. Finding that motor functioning and overall depression severity co-vary over time, or that motor variables predict subsequent change in overall depression severity, would support the potential clinical utility of these novel, reliable, and easily administered motor assessments.
Collapse
|
24
|
Gryglewski G, Seiger R, Baldinger-Melich P, Unterholzner J, Spurny B, Vanicek T, Hahn A, Kasper S, Frey R, Lanzenberger R. Changes in White Matter Microstructure After Electroconvulsive Therapy for Treatment-Resistant Depression. Int J Neuropsychopharmacol 2020; 23:20-25. [PMID: 31740958 PMCID: PMC7064047 DOI: 10.1093/ijnp/pyz059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Treatment-resistant depression is among the most debilitating conditions in psychiatry. Recent studies have associated alterations in white matter microstructure measured with magnetic resonance imaging with poor antidepressant response. Therefore, the extent to which electroconvulsive therapy, the most effective therapeutic option for treatment-resistant depression, affects white matter microstructure warrants investigation. METHODS A total 13 patients suffering from severe unipolar treatment-resistant depression underwent magnetic resonance imaging with a diffusion tensor imaging sequence before and after undergoing a series of right unilateral electroconvulsive therapy. Diffusivity metrics were compared voxel-wise using tract-based spatial statistics and repeated-measures ANOVA. RESULTS A total 12 patients responded to electroconvulsive therapy and 9 were classified as remitters. An increase in axial diffusivity was observed in the posterior limb of the internal capsule of the right hemisphere (PFWE ≤ .05). The increase in this area was higher in the right compared with the left hemisphere (P < .05). No correlation of this effect with treatment response could be found. CONCLUSIONS The strong lateralization of effects to the hemisphere of electrical stimulation suggests an effect of electroconvulsive therapy on diffusivity metrics which is dependent of electrode placement. Investigation in controlled studies is necessary to reveal to what extent the effects of electroconvulsive therapy on white matter microstructure are related to clinical outcomes and electrode placement.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Benjamin Spurny
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Richard Frey
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Aberrant interhemispheric functional connectivity in first-episode, drug-naïve major depressive disorder. Brain Imaging Behav 2020; 13:1302-1310. [PMID: 30145713 DOI: 10.1007/s11682-018-9917-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Many studies have indicated that depression is associated with impairment of the topological organization of the brain functional network, which may lead to disruption of mood and cognition in depressive patients. The abnormality of homotopic connectivity provides a basis for the clinical manifestations of depression, such as emotional and cognitive disorders. Several studies have investigated the abnormal imbalance of homotopic regions between the hemispheres in depressive patients. However, the reported findings are inconsistent. Additionally, the published studies have focused on only the grey matter when investigating functional connectivity abnormalities of the bilateral cerebral hemispheres in major depressive disorder (MDD). The aim of this study is to investigate functional connectivity abnormalities of the bilateral cerebral hemispheres in patients with first-episode, drug-naïve MDD using a voxel-mirrored homotopic connectivity (VMHC) method. Based on DSM-IV diagnostic criteria, 23 first-episode, drug-naïve MDD patients were recruited, together with 20 gender- and age-matched healthy normal controls. A Philips Achieva 3.0 T MRI scanner was used to acquire brain functional images at resting state as well as high-resolution structural images. The functional images were preprocessed by using Data Processing Assistant for Resting-State Functional MR Imaging toolkit and SPM8.VMHC between the bilateral hemispheres was computed and compared between the MDD and control groups. The correlation between the VMHC values of the abnormal homotopy function areas and the Hamilton Depression Rating Scale (HAMD) was evaluated in the MDD patients. Compared with the control group, the MDD patients showed significantly decreased VMHC values in the bilateral brain regions including the insular, putamen, and frontal white matter. The MDD patients did not exhibit increased VMHC values in any brain regions compared with the normal controls. In addition, a negative correlation was observed between the VMHC value in the frontal lobe white-matter and the HAMD in the MDD patients. Abnormalities in brain homotopic functional connectivity observed in this study may indicate abnormal neural circuits related to aberrant cognition and emotional processing in MDD. Although the physiological significance underlaying abnormal VMHC in white matter in the frontal lobe needs further research, our study new angle to investigate the role of white-matter abnormalities in MDD as well as other psychiatric disorders.
Collapse
|
26
|
Wong WW, Fang Y, Chu WCW, Shi L, Tong KY. What Kind of Brain Structural Connectivity Remodeling Can Relate to Residual Motor Function After Stroke? Front Neurol 2019; 10:1111. [PMID: 31708857 PMCID: PMC6819511 DOI: 10.3389/fneur.2019.01111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/04/2019] [Indexed: 01/19/2023] Open
Abstract
Recent findings showed that brain networks far away from a lesion could be altered to adapt changes after stroke. This study examined 13 chronic stroke patients with moderate to severe motor impairment and 13 age-comparable healthy controls using diffusion tensor imaging to investigate the stroke impact on the reorganization of structural connectivity. Each subject's brain was segmented into 68 cortical and 12 subcortical regions of interest (ROIs), and connectivity measures including fractional anisotropy (FA), regional FA (rFA), connection weight (CW) and connection strength (CS) were adopted to compare two subject groups. Correlations between these measures and clinical scores of motor functions (Action Research Arm Test and Fugl-Meyer Assessment for upper extremity) were done. Network-based statistic (NBS) was conducted to identify the connectivity differences between patients and controls from the perspective of whole-brain network. The results showed that both rFAs and CSs demonstrated significant differences between patients and controls in the ipsilesional sensory-motor areas and subcortical network, and bilateral attention and default mode networks. Significant positive correlations were found between the paretic motor functions and the rFAs/CSs of the contralesional medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and remained significant even after removing the effect of the ipsilesional corticospinal tract. Additionally, all the connections linked with the contralesional mOFC and rACC showed significantly higher FA/CW values in the stroke patients compared to the healthy controls from the NBS results. These findings indicated that these contralesional prefrontal areas exhibited stronger connections after stroke and strongly related to the residual motor function of the stroke patients.
Collapse
Affiliation(s)
- Wan-Wa Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuqi Fang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
27
|
Psychomotor retardation in depression: A critical measure of the forced swim test. Behav Brain Res 2019; 372:112047. [DOI: 10.1016/j.bbr.2019.112047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
|
28
|
Tazawa Y, Wada M, Mitsukura Y, Takamiya A, Kitazawa M, Yoshimura M, Mimura M, Kishimoto T. Actigraphy for evaluation of mood disorders: A systematic review and meta-analysis. J Affect Disord 2019; 253:257-269. [PMID: 31060012 DOI: 10.1016/j.jad.2019.04.087] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Actigraphy has enabled consecutive observation of individual health conditions such as sleep or daily activity. This study aimed to examine the usefulness of actigraphy in evaluating depressive and/or bipolar disorder symptoms. METHOD A systematic review and meta-analysis was conducted. We selected studies that used actigraphy to compare either patients vs. healthy controls, or pre- vs. post-treatment data from the same patient group. Common actigraphy measurements, namely daily activity and sleep-related data, were extracted and synthesized. RESULTS Thirty-eight studies (n = 3,758) were included in the analysis. Compared with healthy controls, depressive patients were less active (standardized mean difference; SMD=1.27, 95%CI=[0.97, 1.57], P<0.001) and had longer wake after sleep onset (SMD= - 0.729, 95%CI=[- 1.20, - 0.25], p = 0.003). Total sleep time (SMD= - 0.33, 95%CI=[- 0.55, - 0.11], P = 0.004), sleep latency (SMD= - 0.22, 95%CI=[- 0.42, - 0.02], P = 0.032), and wake after sleep onset (SMD= - 0.22, 95%CI=[- 0.39, - 0.04], P = 0.015) were longer in euthymic/remitted patients compared to healthy controls. In pre- and post-treatment comparisons, sleep latency (SMD=- 0.85, 95%CI=[- 1.53, - 0.17], P = 0.015), wake after sleep onset (SMD= - 0.65, 95%CI=[- 1.20, - 0.10], P = 0.022), and sleep efficiency (SMD=0.77, 95%CI=[0.29, 1.24], P = 0.002) showed significant improvement. LIMITATION The sample sizes for each outcome were small. The type of actigraphy devices and patients' illness severity differed across studies. It is possible that hospitalizations and medication influenced the outcomes. CONCLUSION We found significant differences between healthy controls and mood disorders patients for some actigraphy-measured modalities. Specific measurement patterns characterizing each mood disorder/status were also found. Additional actigraphy data linked to severity and/or treatment could enhance the clinical utility of actigraphy.
Collapse
Affiliation(s)
- Yuuki Tazawa
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Masataka Wada
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Yasue Mitsukura
- Keio University, Faculty of Science and Technology, Kanagawa, Japan
| | - Akihiro Takamiya
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Momoko Kitazawa
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Michitaka Yoshimura
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Masaru Mimura
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Taishiro Kishimoto
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan.
| |
Collapse
|
29
|
Susceptibility or Resilience to Maltreatment Can Be Explained by Specific Differences in Brain Network Architecture. Biol Psychiatry 2019; 85:690-702. [PMID: 30528381 PMCID: PMC6440838 DOI: 10.1016/j.biopsych.2018.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Childhood maltreatment is a major risk factor for psychopathology. However, some maltreated individuals appear remarkably resilient to the psychiatric effects while manifesting the same array of brain abnormalities as maltreated individuals with psychopathology. Hence, a critical aim is to identify compensatory brain alterations that enable resilient individuals to maintain mental well-being despite alterations in stress-susceptible regions. METHODS Network models were constructed from diffusion tensor imaging and tractography in physically healthy unmedicated 18- to 25-year-old participants (N = 342, n = 192 maltreated) to develop network-based explanatory models. RESULTS First, we determined that susceptible and resilient individuals had the same alterations in global fiber stream network architecture using two different definitions of resilience: 1) no lifetime history of Axis I or II disorders, and 2) no clinically significant symptoms of anxiety, depression, anger-hostility, or somatization. Second, we confirmed an a priori hypothesis that right amygdala nodal efficiency was lower in asymptomatic resilient than in susceptible participants or control subjects. Third, we identified eight other nodes with reduced nodal efficiency in resilient individuals and showed that nodal efficiency moderated the relationship between maltreatment and psychopathology. Fourth, we found that models based on global network architecture and nodal efficiency could delineate group membership (control, susceptible, resilient) with 75%, 82%, and 80% cross-validated accuracy. CONCLUSIONS Together these findings suggest that sparse fiber networks with increased small-worldness following maltreatment render individuals vulnerable to psychopathology if abnormalities occur in specific nodes, but that decreased ability of certain nodes to propagate information throughout the network mitigates the effects and leads to resilience.
Collapse
|
30
|
White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study. NEUROIMAGE-CLINICAL 2019; 22:101710. [PMID: 30849644 PMCID: PMC6406626 DOI: 10.1016/j.nicl.2019.101710] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
Abstract
Mood depressive disorder is one of the most disabling chronic diseases with a high rate of everyday life disability that affects 350 million people around the world. Recent advances in neuroimaging have reported widespread structural abnormalities, suggesting a dysfunctional frontal-limbic circuit involved in the pathophysiological mechanisms of depression. However, a variety of different white matter regions has been implicated and is sought to suffer from lack of reproducibility of such categorical-based biomarkers. These inconsistent results might be attributed to various factors: actual categorical definition of depression as well as clinical phenotype variability. In this study, we 1/ examined WM changes in a large cohort (114 patients) compared to a healthy control group and 2/ sought to identify specific WM alterations in relation to specific depressive phenotypes such as anhedonia (i.e. lack of pleasure), anxiety and psychomotor retardation –three core symptoms involved in depression. Consistent with previous studies, reduced white matter was observed in the genu of the corpus callosum extending to the inferior fasciculus and posterior thalamic radiation, confirming a frontal-limbic circuit abnormality. Our analysis also reported other patterns of increased fractional anisotropy and axial diffusivity as well as decreased apparent diffusion coefficient and radial diffusivity in the splenium of the corpus callosum and posterior limb of the internal capsule. Moreover, a positive correlation between FA and anhedonia was found in the superior longitudinal fasciculus as well as a negative correlation in the cingulum. Then, the analysis of the anxiety and diffusion metric revealed that increased anxiety was associated with greater FA values in genu and splenium of corpus callosum, anterior corona radiata and posterior thalamic radiation. Finally, the motor retardation analysis showed a correlation between increased Widlöcher depressive retardation scale scores and reduced FA in the body and genu of the corpus callosum, fornix, and superior striatum. Through this twofold approach (categorical and phenotypic), this study has underlined the need to move forward to a symptom-based research area of biomarkers, which help to understand the pathophysiology of mood depressive disorders and to stratify precise phenotypes of depression with targeted therapeutic strategies. Mood depressive disorder is one of the most disabling chronic disease. Past studies of diffusion analysis had found inconsistent results. We analyzed white matter integrity in a large cohort of depressed patients. We conducted both categorical and dimensional approaches. In the future, these biomarkers could help to develop new therapeutic strategies.
Collapse
|
31
|
Walther S, Bernard JA, Mittal VA, Shankman SA. The utility of an RDoC motor domain to understand psychomotor symptoms in depression. Psychol Med 2019; 49:212-216. [PMID: 30322416 DOI: 10.1017/s0033291718003033] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the clinical impact of motor symptoms such as agitation or retardation on the course of depression, these symptoms are poorly understood. Novel developments in the field of instrumentation and mobile devices allow for dimensional and continuous recording of motor behavior in various settings, particularly outside the laboratory. Likewise, the use of novel assessments enables to combine multimodal neuroimaging with behavioral measures in order to investigate the neural correlates of motor dysfunction in depression. The research domain criteria (RDoC) framework will soon include a motor domain that will provide a framework for studying motor dysfunction in mood disorders. In addition, new studies within this framework will allow investigators to study motor symptoms across different stages of depression as well as other psychiatric diagnoses. Finally, the introduction of the RDoC motor domain will help test how motor symptoms integrate with the original five RDoC domains (negative valence, positive valence, cognitive, social processes, and arousal/regulation).
Collapse
Affiliation(s)
- S Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern,Bern,Switzerland
| | - J A Bernard
- Department of Psychological and Brain Sciences,Texas A&M Institute for Neuroscience, Texas A & M University,College Station, TX,USA
| | - V A Mittal
- Department of Psychology, Department of Psychiatry,Northwestern University,Evanston, IL,USA
| | - S A Shankman
- Department of Psychiatry,Northwestern University,Evanston, IL,USA
| |
Collapse
|
32
|
Hadoush H, Al-Sharman A, Khalil H, Banihani SA, Al-Jarrah M. Sleep Quality, Depression, and Quality of Life After Bilateral Anodal Transcranial Direct Current Stimulation in Patients with Parkinson's Disease. Med Sci Monit Basic Res 2018; 24:198-205. [PMID: 30449881 PMCID: PMC6259567 DOI: 10.12659/msmbr.911411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Sleep dysfunctions impose a large burden on quality of life for patients with Parkinson’s disease (PD). Several studies on PD reported potential therapeutic effects of transcranial direct current stimulation (tDCS) on motor and non-motor functions, but not related to sleep quality. Therefore, the present study examined sleep quality, depression perception, and quality of life changes after bilateral anodal tDCS in patients with PD. Material/Methods Twenty-one patients (n=21) with PD underwent 10 sessions (20 min each, 5 per week) of bilateral anodal tDCS stimulation applied simultaneously over the left and right prefrontal and motor areas. The Pittsburgh Sleep Quality Index (PSQI) total score and sub-scores, Geriatric Depression Scale (GDS), and Health-related quality of life questionnaire (SF-36) were measured pre/post bilateral tDCS anodal stimulation. Results PSQI total score (P=0.045), sleep latency sub-score (P=0.02), and GDS total score (P=0.016) significantly decreased, and physical and mental components scores of SF-36 (P=0.018 and P=0.001, respectively) significantly increased after bilateral anodal tDCS stimulation. The GDS score decrease was directly correlated with decrease in PSQI total score (P=0.01), sleep latency sub-score (P=0.002), and sleep disturbance sub-score (P=0.003). In addition, the GDS score decrease was inversely correlated with increasing mental component score of SF-36 (P=0.001), which was directly correlated with an increase in sleep efficiency sub-score (P=0.03) and the physical component score of SF-36 (P=0.0001). Conclusions Bilateral anodal tDCS stimulation showed potential therapeutic effects in patients with PD in terms of sleep quality and depression level improvement, which together improved mental and physical quality of life in patients with PD.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology, Irbid, Jordan
| | - Alham Al-Sharman
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan Khalil
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology, Irbid, Jordan
| | - Saleem A Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
33
|
Bracht T, Steinau S, Federspiel A, Schneider C, Wiest R, Walther S. Physical activity is associated with left corticospinal tract microstructure in bipolar depression. NEUROIMAGE-CLINICAL 2018; 20:939-945. [PMID: 30308380 PMCID: PMC6178191 DOI: 10.1016/j.nicl.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system in BD during depression and its association with motor activity. We hypothesized reduced physical activity, microstructural alterations of motor tracts and different associations between activity levels and motor tract microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tractography. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and TBSS analyses did not detect significant group differences. Our results point to white matter microstructure alterations of the left CST in BD. The positive association between motor activity and white matter microstructure suggests a compensatory role of the left CST for psychomotor retardation in BD. Daily physical activity is reduced in bipolar patients with a current depressive episode (BD) The left corticospinal tract (CST) in BD shows increased fractional anisotropy (FA) Increases of FA in the left corticospinal tract in BD are related to less pronounced psychomotor retardation
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Psychiatric University Hospital Zurich, Department of Forensic Psychiatry, Zurich, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Kazemi R, Rostami R, Khomami S, Baghdadi G, Rezaei M, Hata M, Aoki Y, Ishii R, Iwase M, Fitzgerald PB. Bilateral Transcranial Magnetic Stimulation on DLPFC Changes Resting State Networks and Cognitive Function in Patients With Bipolar Depression. Front Hum Neurosci 2018; 12:356. [PMID: 30233346 PMCID: PMC6135217 DOI: 10.3389/fnhum.2018.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 01/13/2023] Open
Abstract
Introduction: Bipolar patients have abnormalities in cognitive functions and emotional processing. Two resting state networks (RSNs), the default mode network (DMN) and the sensorimotor network (SMN), play a decisive role in these two functions. Dorsolateral prefrontal cortex (DLPFC) is one of the main areas in the central executive network (CEN), which is linked to the activities of each of the two networks. Studies have found DLPFC abnormalities in both hemispheres of patients with bipolar depression. We hypothesized that the bilateral repetitive transcranial magnetic stimulation (rTMS) of DLPFC would produce changes in the activity of both the SMN and DMN as well as relevant cognitive function in patients with bipolar depression that responded to treatment. Methods: 20 patients with bipolar depression underwent 10 sessions of 1 Hz rTMS on right DLPFC with subsequent 10 Hz rTMS on left DLPFC. Changes in electroencephalography resting networks between pre and post rTMS were evaluated utilizing low-resolution electromagnetic tomography (eLORETA). Depression symptom was assessed using the Beck Depression Inventory (BDI-II) and cognitive function was assessed by Verbal Fluency Test (VFT), Rey Auditory Verbal Learning Test (RAVLT), Stroop Test, and Wisconsin Card Sorting Test (WCST). Results: Responders to rTMS showed significantly lower DMN activity at baseline and a significant decrease in SMN connectivity after treatment. Non-responders did not significantly differ from the control group at the baseline and they showed higher activity in the SMN, visual network, and visual perception network compared to control group following treatment. Bilateral rTMS resulted in significant changes in the executive functions, verbal memory, and depression symptoms. No significant changes were observed in selective attention and verbal fluency. Conclusion: Bilateral stimulation of DLPFC, as the main node of CEN, results in changes in the activity of the SMN and consequently improves verbal memory and executive functions in patients with bipolar depression.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran.,Atieh Clinical Neuroscience Center, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Sanaz Khomami
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran
| | - Golnaz Baghdadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Rezaei
- Behavioral Sciences Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masahiro Hata
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul B Fitzgerald
- Epworth Healthcare, Epworth Clinic Camberwell, Victoria Australia and Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Association between abnormal serum myelin-specific protein levels and white matter integrity in first-episode and drug-naïve patients with major depressive disorder. J Affect Disord 2018; 232:61-68. [PMID: 29477585 DOI: 10.1016/j.jad.2018.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although the structural abnormalities of white matter (WM) have been described in patients with major depressive disorder (MDD), the neuropathological changes remain unclear. The current study aimed to investigate the myelin oligodendrocyte glycoprotein (MOG) and myelin-associated glycoprotein (MAG) levels and their correlations with WM integrity in first-episode, drug-naïve MDD patients. METHODS We obtained diffusion tensor images of 102 first-episode, drug-naïve MDD patients and 81 age- and sex-matched controls. Serum MOG and MAG levels of all participants were measured and compared between the two groups. The correlations between WM integrity and MOG and MAG levels were examined. RESULTS MOG and MAG serum levels were significantly higher in MDD patients than in controls. Patients with MDD also showed decreased fractional anisotropy (FA) and axial diffusivity in the WM of the bilateral thalamus, right hippocampus, right temporal lobe, and left pulvinar. At the whole-brain level, no regions showed any correlations of diffusivity parameters with MOG or MAG levels in healthy subjects. However, we observed two-way correlations between the MOG and MAG levels and the FA and mean diffusivity values in the WM of the left middle frontal lobe, right inferior parietal lobe, and right supplementary motor area in MDD patients. LIMITATIONS Further investigation with a larger sample size and longitudinal studies are required to better understand the neuropathology of WM integrity in MDD. CONCLUSIONS Our findings represent the first evidence of a relationship between abnormal serum myelin-specific protein levels and impaired WM integrity, which may help to better understand the neurobiological mechanisms of MDD.
Collapse
|
36
|
Yin Y, Wang M, Wang Z, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:438-444. [PMID: 28823848 DOI: 10.1016/j.pnpbp.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022]
Abstract
Psychomotor retardation (PMR) is one of the core symptoms of major depressive disorder (MDD) and has a specific pathophysiology, but studies of PMR remains sparse. The purpose of this study was to explore the cerebral blood flow (CBF) of PMR in MDD. One-hundred-seven antidepressant-free MDD patients and 48 normal controls (NCs) were recruited for this study. All subjects underwent arterial spin labeling-magnetic resonance imaging (ASL-MRI) for the CBF calculation. MDD patients were divided into the PMR group (N=35) and NPMR (non-PMR) group (N=72) according to the Salpetriere Retardation Rating Scale (SRRS) score. After a baseline MRI scan, patients began to receive antidepressant treatment. Thirty-nine patients (15 PMR, 24 NPMR) who were remitted after 8weeks participated in the follow-up MRI scan. For statistical analysis, subjects with unqualified MRI image and unmatched demographic data were ruled out. Consequently, 30 NCs and 60 patients (30 PMR, 30 NPMR) at baseline as well as 22 patients (11 PMR, 11 NPMR) at follow-up underwent statistical analysis. The PMR group showed significantly decreased CBF in the right primary motor cortex (PMC) at baseline, and the CBF value of the right PMC was significantly correlated with the SRRS score, whereas the CBF of the right PMC was increased in the PMR group at follow-up compared with the baseline in longitudinal comparison. Our findings suggest that the CBF of the right PMC is a potential biomarker of PMR in MDD.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, China
| | - Meijian Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ze Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
37
|
Depping MS, Schmitgen MM, Kubera KM, Wolf RC. Cerebellar Contributions to Major Depression. Front Psychiatry 2018; 9:634. [PMID: 30555360 PMCID: PMC6281716 DOI: 10.3389/fpsyt.2018.00634] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Extending beyond the motor domain, the cerebellum is involved in various aspects of cognition and affect. Multidisciplinary evidence has demonstrated topographic organization of higher-order cognitive functions within the cerebellum. We here review recent neuroimaging research that indicates cerebellar contributions to major depressive disorder (MDD). At the structural level, increased volume of lobule IX has been demonstrated in MDD patients, independent of acute or remitted disease state. Successful treatment with electroconvulsive therapy has been associated with increased lobule VIIA volume in depressed patients. At the functional level, connectivity analyses have shown reduced cerebro-cerebellar coupling of lobules VI and VIIA/B with prefrontal, posterior parietal, and limbic regions in patients with MDD. As a limitation, most of this evidence is based on smaller patient samples with incomplete phenotypic and neuropsychological characterization and with heterogenous medication. Some studies did not apply cerebellum-optimized data analysis protocols. Taken together, MDD pathophysiology affects distinct subregions of the cerebellum that communicate with cortical networks subserving cognitive and self-referential processing. This mini-review synthesizes research evidence from cerebellar structural and functional neuroimaging in depression, and provides future perspectives for neuroimaging of cerebellar contributions to MDD.
Collapse
Affiliation(s)
- Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Wigand ME, Lang FU, Müller-Stierlin AS, Reichhardt L, Trif S, Schulze TG, Strik W, Becker T, Jäger M. Psychosis Is Mutable over Time: A Longitudinal Psychopathology Study. Psychopathology 2018. [PMID: 29539617 DOI: 10.1159/000486897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND A neurobiologically informed, system-specific psychopathological approach has been suggested for use in schizophrenia. However, to our knowledge, such an approach has not been used to prospectively describe the course of schizophrenia. SAMPLING AND METHODS We assessed psychopathology in a well-described sample of 100 patients with schizophrenia or schizoaffective disorder with the Bern Psychopathology Scale (BPS) at 6-month intervals for up to 18 months. The BPS groups symptoms into the 3 domains language, affectivity and motor behaviour; each domain is rated as being normal, inhibited or disinhibited. In addition, we collected qualitative psychopathological data in the form of case reports. RESULTS Forty-eight patients completed at least 2 assessments over the course of at least 1 year. Of these, 16 patients (33.3%) showed a bipolar course pattern (i.e., a switch from inhibited to disinhibited or vice versa) in 1 domain and 6 patients (12.5%) in more than 1 domain. Shifts from 1 dominant domain to another were seen frequently (n = 20, 41.7%), but shifts between 1 dominant domain and a combination of dominant domains were more common (n = 33, 68.8%). CONCLUSIONS The course of schizophrenia is heterogeneous and shows frequent changes in psychopathology. This should be taken into account in the communication with patients and in the research on underlying illness mechanisms and treatment. A major limitation of this study is the small sample size.
Collapse
Affiliation(s)
- Moritz E Wigand
- Department of Psychiatry II, Ulm University, Günzburg, Germany
| | - Fabian U Lang
- Department of Psychiatry II, Ulm University, Günzburg, Germany.,Medical Practice for Psychiatry and Psychotherapy Lang, Gersthofen, Germany
| | | | - Lea Reichhardt
- Department of Psychiatry II, Ulm University, Günzburg, Germany
| | - Silvana Trif
- Department of Psychiatry II, Ulm University, Günzburg, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, LMU München, München, Germany
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Thomas Becker
- Department of Psychiatry II, Ulm University, Günzburg, Germany
| | - Markus Jäger
- Department of Psychiatry II, Ulm University, Günzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Bezirkskrankenhaus Kempten, Kempten, Germany
| |
Collapse
|
39
|
Kavanaugh B, Correia S, Jones J, Blum A, LaFrance WC, Davis JD. White matter integrity correlates with depressive symptomatology in temporal lobe epilepsy. Epilepsy Behav 2017; 77:99-105. [PMID: 29046235 DOI: 10.1016/j.yebeh.2017.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023]
Abstract
RATIONALE White matter abnormalities occur in both temporal lobe epilepsy (TLE) and depression, but there is limited research examining the depression-white matter association in depressed individuals with TLE. This study examined the relationship between white matter integrity (WMI) and depression including the influence of age at seizure onset, in adults with TLE, TLE and depression, and depression only. METHODS Thirty-one adults were in one of three groups: TLE without depression (TLE; n=11), TLE with depression (TLE+DEP; n=9), and depression without TLE (DEP; n=11). Participants completed structured interviews for depression diagnosis and severity. White matter integrity was estimated based on fractional anisotropy (FA) calculated in frontotemporolimbic (FTL) and non-FTL regions in the JHU DTI atlas. RESULTS In adults with TLE (n=20), depressive symptomology was significantly correlated with FA in non-FTL regions and trended toward significance in FTL regions. These associations were found in FTL (statistically significant) and non-FTL (trended toward significance) regions in participants with childhood seizure onset but not in those with adolescent/adult seizure onset. CONCLUSIONS Current results suggest that WMI, within FTL and non-FTL regions, are associated with depressive symptomology in adults with TLE. This association may be most notable in those with childhood-onset epilepsy. These findings could have important implications for the conceptualization and clinical care of neuropsychiatric comorbidities in TLE.
Collapse
Affiliation(s)
- Brian Kavanaugh
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, USA; E. P. Bradley Hospital, USA.
| | - Stephen Correia
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, USA; Providence VA Medical Center, USA
| | - Jacob Jones
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, USA; Providence VA Medical Center, USA
| | - Andrew Blum
- Rhode Island Hospital, USA; Department of Neurology, Alpert Medical School of Brown University, USA
| | - W C LaFrance
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, USA; Rhode Island Hospital, USA; Department of Neurology, Alpert Medical School of Brown University, USA
| | - Jennifer Duncan Davis
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, USA; Rhode Island Hospital, USA
| |
Collapse
|
40
|
Polarity-independent effects of tDCS on paired associative stimulation-induced plasticity. Brain Stimul 2017; 10:1061-1069. [DOI: 10.1016/j.brs.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
|
41
|
Fractional amplitude of low-frequency fluctuations is disrupted in Alzheimer’s disease with depression. Clin Neurophysiol 2017; 128:1344-1349. [DOI: 10.1016/j.clinph.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/12/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
42
|
Coulombe MA, Lawrence KS, Moulin DE, Morley-Forster P, Shokouhi M, Nielson WR, Davis KD. Lower Functional Connectivity of the Periaqueductal Gray Is Related to Negative Affect and Clinical Manifestations of Fibromyalgia. Front Neuroanat 2017. [PMID: 28642688 PMCID: PMC5462926 DOI: 10.3389/fnana.2017.00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fibromyalgia (FM) syndrome is characterized by chronic widespread pain, muscle tenderness and emotional distress. Previous studies found reduced endogenous pain modulation in FM. This deficiency of pain modulation may be related to the attributes of chronic pain and other clinical symptoms experienced in patients with FM. Thus, we tested whether there is a link between the clinical symptoms of FM and functional connectivity (FC) of the periaqueductal gray (PAG), a key node of pain modulation. We acquired resting state 3T functional MRI (rsfMRI) data from 23 female patients with FM and 16 age- and sex- matched healthy controls (HC) and assessed FM symptoms with the Brief Pain Inventory (BPI), Fibromyalgia Impact Questionnaire (FIQ), Hospital Anxiety and Depression Scale (HADS) and Pain Catastrophizing Scale (PCS). We found that patients with FM exhibit statistically significant disruptions in PAG FC, particularly with brain regions implicated in negative affect, self-awareness and saliency. Specifically, we found that, compared to HCs, the FM patients had stronger PAG FC with the lingual gyrus and hippocampus but weaker PAG FC with regions associated with motor/executive functions, the salience (SN) and default mode networks (DMN). The attenuated PAG FC was also negatively correlated with FIQ scores, and positively correlated with the magnification subscale of the PCS. These alterations were correlated with emotional and behavioral symptoms of FM. Our study implicates the PAG as a site of dysfunction contributing to the clinical manifestations and pain in FM.
Collapse
Affiliation(s)
- Marie-Andrée Coulombe
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health NetworkToronto, ON, Canada
| | - Keith St Lawrence
- Lawson Health Research InstituteLondon, ON, Canada.,Department of Medical Biophysics, University of Western OntarioLondon, ON, Canada
| | - Dwight E Moulin
- Departments of Clinical Neurosciences and Oncology, University of Western OntarioLondon, ON, Canada
| | - Patricia Morley-Forster
- Department of Anesthesia and Perioperative Medicine, University of Western OntarioLondon, ON, Canada
| | - Mahsa Shokouhi
- Lawson Health Research InstituteLondon, ON, Canada.,Department of Medical Biophysics, University of Western OntarioLondon, ON, Canada
| | - Warren R Nielson
- Lawson Health Research InstituteLondon, ON, Canada.,Department of Psychology, University of Western OntarioLondon, ON, Canada
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health NetworkToronto, ON, Canada.,Department of Surgery and Institute of Medical Science, University of TorontoLondon, ON, Canada
| |
Collapse
|
43
|
Docx L, Emsell L, Van Hecke W, De Bondt T, Parizel PM, Sabbe B, Morrens M. White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study. Psychiatry Res Neuroimaging 2017; 260:29-36. [PMID: 28012424 DOI: 10.1016/j.pscychresns.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM.
Collapse
Affiliation(s)
- Lise Docx
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PC Broeders Alexianen Boechout, Provinciesteenweg 408, 2530 Boechout, Belgium.
| | - Louise Emsell
- University Psychiatry Centre (UPC)-KU Leuven, Leuven, Belgium
| | - Wim Van Hecke
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Timo De Bondt
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PZ St Norbertus Duffel, Stationsstraat 25c, 2570 Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PC Broeders Alexianen Boechout, Provinciesteenweg 408, 2530 Boechout, Belgium
| |
Collapse
|
44
|
Sambataro F, Visintin E, Doerig N, Brakowski J, Holtforth MG, Seifritz E, Spinelli S. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res Neuroimaging 2017; 259:1-9. [PMID: 27918910 DOI: 10.1016/j.pscychresns.2016.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 10/29/2016] [Accepted: 11/03/2016] [Indexed: 01/25/2023]
Abstract
Major depressive disorder (MDD) has been associated with alterations in several functional brain networks. Previous studies investigating brain networks in MDD during the performance of a task have yielded inconsistent results with the function of the brain at rest. In this study, we used functional magnetic resonance imaging at rest and during a goal-directed task to investigate dynamics of functional connectivity in 19 unmedicated patients with MDD and 19 healthy controls across both experimental paradigms. Patients had spatial differences in the default mode network (DMN), in the executive network (EN), and in the dorsal attention network (DAN) compared to controls at rest and during task performance. In patients the amplitude of the low frequency (LFO) oscillations was reduced in the motor and in the DAN networks during both paradigms. There was a diagnosis by paradigm interaction on the LFOs amplitude of the salience network, with increased amplitude change between task and rest in patients relative to controls. Our findings suggest that the function of several networks could be intrinsically affected in MDD and this could be viable phenotype for the investigation on the neurobiological mechanisms of this disorder and its treatment.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy.
| | - Eleonora Visintin
- Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Nadja Doerig
- Clinical Center for Psychosomatics, Sanatorium Kilchberg AG, Zurich, Switzerland
| | - Janis Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Switzerland
| | - Simona Spinelli
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Switzerland; Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
45
|
Cantisani A, Stegmayer K, Bracht T, Federspiel A, Wiest R, Horn H, Müller TJ, Schneider C, Höfle O, Strik W, Walther S. Distinct resting-state perfusion patterns underlie psychomotor retardation in unipolar vs. bipolar depression. Acta Psychiatr Scand 2016; 134:329-38. [PMID: 27497085 DOI: 10.1111/acps.12625] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Psychomotor abnormalities characterize both unipolar (UP) depression and bipolar (BP) depression. We aimed to assess their neurobiological correlates in terms of motor activity (AL) and resting-state cerebral blood flow (rCBF) and investigate their association in BP, UP, and healthy controls (HC). METHOD We enrolled 42 depressed patients (22 BP, 20 UP) and 19 HC matched for age, gender, education, income. AL and rCBF were objectively assessed with the use of wrist actigraphy and arterial spin labeling. Group differences and the association of AL and rCBF were computed. RESULTS Activity level was significantly reduced in patients, but no difference was found between BP and UP. Increased perfusion was found in BP compared with UP and HC, in multiple brain areas. We found positive correlations of rCBF and AL in BP and UP, in different parts of the insula and frontal regions. Only BP showed a cluster in the left precentral gyrus. In HC, only inverse correlations of AL and rCBF were found. CONCLUSION The differences in rCBF and in the localization of the clusters of positive AL/rCBF correlations between BP and UP suggest that different neural impairments may underlie motor symptoms in the two disorders, but finally converge in phenotypically similar manifestations.
Collapse
Affiliation(s)
- A Cantisani
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland. , .,NeuroFarBa Department, University of Florence, Florence, Italy. ,
| | - K Stegmayer
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - T Bracht
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - A Federspiel
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - R Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - H Horn
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - T J Müller
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - C Schneider
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - O Höfle
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - W Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - S Walther
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
46
|
Lu Y, Liang H, Han D, Mo Y, Li Z, Cheng Y, Xu X, Shen Z, Tan C, Zhao W, Zhu Y, Sun X. The volumetric and shape changes of the putamen and thalamus in first episode, untreated major depressive disorder. NEUROIMAGE-CLINICAL 2016; 11:658-666. [PMID: 27222797 PMCID: PMC4873692 DOI: 10.1016/j.nicl.2016.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/26/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022]
Abstract
Previous MRI studies confirmed abnormalities in the limbic-cortical-striatal-pallidal-thalamic (LCSPT) network or limbic-cortico-striatal-thalamic-cortical (LCSTC) circuits in patients with major depressive disorder (MDD), but few studies have investigated the subcortical structural abnormalities. Therefore, we sought to determine whether focal subcortical grey matter (GM) changes might be present in MDD at an early stage. We recruited 30 first episode, untreated patients with major depressive disorder (MDD) and 26 healthy control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetric and shape analyses were used to assess volume and shape changes of the subcortical GM structures, respectively. In addition, probabilistic tractography methods were used to demonstrate the relationship between the subcortical and the cortical GM. Compared to healthy controls, MDD patients had significant volume reductions in the bilateral putamen and left thalamus (FWE-corrected, p < 0.05). Meanwhile, the vertex-based shape analysis showed regionally contracted areas on the dorsolateral and ventromedial aspects of the bilateral putamen, and on the dorsal and ventral aspects of left thalamus in MDD patients (FWE-corrected, p < 0.05). Additionally, a negative correlation was found between local atrophy in the dorsal aspects of the left thalamus and clinical variables representing severity. Furthermore, probabilistic tractography demonstrated that the area of shape deformation of the bilateral putamen and left thalamus have connections with the frontal and temporal lobes, which were found to be related to major depression. Our results suggested that structural abnormalities in the putamen and thalamus might be present in the early stages of MDD, which support the role of subcortical structure in the pathophysiology of MDD. Meanwhile, the present study showed that these subcortical structural abnormalities might be the potential trait markers of MDD. Structural abnormalities in putamen and thalamus might be the potential trait marker of MDD at the early stage. The abnormality of LCSTC circuits, or LCSPT circuit, may contribute to the pathophysiology of MDD. The shape analysis is more sensitive to subtle structural changes than volumetric and VBM analysis.
Collapse
Affiliation(s)
- Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Hongmin Liang
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Han
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yin Mo
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zongfang Li
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Tan
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yun Zhu
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Xuejin Sun
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
47
|
Giezendanner S, Fisler MS, Soravia LM, Andreotti J, Walther S, Wiest R, Dierks T, Federspiel A. Microstructure and Cerebral Blood Flow within White Matter of the Human Brain: A TBSS Analysis. PLoS One 2016; 11:e0150657. [PMID: 26942763 PMCID: PMC4778945 DOI: 10.1371/journal.pone.0150657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.
Collapse
Affiliation(s)
- Stéphanie Giezendanner
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Melanie Sarah Fisler
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Leila Maria Soravia
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jennifer Andreotti
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Center for Translational Research, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D. Voxel-Based Meta-Analytical Evidence of Structural Disconnectivity in Major Depression and Bipolar Disorder. Biol Psychiatry 2016; 79:293-302. [PMID: 25891219 DOI: 10.1016/j.biopsych.2015.03.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Identification of white matter microstructure differences and similarities between major depression and bipolar disorder is a necessary step to better understand the underlying brain abnormalities in affective disorders and target more effective treatments. However, research has not yet yielded robust conclusions. We report here a meta-analysis of diffusion tensor imaging studies in these conditions. METHODS A comprehensive literature search was conducted up to 2014 to identify studies comparing fractional anisotropy (FA) between patients and control subjects. Results were combined to identify white matter abnormalities in major depression (736 patients vs. 668 control subjects) and bipolar disorder (536 patients vs. 489 control subjects). Effect size comparison and conjunction analysis allowed identification of similarities and differences between the disorders. RESULTS A significant decrease in FA in the genu of the corpus callosum characterized both conditions. The comparison between unipolar and bipolar disorders revealed a greater decrease in FA in the left posterior cingulum in bipolar disorder. Studies that adopted tract-based spatial statistics methodology showed more pronounced reductions in these regions compared with voxel-based analyses. CONCLUSIONS Major depression and bipolar disorder are characterized by abnormalities in white matter tracts of the genu of the corpus callosum that connect the two hemispheres of the prefrontal cortex implicated in mood regulation. Bipolar disorder was associated with reduced white matter integrity in the left posterior cingulum, which may contribute to cognitive impairment described in this condition. Tract-based spatial statistics may be a more sensitive technique to detect white matter abnormalities in these regions compared with voxel-based analyses.
Collapse
Affiliation(s)
- Toby Wise
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom.
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom; Research Unit, FIDMAG Germanes Hospitalàries-Centro de Investigación Biomédica en Red de Salud Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Gareth Nortje
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Zhang H, Li L, Wu M, Chen Z, Hu X, Chen Y, Zhu H, Jia Z, Gong Q. Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neurosci Biobehav Rev 2015; 60:43-50. [PMID: 26592799 DOI: 10.1016/j.neubiorev.2015.10.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 02/05/2023]
Abstract
Though numerous studies have implicated structural abnormalities in chronically depressive patients, relatively little attention has been paid to the brain alterations in patients experiencing first episode depression (FED). The investigation of FED is important for elucidating the core pathophysiology of this disease independent of other potentially confounding factors. The present study was to provide a quantitative voxelwise meta-analysis of gray matter (GM) changes in FED using effect-size signed differential mapping (ES-SDM). The pooled meta-analysis revealed GM reductions in the right supplementary motor area, left insula, and right middle temporal gyrus in FED patients compared with the healthy controls. No GM volume increases were found. The meta-regression analyses showed that studies including patients with higher HDRS scores were significantly more likely to present reduced GM volumes in the right amygdala. This meta-analysis indicates that FED patients have significantly and robustly reduced gray matter mainly associated with emotion regulation and sensorimotor areas alterations may be specific changes in early stage of this disease.
Collapse
Affiliation(s)
- Huawei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Cantisani A, Koenig T, Horn H, Müller T, Strik W, Walther S. Psychomotor retardation is linked to frontal alpha asymmetry in major depression. J Affect Disord 2015; 188:167-72. [PMID: 26363266 DOI: 10.1016/j.jad.2015.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Psychomotor disturbances are a main clinical feature of major depressive disorder (MDD) but little is known about their EEG signature. One of the most replicated EEG findings in MDD is resting frontal asymmetry in the alpha band (FAA), which is thought to be a correlate of withdrawal behavior and reduced approach motivation. The purpose of this study was to assess psychomotor alterations, alpha band power, FAA and investigate the association between them. METHODS 20 MDD patients and 19 healthy subjects were enrolled. Alpha power and FAA scores were calculated from a resting state EEG. Wrist actigraphy was recorded from the non-dominant arm for 24 h and activity level scores (AL) were extrapolated from the wakeful periods. RESULTS MDD patients had a left-lateralized frontal alpha activity and lower AL scores when compared to healthy subjects. A significant correlation was found between mean FAA and AL scores. A negative covariance between power in the lower alpha range and AL scores over the motor cortex bilaterally was detected. LIMITATIONS Relatively small sample size. Patients were pharmacologically treated with antidepressants. CONCLUSIONS This study replicates the finding of left-lateralized FAA and lower AL scores in MDD patients, and establishes the first evidence of significant correlations between alpha power, FAA scores and measures of motor activity, which may be interpreted as an expression of impaired motivational drive in MDD.
Collapse
Affiliation(s)
- Andrea Cantisani
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; NeuroFarBa department, Neuroscience Section, University of Florence, Largo Brambilla 3, 50134, Florence.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Helge Horn
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Thomas Müller
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| |
Collapse
|