1
|
Alaraby M, Abass D, Gutiérrez J, Velázquez A, Hernández A, Marcos R. Reproductive Toxicity of Nanomaterials Using Silver Nanoparticles and Drosophila as Models. Molecules 2024; 29:5802. [PMID: 39683959 DOI: 10.3390/molecules29235802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Reproductive toxicity is of special concern among the harmful effects induced by environmental pollutants; consequently, further studies on such a topic are required. To avoid the use of mammalians, lower eukaryotes like Drosophila are viable alternatives. This study addresses the gap in understanding the link between reproductive adverse outcomes and the presence of pollutants in reproductive organs by using Drosophila. Silver nanoparticles (AgNPs) were selected for their ease of internalization, detection, and widespread environmental presence. Both male and female flies were exposed to AgNPs (28 ± 4 nm, 100 and 400 µg/mL) for one week. Internalization and bioaccumulation of AgNPs in organs were assessed using transmission electron microscopy, confocal microscopy, and inductively coupled plasma mass spectrometry. Substantial accumulation of AgNPs in the gastrointestinal tract, Malpighian tubules, hemolymph, reproductive organs (ovaries and testes), and gametes were observed. The highest AgNP content was observed in testes. Exposure to AgNPs reduced ovary size and fecundity, though fertility and gender ratios of the offspring were unaffected. Significant deregulation of reproductive-related genes was observed, particularly in males. These findings underscore the utility of Drosophila as a model for evaluating reproductive hazards posed by AgNP exposure. The ease of AgNP internalization in Drosophila reproductive targets could be extrapolated to mammalians, raising concerns about the potential impacts of nanoparticle exposure on reproduction toxicity in humans.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Martínez-Cisterna D, Rubilar O, Tortella G, Chen L, Chacón-Fuentes M, Lizama M, Parra P, Bardehle L. Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance-A Review. Molecules 2024; 29:5520. [PMID: 39683679 DOI: 10.3390/molecules29235520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has been a promising plant protection discipline in recent years, attributed to the unique physicochemical properties exhibited at the nanoscale. In this context, silver nanoparticles (AgNPs) have been effective in various applications, including medical, industrial, and agronomic, and during the last few years, the control of insect pests has raised great interest. The present review mainly provides updated information about the use of AgNPs elaborated by different synthesis methods, such as biological (plants, microorganisms), physical, and chemical, and their effect against various insect species of agricultural importance belonging to the order Diptera, Coleoptera, Lepidoptera, and Hemiptera. The physiological and toxic effects of applying AgNPs are reported and characterized by developmental problems, mortality, weight reduction, interference with enzymatic activity, and anomalies in the life cycle. Moreover, in the final section, the action mechanisms through which AgNPs act on insects are also discussed, highlighting mechanisms such as alteration of transmembrane permeability, interruption of DNA replication, alteration of protein synthesis, and production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Daniel Martínez-Cisterna
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Lingyun Chen
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Marcelo Lizama
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Doctorado en Ciencias Agroalimentarias, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Pablo Parra
- Doctorado en Ciencias Agroalimentarias, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Leonardo Bardehle
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
3
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
4
|
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SAM, El-Seedi HR, El Wakil A, Al Naggar Y. Nanoparticles-mediated entomotoxicology: lessons from biologica. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:305-324. [PMID: 38446268 DOI: 10.1007/s10646-024-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Eslam S Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing, 210024, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| | - Yahya Al Naggar
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
5
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
6
|
Kashyap K, Parihar S, Shekhawat GS. In vitro establishment of cell suspension culture of Ceropegia bulbosa for improved production of cerpegin content through elicitation of engineered carbon and ZnO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118263-118279. [PMID: 37702862 DOI: 10.1007/s11356-023-29533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
The present investigations aimed to conserve C. bulbosa a threatened plant species and for production of cerpegin through cell culture technology using ENP elicitation. Leaf explants were aseptically cultured with normal MS medium-supplemented PGRs BA and NAA various concentrations, and the best callus induction response was recorded on 4.5 + 4.5 μM. The prospective special effects of the ENPs on plant cell cultures are the key part of our study and used to evaluate leaf callus culture proliferation with the reduction of browning, establishment, biomass, and metabolite formation. The CNP concentrations (0, 2, 4, 8, 12 mg/l) are used for the callus proliferation and browning reduction. The cell suspension cultures are also established, and they were elicited with EZnONPs (0, 25, 50, 100, 150 mg/l) for evaluation of biomass, antioxidant, non-antioxidant enzyme activation, toxicity, ROS defense activation, and metabolite development in cell cultures. The metabolite extraction, UV, and NMR characterization confirm that the toxic and nontoxic effect of ENPs on leaf cell cultures varies with high to low concentration.
Collapse
Affiliation(s)
- Komal Kashyap
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India.
| | - Suman Parihar
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Gyan Singh Shekhawat
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Eskin A, Nurullahoğlu ZU. Influence of zinc oxide nanoparticles (ZnO NPs) on the hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). Drug Chem Toxicol 2023; 46:1176-1186. [PMID: 36330702 DOI: 10.1080/01480545.2022.2139842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
In this study, we examined the effects of different doses (100, 500, 1000, 3000, and 5000 ppm) of zinc oxide nanoparticles (ZnO NPs) on the total hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). The results showed that NPs caused a decrease in hemocyte count at 1000, 3000, and 5000 ppm doses. To investigate the effects of ZnO NPs on the encapsulation and melanization response of G. mellonella, the pre-dyed Sephadex chromatography beads were injected into the hemolymph of each last-instar larva. Larvae were dissected in the 4th and 24th hours after the injection. The level of the encapsulation response and melanization status around the beads were determined under microscopy. The analyses of the beads injected into the insects as encapsulation targets revealed that the number of weakly encapsulated beads increased significantly at 100, 1000, 3000, and 5000 ppm doses when compared to the control group after a short (4-h) post-injection. The number of melanized beads increased significantly at 100, 1000, and 3000 ppm doses in comparison to the control group after the short (4-h) post-injection. Finally, the number of melanized beads decreased significantly at 1000 and 5000 ppm doses when compared to the control group after the long-term (24-h) post-injection.
Collapse
Affiliation(s)
- Ata Eskin
- Crop and Animal Production Department, Avanos Vocational School of Fine Arts, Nevşehir Hacı Bektaş Veli University, Avanos, Turkey
| | | |
Collapse
|
8
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
9
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
10
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
11
|
Kojom Foko LP, Hawadak J, Verma V, Belle Ebanda Kedi P, Eboumbou Moukoko CE, Kamaraju R, Pande V, Singh V. Phytofabrication and characterization of Alchornea cordifolia silver nanoparticles and evaluation of antiplasmodial, hemocompatibility and larvicidal potential. Front Bioeng Biotechnol 2023; 11:1109841. [PMID: 36926684 PMCID: PMC10011455 DOI: 10.3389/fbioe.2023.1109841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Purpose: The recent emergence of Plasmodium falciparum (Pf) parasites resistant to current artemisinin-based combination therapies in Africa justifies the need to develop new strategies for successful malaria control. We synthesized, characterized and evaluated medical applications of optimized silver nanoparticles using Alchornea cordifolia (AC-AgNPs), a plant largely used in African and Asian traditional medicine. Methods: Fresh leaves of A. cordifolia were used to prepare aqueous crude extract, which was mixed with silver nitrate for AC-AgNPs synthesis and optimization. The optimized AC-AgNPs were characterized using several techniques including ultraviolet-visible spectrophotometry (UV-Vis), scanning/transmission electron microscopy (SEM/TEM), powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Zeta potential. Thereafter, AC-AgNPs were evaluated for their hemocompatibility and antiplasmodial activity against Pf malaria strains 3D7 and RKL9. Finally, lethal activity of AC-AgNPs was assessed against mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti which are vectors of neglected diseases such as dengue, filariasis and chikungunya. Results: The AC-AgNPs were mostly spheroidal, polycrystalline (84.13%), stable and polydispersed with size of 11.77 ± 5.57 nm. FTIR revealed the presence of several peaks corresponding to functional chemical groups characteristics of alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones and saponins. The AC-AgNPs had a high antiplasmodial activity, with IC50 of 8.05 μg/mL and 10.31 μg/mL against 3D7 and RKL9 Plasmodium falciparum strains. Likewise, high larvicidal activity of AC-AgNPs was found after 24 h- and 48 h-exposure: LC50 = 18.41 μg/mL and 8.97 μg/mL (Culex quinquefasciatus), LC50 = 16.71 μg/mL and 7.52 μg/mL (Aedes aegypti) and LC50 = 10.67 μg/mL and 5.85 μg/mL (Anopheles stephensi). The AC-AgNPs were highly hemocompatible (HC50 > 500 μg/mL). Conclusion: In worrying context of resistance of parasite and mosquitoes, green nanotechnologies using plants could be a cutting-edge alternative for drug/insecticide discovery and development.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vaishali Verma
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Philippe Belle Ebanda Kedi
- Department of Animal Organisms, Faculty of Sciences, The University of Douala, Douala, Cameroon.,Nanosciences African Network, iThemba LABS-National Research Foundation, Cape Town, South Africa.,Laboratory of Innovative Nanostructured Material (NANO: C), Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon.,Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé, Cameroon.,Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala, Cameroon
| | - Raghavendra Kamaraju
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
12
|
Ravi B, Mani G, Pushparaj H, Jang HT, Manickam V. Sida cordata assisted bio-inspired silver nanoparticles and its antimicrobial, free-radical scavenging, tyrosinase inhibition, and photocatalytic activity (4 in 1 system). PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2129116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Brindhamani Ravi
- Department of Pharmaceutical Chemistry, J.K.K. Nataraja College of Pharmacy, Erode, India
| | - Ganesh Mani
- Department of Pharmaceutical Chemistry, Srinivasan College of Pharmacy, Trichy, India
- Department of Chemical Engineering, Hanseo University, Haemi-myun, South Korea
| | | | - Hyun Tae Jang
- Department of Chemical Engineering, Hanseo University, Haemi-myun, South Korea
| | | |
Collapse
|
13
|
Xi J, Kan W, Zhu Y, Huang S, Wu L, Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon 2022; 8:e10021. [PMID: 35942280 PMCID: PMC9356174 DOI: 10.1016/j.heliyon.2022.e10021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be −30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.
Collapse
Affiliation(s)
- Jinfeng Xi
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wenjie Kan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
- Corresponding author.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Jun Wang
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| |
Collapse
|
14
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey B, Agrawal N, Bhagat N. An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. J Funct Biomater 2022; 13:jfb13020054. [PMID: 35645262 PMCID: PMC9149986 DOI: 10.3390/jfb13020054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles (AgNPs) display unique plasmonic and antimicrobial properties, enabling them to be helpful in various industrial and consumer products. However, previous studies showed that the commercially acquired silver nanoparticles exhibit toxicity even in small doses. Hence, it was imperative to determine suitable synthesis techniques that are the most economical and least toxic to the environment and biological entities. Silver nanoparticles were synthesized using plant extracts and their physico-chemical properties were studied. A time-dependent in vitro study using HEK-293 cells and a dose-dependent in vivo study using a Drosophila model helped us to determine the correct synthesis routes. Through biological analyses, we found that silver nanoparticles’ cytotoxicity and wound-healing capacity depended on size, shape, and colloidal stability. Interestingly, we observed that out of all the synthesized AgNPs, the ones derived from the turmeric extract displayed excellent wound-healing capacity in the in vitro study. Furthermore, the same NPs exhibited the least toxic effects in an in vivo study of ingestion of these NPs enriched food in Drosophila, which showed no climbing disability in flies, even at a very high dose (250 mg/L) for 10 days. We propose that stabilizing agents played a superior role in establishing the bio-interaction of nanoparticles. Our study reported here verified that turmeric-extract-derived AgNPs displayed biocompatibility while exhibiting the least cytotoxicity.
Collapse
Affiliation(s)
- Anjana S. Desai
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi 110007, India;
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Prasanna Shah
- Department of Physics, Acropolis Institute of Technology and Research, Indore 453771, India;
| | - Brajesh Pandey
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi 110007, India;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Neeru Bhagat
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| |
Collapse
|
16
|
Bhadani RV, Gajera HP, Hirpara DG, Savaliya DD, Anuj SA. Biosynthesis and characterization of extracellular metabolites-based nanoparticles to control the whitefly. Arch Microbiol 2022; 204:311. [PMID: 35538378 DOI: 10.1007/s00203-022-02917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
The Beauveria spp. were isolated from soil and insect cadavers and confirmed as Beauveria bassiana by molecular identification using a specific primer. The bioefficacy of 14 B. bassiana against whiteflies indicated the highest percent mortality in JAU2, followed by JAU1. The LC50 and LC90 values were found to be 0.043 × 105 and 0.05 × 1014 conidia.ml-1, respectively, in JAU2. Extracellular metabolites of B.bassiana are derived and used for the green synthesis of silver nanoparticles (AgNPs). The synthesized green AgNPs were characterized for size (24.8 nm), shape (scanning electron microscopy), stability (200 mV zeta), and purity (energy-dispersive X-ray spectroscopy, 3 keV). A total of 63 extracellular metabolites were identified using LC-MS/QTOF in potent JAU2 with recognition of alcohols, phenols, carboxylic acids, amines, alkynes, and amides as functional groups. The functional groups of green AgNPs were also confirmed in Fourier transforms infrared spectroscopy (FTIR) with the specific spectra in the electromagnetic spectrum. The relationship between identified metabolites of antagonist and the FTIR spectrum of the functional group indicated the involvement of extracellular novel compounds, viz., homoisocitrate, aconitine, phodexin A, capillone, solanocapsine, and anethole in the synthesis of green AgNPs. The efficacy of green AgNPs on whiteflies suggested that corrected percent mortality was observed at 60 µg Ag.ml-1 at 120 h, which corresponds to the LC50 value (66.42 µg Ag.ml-1). Results were interpreted to show that green AgNPs synthesized from extracellular metabolites of B.bassiana JAU2 gave better insecticidal activity at LC50 as compared to live antagonist JAU2.
Collapse
Affiliation(s)
- Rushita V Bhadani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India.
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - D D Savaliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Samir A Anuj
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| |
Collapse
|
17
|
Dean DM, Deitcher DL, Paster CO, Xu M, Loehlin DW. "A fly appeared": sable, a classic Drosophila mutation, maps to Yippee, a gene affecting body color, wings, and bristles. G3 (BETHESDA, MD.) 2022; 12:jkac058. [PMID: 35266526 PMCID: PMC9073688 DOI: 10.1093/g3journal/jkac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Insect body color is an easily assessed and visually engaging trait that is informative on a broad range of topics including speciation, biomaterial science, and ecdysis. Mutants of the fruit fly Drosophila melanogaster have been an integral part of body color research for more than a century. As a result of this long tenure, backlogs of body color mutations have remained unmapped to their genes, all while their strains have been dutifully maintained, used for recombination mapping, and part of genetics education. Stemming from a lesson plan in our undergraduate genetics class, we have mapped sable1, a dark body mutation originally described by Morgan and Bridges, to Yippee, a gene encoding a predicted member of the E3 ubiquitin ligase complex. Deficiency/duplication mapping, genetic rescue, DNA and cDNA sequencing, RT-qPCR, and 2 new CRISPR alleles indicated that sable1 is a hypomorphic Yippee mutation due to an mdg4 element insertion in the Yippee 5'-UTR. Further analysis revealed additional Yippee mutant phenotypes including curved wings, ectopic/missing bristles, delayed development, and failed adult emergence. RNAi of Yippee in the ectoderm phenocopied sable body color and most other Yippee phenotypes. Although Yippee remains functionally uncharacterized, the results presented here suggest possible connections between melanin biosynthesis, copper homeostasis, and Notch/Delta signaling; in addition, they provide insight into past studies of sable cell nonautonomy and of the genetic modifier suppressor of sable.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Caleigh O Paster
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Manting Xu
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David W Loehlin
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
18
|
Ali MM, Ramadan MA, Ghazawy NA, Afify A, Mousa SA. Photochemical effect of silver nanoparticles on flesh fly larval biological system. Acta Histochem 2022; 124:151871. [PMID: 35247817 DOI: 10.1016/j.acthis.2022.151871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
With the progress of nanoscience and its applications, silver nanoparticles (AgNPs) have become one of the most interesting nanoparticles owing to their use in different fields. However, the excessive use of AgNPs and its products may cause toxicity in both the environment and in human health. The main goal of this research is to study the toxic and photochemical effects of AgNPs against Sarcophaga argyrostoma larvae through ultrastructure, morphological change, and DNA damage. Treating midgut epithelium with AgNPs led to many alterations in dark conditions, disintegrated epithelium, swollen cells, and shrunken nucleus. Organelles appeared in a loose manner and mitochondria were without cristae, endoplasmic reticulum had dark spots, and peritrophic membrane was loose in appearance. Fatty tissues were vacuolized and muscle fibers lacked normal striations and had many gaps and lysosomal bodies. In the light conditions, the epithelium appeared with detached cells and many vacuoles, organelles were ruptured with many gaps in between, and secretory vesicles were scattered. Peritrophic membrane disappeared. Muscles collapsed and vacuolized loosed fatty tissues were detected. On the other hand, control larvae epithelium appeared regularly distinct, with organelles intact and muscles had clear normal striations. Data showed that AgNPs caused ultrastructural and morphological changes of the external cuticle of the 4th instar larvae along with a significant effect on DNA damage that occurred after the larval treatment, reflecting the toxicity of AgNPs.
Collapse
|
19
|
Cc S, Arun D, Divya L. Insect in vitro System for Toxicology Studies - Current and Future Perspectives. FRONTIERS IN TOXICOLOGY 2022; 3:671600. [PMID: 35295131 PMCID: PMC8915908 DOI: 10.3389/ftox.2021.671600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
In vitro cell culture practices are valuable techniques to understand the mechanisms behind vital in vivo biological processes. In vitro cells have helped us to attain a deeper understanding of functions and mechanisms conserved in the course of evolution. Toxicology studies are inevitable in drug discovery, pesticide development, and many other fields that directly interact with human beings. The proper involvement and regulatory steps that have been taken by animal ethical societies in different parts of the world resulted in the reduced in vivo use of mammals in toxicological studies. Nevertheless, experimental animals are being killed where no replacement is available. The use of mammals could be reduced by using the in vitro systems. Nowadays, invertebrate cell lines are also play important role in toxicology testing. This review analyzes the cause and consequence of insect in vitro models in toxicology studies.
Collapse
Affiliation(s)
- Sheeja Cc
- Department of Zoology, Central University of Kerala, Kasaragod, India
| | - Damodaran Arun
- Department of Zoology, Central University of Kerala, Kasaragod, India
| | - Lekha Divya
- Department of Zoology, Central University of Kerala, Kasaragod, India
| |
Collapse
|
20
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S, Krutmuang P. Insecticidal Effect of Zinc Oxide Nanoparticles against Spodoptera frugiperda under Laboratory Conditions. INSECTS 2021; 12:insects12111017. [PMID: 34821816 PMCID: PMC8618014 DOI: 10.3390/insects12111017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Fall armyworm has devastated several crops around the world, especially maize that is widely grown and utilized globally. Also, it has been known to cause a lot of damage in rice fields. However, controlling this pest has been a challenge to farmers due to its ability to reproduce faster and its development of resistance to synthetic chemicals, among other factors. Moreover, synthetic chemicals are a threat to the environment and humanity. For these reasons, we are constantly looking for safer yet effective means of controlling this pest, and nanotechnology comes in handy. Zinc Oxide nanoparticles have proved to be efficacious to several insect pests, of which some are in the same genus as Spodoptera frugiperda. This study aimed to find out the insecticidal effects of ZnO nanoparticles on S. frugiperda under laboratory conditions. We observed body deformations, reduced fecundity, reduced oviposition, and mortality when insects were fed on food treated with several concentrations of ZnO nanoparticles, yet the ones fed on control were normal in all the aspects. Therefore, we recommend ZnO nanoparticles for further studies with the aim of using them as an alternative control agent against fall armyworm under field conditions. Abstract Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.
Collapse
Affiliation(s)
- Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Julius Rajula
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur Rd, Gujarat 382735, India;
| | - Malee Thungrabeab
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand;
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-865-863-008
| |
Collapse
|
22
|
El Gamal AY, Tohamy MR, Abou-Zaid MI, Atia MM, El Sayed T, Farroh KY. Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Arch Virol 2021; 167:85-97. [PMID: 34738153 DOI: 10.1007/s00705-021-05280-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/05/2021] [Indexed: 10/19/2022]
Abstract
Silver nanoparticles (AgNPs) are a potentially effective tool for preventing viral plant diseases. This study was carried out to evaluate the effectiveness of AgNPs for managing bean yellow mosaic virus (BYMV) disease in faba bean plants from the plant-virus-vector interaction side. AgNPs were evaluated as foliar protective and curative agents. In addition, the effect of AgNPs on virus acquisition and transmission by its vector aphid was investigated. The results indicated that AgNPs exhibited curative viricidal activity and were able to inactivate BYMV when applied 48 hours after virus inoculation. The occurrence of disease was prevented using an AgNP concentration as low as 100 mg L-1, whereas virus infection was completely inhibited when plants were preventatively treated with AgNPs at a concentration of to 200 mg L-1 24 h before virus inoculation. AgNPs proved to be highly bio-reactive, binding to viral particles and suppressing their replication and accumulation within plant tissues. Moreover, AgNPs, at all concentrations tested, were found to upregulate the pathogenesis-related gene PR-1 and induce the production of defense-related oxidizing enzymes in treated plants. Exposure of aphids to AgNPs-treated plants before virus acquisition reduced BYMV acquisition and transmission efficiency by 40.65 to 100% at 24 h post-application, depending on the AgNP dosage. At 10 days after treatment, virus acquisition was reduced by 36.82% and 79.64% upon exposure to AgNPs at a concentration of 250 and 300 mg L-1, respectively. These results suggest that AgNPs have curative viricidal activity due to targeting the virus coat protein and affecting virus-vector interactions. Accordingly, AgNPs may contribute to alleviating the natural disease and virus transmission under field conditions. This is the first report on the activity of nanomaterials against plant virus acquisition and transmission by insects.
Collapse
Affiliation(s)
- Ahmed Y El Gamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt.
| | - Mohamed R Tohamy
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed I Abou-Zaid
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud M Atia
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tarek El Sayed
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
23
|
Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. Sci Rep 2021; 11:17125. [PMID: 34429471 PMCID: PMC8385078 DOI: 10.1038/s41598-021-96426-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The intensive use of insecticides in global agricultural production has attracted much attention due to its many adverse effects on human health and the environment. In recent years, the utilization of nanotechnology has emerged as a tool to overcome these adverse effects. The aim of this work was to test different microparticles (zinc oxide (ZnO MPs) and silicon dioxide microparticles (SiO2 MPs)), and silver nanoparticles (Ag NPs) and to study their toxicity on a model organism, Tenebrio molitor. A comprehensive comparative study, which included more than a thousand mealworms divided into nine separate groups, was conducted. In addition to pure nano/microparticle solutions, the effect of particles mixed with the microalgae extract Chlamydomonas reinhardtii was also observed. Pure Ag NPs and SiO2 MPs resulted in larval mortality of more than 70% compared to that of pure ZnO MPs, in which the mortality rate was approximately 33%. A mixture of the algal extract with zinc oxide microparticles resulted in mortality that was double compared to that observed with pure ZnO MPs. In parallel, atomic absorption spectrometry (AAS) was used to determine the difference in the concentration of trace elements in the bodies of dead and live larvae.
Collapse
|
25
|
El-Samad LM, El-Ashram S, Kheirallah DA, Abdul-Aziz KK, Toto NA, Mokhamer EHM. Relative gene expression, micronuclei formation, and ultrastructure alterations induced by heavy metal contamination in Pimelia latreillei (Coleoptera: Tenebrionidae) in an urban-industrial area of Alexandria, Egypt. PLoS One 2021; 16:e0253238. [PMID: 34161380 PMCID: PMC8221511 DOI: 10.1371/journal.pone.0253238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022] Open
Abstract
The present research aims to evaluate the impact of industrial processes and anthropogenic activities on the beetle Pimelia latreillei inhabiting the polluted site at Zawya Abd El- Qader, Alexandria, Egypt. Beetles were collected from the vicinity of five factories. The genotoxic effects of environmental exposures to industrial heavy metals were monitored using a broad range of assays, including energy-dispersive X ray microanalysis and X-ray diffraction (SEM and EDX)), qRT-PCR gene expression assay, micronuclei formation, and transmission electron microscope (TEM). Energy dispersive X-ray microanalysis for the soil and testicular tissues of beetles collected from the polluted site revealed a higher percentage of heavy metals than the beetles collected from the reference site (Sidi Kirier, Alexandria, Egypt). To analyze/monitor genotoxicity in P. latreillei sampled from the polluted site, the transcription levels of levels of heat shock proteins (Hsps) and accessory gland seminal fluid protein (AcPC01) in testicular tissues were recorded. The incidence of micronuclei (MN) formation in the testicular cells was also observed. Quantitative RT-PCR (RT-qPCR) analysis was carried out to detect the changes in the gene expression of the aforementioned proteins. Genes encoding heat shock proteins (Hsp60, Hsp70, and Hsp90) were significantly overexpressed (> 2-fold) in specimens sampled from the polluted site; however, AcPC01 gene expression was under-expressed (<1.5-folds). The incidence of MN was significantly increased in specimens sampled from the polluted site. Ultrastructure anomalies (nuclear and cytoplasmic disruption) were also observed in the testicular cells of the beetles sampled from the polluted site compared to those sampled from the unpolluted site. Our results, therefore, advocate a need for adequate measures to reduce increasing environmental pollution in the urban-industrial areas.
Collapse
Affiliation(s)
- Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Dalia A. Kheirallah
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Karolin K. Abdul-Aziz
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| | - Noura A. Toto
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| | - El Hassan M. Mokhamer
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| |
Collapse
|
26
|
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 2021; 55:671-687. [PMID: 33877010 DOI: 10.1080/10715762.2021.1914335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including Drosophila. The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrutyunjaya Panda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
27
|
Moya-Andérico L, Vukomanovic M, Cendra MDM, Segura-Feliu M, Gil V, Del Río JA, Torrents E. Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology. CHEMOSPHERE 2021; 266:129235. [PMID: 33316472 DOI: 10.1016/j.chemosphere.2020.129235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/27/2023]
Abstract
The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.
Collapse
Affiliation(s)
- Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Maria Del Mar Cendra
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141743. [PMID: 32891989 DOI: 10.1016/j.scitotenv.2020.141743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.
Collapse
|
29
|
Antioxidant Activity of Telmisartan-Cu(II) Nanoparticles Connected 2-Pyrimidinamine and Their Evaluation of Cytotoxicity Activities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8872479. [PMID: 33282956 PMCID: PMC7688356 DOI: 10.1155/2020/8872479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022]
Abstract
Copper nanoparticles (Cu-Nps) are one of the promising materials for the advancement of nanoscience and technology. In this work, we synthesized telmisartan copper nanoparticles and 2-pyrimidinamines via Biginelli reaction using telmisartan copper nanoparticles (Cu-Nps) as a reusable catalyst. The synthesis of 2-pyrimidinamine derivatives (1a-c) was achieved in water and under solvent-free condition (Green chemistry approach). Synthesis of 2-pyrimidinamine with telmisartan copper nanoparticle (Cu-Nps–Pyr) unexpected product was also isolated from synthesis of 2-pyrimidinamine preparation. Antioxidant and cytotoxic activities were carried out both in 2-pyrimidinamine (1a-1c) and 2-pyrimidinamine with telmisartan copper nanoparticles (Cu-Nps–Pyr). The synthesized 2-pyrimidinamine derivatives (1a-c) were characterized from FT-IR, 1H and 13C NMR spectroscopy, mass and elemental analyses. The synthesized telmisartan copper nanoparticles (Cu-Nps) were characterized from UV spectroscopy, XRD, SEM, EDX, AFM (atomic force microscopy), profile, waviness, and roughness analyses. Antioxidant activity was screened based on ABTS·+ radical scavenging and linoleic acid peroxidation performance. Cu-Nps–Pyr-1b showed substantial antioxidant (97.2%) activity against ABTS·+ assay and 91.2% activity against AAPH assays compared with Trolox. Cytotoxicity was evaluated using HepG2, HeLa, and MCF-7 cell lines, the Cu-Nps–Pyr-1a is high in toxicities (GI50 = 0.01 μm) against the HeLa cancel cell line compared with doxorubicin. The developed copper NPs with 2-pyrimidinamine (Cu-Nps–Pyr) could provide promising advances as antioxidant activities; this nanocomposition could be considered an anticancer treatment in future investigations.
Collapse
|
30
|
Singh A, Raj A, Padmanabhan A, Shah P, Agrawal N. Combating silver nanoparticle-mediated toxicity in Drosophila melanogaster with curcumin. J Appl Toxicol 2020; 41:1188-1199. [PMID: 33146454 DOI: 10.1002/jat.4103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
Nanoscale materials display unique physical and chemical properties that enable their assimilation into a variety of industrial and consumer products. Amongst the widely used nanomaterials, silver nanoparticles (AgNPs) have gained tremendous recognition for various applications, owing to their extraordinary plasmonic and bactericidal properties. Despite of the extensive usage of AgNPs in various sectors, its impact on human health remains ambiguous. Several studies have established that higher doses of AgNPs are detrimental to organismal health. In order to attain the best from these versatile nanoparticles, a recent advent of green nanotechnology, that is, employment of metal nanoparticles synthesized using plant extracts, has emerged. Here, using Drosophila as a model system, we tested if adding curcumin, a biologically active polyphenolic compound present in turmeric, having multitudes of therapeutic properties, could mitigate AgNP-mediated biotoxicity. We found that co-administration of AgNPs with curcumin in the fly food could alleviate several harmful effects evoked by AgNPs ingestion in Drosophila model. Addition of curcumin superseded reduction in feeding, pupation, eclosion, pigmentation, and fertility caused by AgNPs ingestion. Interestingly, impairment in ovary development observed in flies reared on AgNPs-supplemented food was also partially restored by co-administration of AgNPs with curcumin. Furthermore, substantial alleviation of reactive oxygen species level and cell death was observed in larval tissues upon co-supplementation of AgNPs with curcumin. We therefore propose that curcumin, when administered with AgNPs, can abrogate the toxic manifestations of AgNPs ingestion and hence can be incorporated in various consumer products encompassing it.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, India
| | - Aishwarya Padmanabhan
- Department of Zoology, University of Delhi, Delhi, India.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Prasanna Shah
- Department of Physics, Acropolis Institute of Technology and Research, Indore, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
31
|
Valorization of Pichia spent medium via one-pot synthesis of biocompatible silver nanoparticles with potent antioxidant, antimicrobial, tyrosinase inhibitory and reusable catalytic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111104. [DOI: 10.1016/j.msec.2020.111104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
32
|
Abstract
One of the fastest-moving fields in today's world of applied science, nanotechnology allows the control and design of matter on an extremely small scale, so it has now become an integral part of various industries and scientific areas, such as agriculture, food sector, healthcare and engineering. Understanding the interactions between nanopesticides and edible plants, as well as non-target animals, is crucial in assessing the potential impact of nanotechnology products on the environment, agriculture and human health. The dramatic increase in efforts to use nanopesticides renders the risk assessment of their toxicity and genotoxicity highly crucial due to the potential adverse impact of this relatively uncharted territory. Such widespread use naturally increases our exposure to nanopesticides, raising concerns over their possible adverse effects on humans and non-target organisms, which might include severe impairment of both male and female reproductive capacity. We therefore need better insight into such effects to derive conclusive evidence on the safety or toxicity/genotoxicity of nanopesticides, and Drosophila melanogaster (fruit fly) can prove an ideal model organism for the risk assessment and toxicological classification of nanopesticides, as it bears striking similarities to various systems in human body. This editorial review attempts to summarize our current knowledge derived from previous in vivo studies to examine the impact of several nanomaterials on various species of mammals and non-target model organisms at the genetic, cellular, and molecular levels, attracting attention to the possible mechanisms and potential toxic/genotoxic effects of nanopesticides widely used in agriculture on D. melanogaster as a non-target organism.
Collapse
Affiliation(s)
- Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Vocational School of Health Services, Antalya, Turkey
| |
Collapse
|
33
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
34
|
Cc S, Anusri A, Levna C, Pm A, Lekha D. MoS 2 nanoparticles induce behavioral alteration and oxidative stress mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121624. [PMID: 31806446 DOI: 10.1016/j.jhazmat.2019.121624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The study evaluates molybdenum disulfide (MoS2) nanoparticles (NPs) induced oxidative stress during cellular toxicity in an invertebrate in vivo system, the weaver ant. The lethal concentration was checked and LC50 was obtained as 50 µg/mL. Feeding assay and the photoluminescence activity confirmed the ingestion of MoS2 NPs by the organism. Behavioral assays showed altered grooming behavior in the MoS2 NP fed ants. A drastic decrease in the hemocyte count in the MoS2 NP fed ants revealed the anti-proliferative role of MoS2. This was further confirmed by 5-bromo-2'-deoxyuridine (BrdU) labeling assay. MoS2 NPs induced apoptotic activity was also observed in the hemocytes by acridine orange/ethidium bromide (AO/EB) staining. The level of oxidative stress during cellular toxicity was observed. An increased reactive oxygen species (ROS) level was observed in the MoS2 NP fed ants when compared to the control group. The increased activity of superoxide dismutase (SOD) and the lipid peroxidation (LPO) product were observed. While, the activities of catalase (CAT) and glutathione-s-transferase (GST) and the glutathione content (GSH) were decreased by MoS2 NPs. The transcript levels of SODs, CAT and GST were up regulated in the treated group. Our results suggest that MoS2 NPs induced oxidative stress mediates the cellular toxicity in the foragers of the weaver ant.
Collapse
Affiliation(s)
- Sheeja Cc
- Department of Zoology, Central University of Kerala, India
| | - Ambali Anusri
- Department of Zoology, Central University of Kerala, India
| | - Chacko Levna
- Department of Physics, Central University of Kerala, India
| | - Aneesh Pm
- Department of Physics, Central University of Kerala, India.
| | - Divya Lekha
- Department of Zoology, Central University of Kerala, India.
| |
Collapse
|
35
|
Park G, Amaris ZN, Eiken MK, Baumgartner KV, Johnston KA, Williams MA, Markwordt JG, Millstone JE, Splan KE, Wheeler KE. Emerging investigator series: characterization of silver and silver nanoparticle interactions with zinc finger peptides. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2367-2378. [PMID: 31528351 PMCID: PMC6746224 DOI: 10.1039/c9en00065h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity and antimicrobial and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag(I) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag(I) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag(I)(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag(I) into apo-ZF peptides show an Ag(I)-thiolate charge transfer band, indicative of Ag(I)-ZF binding. Fluorescence studies of the Zn(II)-NCp_7 complex indicate that the Ag(I) also effectively competes with the Zn(II) to drive Zn(II) displacement from the ZFs. Upon interaction with AgENMs, Zn(II) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag(I) and AgENMs may alter ZF protein function within the cell.
Collapse
Affiliation(s)
- Grace Park
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Zoe N Amaris
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Madeline K Eiken
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Karl V Baumgartner
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Kathryn A Johnston
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Mari A Williams
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jasmine G Markwordt
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA 15260, USA
| | - Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, USA
| | - Korin E Wheeler
- Department of Chemistry & Biochemistry Santa Clara University Santa Clara, CA 95053, USA
| |
Collapse
|
36
|
Basak AK, Chatterjee T, Chakravarty A, Ghosh SK. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:497. [PMID: 31312907 DOI: 10.1007/s10661-019-7630-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
A few studies had determined the effects of silver nanoparticles on the development of Drosophila melanogaster. However, none had addressed its genotoxic effects on specific larval cells of the fly in details. This study was conducted to determine the effects of silver nanoparticle on the development of D. melanogaster with simultaneous evaluation of its genotoxic potential on specific larval cell types that play important roles in immunological defenses as well as growth and development. Five male and five female flies were maintained in standard Drosophila melanogaster culture medium containing varying concentrations of silver nanoparticles, i.e., 25, 50, 100, 200, and 300 mg/l with control culture medium containing no nanoparticle. Total time needed for stage-specific development, population yield, and genotoxic effects on third instar larval polytene chromosomes, hemocytes, and neuroblasts was determined. Body pigmentation of pupae and young adults was examined visually. In comparison with control, silver nanoparticles dose dependently inhibited the metamororphosis and population yields of pupae and young adults of Drosophila melanogaster. Every concentration of the nanoparticles inhibited pupa to adult conversion, with huge reduction under the influence of nanoparticle concentration of 100 mg/ml and above. Developmental inhibition was accompanied by dose-dependent and significant structural aberrations of larval polytene chromosomes and deformities of hemocytes and neuroblasts. Pupae and young adults also exhibited gradual discoloration of body with the increase in exposure to nanoparticle concentration.
Collapse
Affiliation(s)
- Ashim Kumar Basak
- Department of Molecular Biology, Institute of Genetic Engineering, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Tridip Chatterjee
- Department of Molecular Biology, Institute of Genetic Engineering, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Amit Chakravarty
- Institute of Genetic Engineering; Institute of Genetic Medicine and Genomic Sciences, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Swapan Kumar Ghosh
- Molecular Mycopathology Lab, Cancer Research Unit, PG Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
37
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
38
|
Alaraby M, Romero S, Hernández A, Marcos R. Toxic and Genotoxic Effects of Silver Nanoparticles in Drosophila. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:277-285. [PMID: 30353950 DOI: 10.1002/em.22262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The in vivo model Drosophila melanogaster was used here to determine the detrimental effects induced by silver nanoparticles (AgNPs) exposure. The main aim was to explore its interaction with the intestinal barrier and the genotoxic effects induced in hemocytes. The observed effects were compared with those obtained by silver nitrate, as an agent acting via the release of silver ions. Larvae were fed in food media containing both forms of silver. Results indicated that silver nitrate was more toxic than AgNPs when the viability "egg-to-adult" was determined. Depigmentation was observed in adults including those exposed to nontoxic concentrations, as indicative of exposure action. Interestingly, AgNPs were able to cross the intestinal barrier affecting hemocytes that show significant increases in the levels of intracellular reactive oxygen species. Additionally, significant levels of genotoxic damage, as determined by the comet assay, were also induced. When the expression of different stress-response genes was determined, for both AgNPs and silver nitrate, significant upregulation of Sod2 and p53 genes was observed. Our results confirm for the first time that in an in vivo model as Drosophila, AgNPs are able to cross the intestinal barriers and produce primary DNA damage (comet assay) via oxidative stress induction. In general, the effects induced by silver nitrate were more pronounced than those induced by AgNPs what would emphasize the role of silver ions in the observed effects. Environ. Mol. Mutagen. 60:277-285, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Sara Romero
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
39
|
Shahzad K, Manzoor F. Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 2019; 44:1-11. [PMID: 30760084 DOI: 10.1080/01480545.2018.1525393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While nanoparticles (NPs) can be used as insecticides by themselves, they can also be carriers for insecticidal chemicals. Existing literature suggests that the smaller the NP size, the greater the toxicity and penetration into the insect's body. Nonetheless, there is a lack of literature pertaining to the mode of action within insects. This review article summarizes the currently available entomological studies on the mechanisms of NP-insect interactions. Externally, NPs affect pigmentation and integrity of the cuticle, while internally they induce immune responses and alter gene expression leading to altered protein, lipid, and carbohydrate metabolism along with cellular toxicity that impairs development and reproduction of the insect. Consequently, insects are incapacitated due to the disruption of the nutrient intake, production of reactive oxygen species and altered biochemical activity while some NPs can promote growth and development as well as diminish the effects of nontarget toxicity.
Collapse
Affiliation(s)
- Kiran Shahzad
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
40
|
Barik BK, Mishra M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 2018; 13:258-284. [DOI: 10.1080/17435390.2018.1530393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
41
|
Priyam A, Singh PP, Gehlout S. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:704. [PMID: 30542324 PMCID: PMC6277880 DOI: 10.3389/fendo.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has enabled the development of innovative technologies and products for several industrial sectors. Their unique physicochemical and size-dependent properties make the engineered nanomaterials (ENMs) superior for devising solutions for various research and development sectors, which are otherwise unachievable by their bulk forms. However, the remarkable advantages mediated by ENMs and their applications have also raised concerns regarding their possible toxicological impacts on human health. The actual issue stems from the absence of systematic data on ENM exposure-mediated health hazards. In this direction, a comprehensive exploration on the health-related consequences, especially with respect to endocrine disruption-related metabolic disorders, is largely lacking. The reasons for the rapid increase in diabetes and obesity in the modern world remain largely unclear, and epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may influence the incidence of metabolic diseases. Functional similarities, such as mimicking natural hormonal actions, have been observed between the endocrine-disrupting chemicals (EDCs) and ENMs, which supports the view that different types of NMs may be capable of altering the physiological activity of the endocrine system. Disruption of the endocrine system leads to hormonal imbalance, which may influence the development and pathogenesis of metabolic disorders, particularly type 2 diabetes mellitus (T2DM). Evidence from many in vitro, in vivo and epidemiological studies, suggests that ENMs generally exert deleterious effects on the molecular/hormonal pathways and the organ systems involved in the pathogenesis of T2DM. However, the available data from several such studies are not congruent, especially because of discrepancies in study design, and therefore need to be carefully examined before drawing meaningful inferences. In this review, we discuss the outcomes of ENM exposure in correlation with the development of T2DM. In particular, the review focuses on the following sub-topics: (1) an overview of the sources of human exposure to NMs, (2) systems involved in the uptake of ENMs into human body, (3) endocrine disrupting engineered nanomaterials (EDENMs) and mechanisms underlying the pathogenesis of T2DM, (4) evidence of the role of EDENMs in the pathogenesis of T2DM from in vitro, in vivo and epidemiological studies, and (5) conclusions and perspectives.
Collapse
Affiliation(s)
| | - Pushplata Prasad Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | | |
Collapse
|
42
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
43
|
Benelli G. Mode of action of nanoparticles against insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12329-12341. [PMID: 29611126 DOI: 10.1007/s11356-018-1850-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 05/14/2023]
Abstract
The employment of nanoparticles obtained through various synthesis routes as novel pesticides recently attracted high research attention. An impressive number of studies have been conducted to test their toxic potential against a wide number of arthropod pests and vectors, with major emphasis on mosquitoes and ticks. However, precise information on the mechanisms of action of nanoparticles against insects and mites are limited, with the noteworthy exception of silica, alumina, silver, and graphene oxide nanoparticles on insects, while no information is available for mites. Here, I summarize current knowledge about the mechanisms of action of nanoparticles against insects. Both silver and graphene oxide nanoparticles have a significant impact on insect antioxidant and detoxifying enzymes, leading to oxidative stress and cell death. Ag nanoparticles also reduced acetylcholinesterase activity, while polystyrene nanoparticles inhibited CYP450 isoenzymes. Au nanoparticles can act as trypsin inhibitors and disrupt development and reproduction. Metal nanoparticles can bind to S and P in proteins and nucleic acids, respectively, leading to a decrease in membrane permeability, therefore to organelle and enzyme denaturation, followed by cell death. Besides, Ag nanoparticles up- and downregulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure. The toxicity of SiO2 and Al2O3 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration. In the final section, insect nanotoxicology research trends are critically discussed, outlining major challenges to predict the ecotoxicological consequences arising from the real-world use of nanoparticles as pesticides.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| |
Collapse
|
44
|
Shonouda M, Osman W. Ultrastructural alterations in sperm formation of the beetle, Blaps polycresta (Coleoptera: Tenebrionidae) as a biomonitor of heavy metal soil pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7896-7906. [PMID: 29299863 DOI: 10.1007/s11356-017-1172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Little is known about ultrastructural alterations induced by heavy metals pollution in insects. Therefore, the main objective of the present study is to elucidate ultrastructural changes in sperm formation of the tenebrionid beetle, Blaps polycresta as a biomonitor of heavy metal soil pollution. Metal percentages in testicular tissues of adult insects collected from reference and polluted sites were estimated using energy-dispersive X-ray microanalysis (EDX). Only cadmium, among eight detected metals, showed significantly higher percentages in the polluted testes compared with the reference ones. Ultrastructure investigation revealed severe alterations both in spermatogenic and spermiogenic stages of the polluted insects. Some cells were totally eroded. No spermatozoa were observed in all the examined cysts. Most degenerations were confined to the flagella of spermatids having enlarged vacuolated cytoplasm and malformed mitochondrial derivatives. Groups of multiple axial filaments were appeared in the form of bi-and tetra-flagellate spermatids. Electron dense vesicles were observed in almost all stages of the polluted testes. It is a novel trend in which ultrastructural alterations in sperm formation of insects could be used as a promising biomonitoring and risk assessment tool for heavy metal soil pollution.
Collapse
Affiliation(s)
- Mourad Shonouda
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wafaa Osman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
45
|
Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 2018; 8:2445. [PMID: 29402973 PMCID: PMC5799281 DOI: 10.1038/s41598-018-20728-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in the household, medical and industrial sectors due to their effective bactericidal activities and unique plasmonic properties. Despite the promising advantages, safety concerns have been raised over the usage of AgNPs because they pose potential hazards. However, the mechanistic basis behind AgNPs toxicity, particularly the sublethal effects at the organismal level, has remained unclear. In this study, we used a powerful in vivo platform Drosophila melanogaster to explore a wide spectrum of adverse effects exerted by dietary AgNPs at the organismal, cellular and molecular levels. Lethal doses of dietary AgNPs caused developmental delays and profound lethality in developing animals and young adults. In contrast, exposure to sublethal doses, while not deadly to developing animals, shortened the adult lifespan and compromised their tolerance to oxidative stress. Importantly, AgNPs mechanistically resulted in tissue-wide accumulation of reactive oxygen species (ROS) and activated the Nrf2-dependent antioxidant pathway, as demonstrated by an Nrf2 activity reporter in vivo. Finally, dietary AgNPs caused a variety of ROS-mediated stress responses, including apoptosis, DNA damage, and autophagy. Altogether, our study suggests that lethal and sublethal doses of AgNPs, have acute and chronic effects, respectively, on development and longevity by inducing ROS-mediated stress responses.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Ying-Jang Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
- Department of Biomedical Informatics, Asia University, No. 500, Lioufeng Road, Wufeng District, Taichung City, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung City, Taiwan.
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
46
|
Pappus SA, Mishra M. A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:311-322. [DOI: 10.1007/978-3-319-72041-8_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Jampílek J, Kráľová K. Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Raj A, Shah P, Agrawal N. Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 2017; 7:15617. [PMID: 29142316 PMCID: PMC5688153 DOI: 10.1038/s41598-017-15645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Among several nanoparticles, silver nanoparticles (AgNPs) are extensively used in a wide variety of consumer products due to its unique antimicrobial property. However, dosage effect of AgNPs on behavior and metabolic activity in an in vivo condition is not well studied. Therefore, to elucidate the impact of AgNPs on behavior and metabolism, systematic and detailed dosages study of AgNPs was performed by rearing Drosophila melanogaster on food without and with AgNPs. We found that dietary intake of AgNPs at early larval stage leads to behavioral abnormalities such as poor crawling and climbing ability of larvae and adults respectively. Interestingly, intake of higher dosage of AgNPs at larval stage significantly altered metabolic activity that includes lipid, carbohydrate and protein levels in adult flies. Further, detailed analysis revealed that AgNPs causes remarkable reduction in the number of lipid droplets (LDs) which are lipid storage organelles in Drosophila. We also observed an increased production of reactive oxygen species (ROS) in AgNPs ingested larval tissues. These results strongly imply that higher dosage of AgNPs ingestion from early larval stage of Drosophila is inimical and thereby draws concern towards the usage of AgNPs in consumer goods.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Prasanna Shah
- Acropolis Institute of Technology and Research, Indore, 453771, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
49
|
Raj A, Shah P, Agrawal N. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study. PLoS One 2017; 12:e0178051. [PMID: 28542630 PMCID: PMC5443555 DOI: 10.1371/journal.pone.0178051] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/06/2017] [Indexed: 11/18/2022] Open
Abstract
Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, India
| | - Prasanna Shah
- Acropolis Institute of Technology and Research, Indore, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
50
|
Liu W, Worms IAM, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, Vidaud C, Rollin-Genetet F. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(i), corona formation and enzymatic activity. NANOSCALE 2017; 9:6581-6594. [PMID: 28474724 DOI: 10.1039/c7nr01075c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The release of Ag(i) from silver nanoparticles (AgNPs) unintentionally spread in the environment is suspected to impair some key biological functions. In comparison with AgNO3, in-depth investigations were carried out into the interactions between citrate-coated AgNPs (20 nm) and two metalloproteins, intracellular metallothionein 1 (MT1) and plasmatic ceruloplasmin (Cp), both involved in metal homeostasis. These were chosen for their physiological relevance and the diversity of their various native metals bound because of thiol groups and/or their structural differences. Transmission electron microscopy (TEM), and dynamic light scattering (DLS), UV-vis and circular dichroism (CD) spectroscopies were used to study the effects of such intricate interactions on AgNP dissolution and proteins in terms of metal exchanges and structural modifications. The isolation of the different populations formed together with on-line quantifications of their metal content were performed by asymmetrical flow field-flow fractionation (AF4) linked to inductively coupled plasma mass spectrometry (ICP-MS). For the 2 proteins, Ag(i) dissolved from the AgNPs, substituted for the native metal, to different extents and with different types of dynamics for the corona formed: the MT1 rapidly surrounded the AgNPs with the transient reticulate corona thus promoting their dissolution associated with the metal substitution, whereas the Cp established a more stable layer around the AgNPs, with a limited substitution of Cu and a decrease in its ferroxidase activity. The accessibility and lability of the metal binding sites inside these proteins and their relative affinities for Ag(i) are discussed, taking into account the structural characteristics of the proteins.
Collapse
Affiliation(s)
- Wei Liu
- CEA, DRF-BIAM, Site de Marcoule, F-30207 Bagnols-sur-Cèze, France.
| | | | | | | | | | | | | | | |
Collapse
|