1
|
Patel TR, Welch CM. The Science of Cholesteatoma. Otolaryngol Clin North Am 2024:S0030-6665(24)00119-1. [PMID: 39353746 DOI: 10.1016/j.otc.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cholesteatoma is a potential end-stage outcome of chronic ear infections that can result in the destruction of temporal bone structures with potential resultant hearing loss, vertigo, and intracranial infectious complications. There is currently no treatment apart from surgery for this condition, and despite years of study, the histopathogenesis of this disease remains poorly understood. This review is intended to summarize our accumulated knowledge of the mechanisms of cholesteatoma development and the underlying molecular biology. Attention will be directed particularly to recent developments, covering many potential pharmacologic targets that could be used to treat this disease in the future.
Collapse
Affiliation(s)
- Tirth R Patel
- Division of Otology/Neurotology-Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1500 Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Christopher M Welch
- Division of Otology/Neurotology-Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1500 Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Mohammadzadeh Boukani L, Ezzati M, Ferdowsi Khosroshahi A, Kheirjou R. The effect of acellular scaffold loaded with Wharton's jelly-derived stem cells and mineral pitch on healing of burn model in rat. Cell Tissue Bank 2024; 25:785-804. [PMID: 38869670 DOI: 10.1007/s10561-024-10143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Severe burns often result in an exacerbated inflammatory response, which can contribute to further injury. This inflammatory response may lead to an increased risk of infection, multiple organ failure, and death. This study aimed to investigate the potential of reducing inflammation to enhance burn wound healing in rats using ovine's small intestinal submucosa as a carrier for Wharton's jelly mesenchymal stem cells (WJ-MSCs) and Mineral Pitch (MP). A rat burn model was developed, and the animals were divided into four groups: control group: burn, placebo group: scaffold-treated burn, cell experimental group: WJ-MSCs seeded scaffold-treated burn, and cell and MP experimental group: scaffolds loaded with WJ-MSCs and MP-treated burn. After treating the wounds in the relevant groups and sampling them on days 5, 14 and 21, histological and pathological parameters, and the expression of genes involved in angiogenesis and epithelialization were evaluated. The study results revealed several findings in the burn wounds. These included changes in mast cell populations, a decrease in inflammatory neutrophils and lymphocytes, an increase in fibroblasts and blood vessels, and upregulation of angiogenesis and epithelialization genes. These changes collectively contributed to enhanced wound healing in cell and MP experimental group compared to the other groups. The findings suggest that scaffolds loaded with Wharton's jelly-derived stem cells and MP can serve as engineered tools to modulate inflammatory conditions during the burn wound healing process. These interventions can improve burn wound management and promote better outcomes.
Collapse
Affiliation(s)
| | - Maryam Ezzati
- Hospital Administration Research Center, Sari Branch, Islamic Azad University, Sari, Iran
- Department of Obstetrics and Gynecology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Ogawa S, Ishii T, Otani T, Inai Y, Matsuura T, Inai T. JNK inhibition enhances cell-cell adhesion impaired by desmoglein 3 gene disruption in keratinocytes. Histochem Cell Biol 2024; 161:345-357. [PMID: 38227055 DOI: 10.1007/s00418-023-02264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
c-Jun NH2-terminal protein kinase (JNK) and p38 are stress-activated mitogen-activated protein kinases (MAPK) that are phosphorylated by various stimuli. It has been reported that the loss of desmoglein (DSG) 3, a desmosomal transmembrane core molecule, in keratinocytes impairs cell-cell adhesion accompanied by p38 MAPK activation. To understand the biological role of DSG3 in desmosomes and its relationship with stress-activated MAPKs, we established DSG3 knockout keratinocytes (KO cells). Wild-type cells showed a linear localization of DSG1 to cell-cell contacts, whereas KO cells showed a remarkable reduction despite the increased protein levels of DSG1. Cell-cell adhesion in KO cells was impaired over time, as demonstrated by dispase-based dissociation assays. The linear localization of DSG1 to cell-cell contacts and the strength of cell-cell adhesion were promoted by the pharmacological inhibition of JNK. Conversely, pharmacological activation of JNK, but not p38 MAPK, in wild-type cells reduced the linear localization of DSG1 in cell-cell contacts. Our data indicate that DSG1 and DSG2 in KO cells cannot compensate for the attenuation of cell-cell adhesion strength caused by DSG3 deficiency and that JNK inhibition restores the strength of cell-cell adhesion by increasing the linear localization of DSG1 in cell-cell contacts in KO cells. Inhibition of JNK signaling may improve cell-cell adhesion in diseases in which DSG3 expression is impaired.
Collapse
Affiliation(s)
- Shuhei Ogawa
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Ishii
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, 247-0056, Japan
| | - Takahito Otani
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yuko Inai
- Division of General Dentistry, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsuura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| |
Collapse
|
4
|
Lückstädt W, Rathod M, Möbus L, Bub S, Lucius R, Elsner F, Spindler V, Arnold P. CD109 drives pro-tumorigenic cell properties in human non-small cell lung cancer through interaction with desmoglein-2. RESEARCH SQUARE 2024:rs.3.rs-4102385. [PMID: 38562713 PMCID: PMC10984026 DOI: 10.21203/rs.3.rs-4102385/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI) anchored cell surface protein, expressed on epithelial and endothelial cells, CD4+ and CD8+ T-cells, and premature lymphocytes. CD109 interacts with different cell surface receptors and thereby modulates intracellular signaling pathways, which ultimately changes cellular functions. One well-studied example is the interaction of CD109 with the TGFβ/TGFβ-receptor complex at the cell surface. CD109 silences intracellular SMAD2/3 signaling and targets TGFβ/TGFβ-receptor to the endosomal/lysosomal compartment. In recent years, CD109 emerged as a tumor marker for different tumor entities and expression of CD109 could be linked to adverse outcome in patients. In this study, we show that silencing of CD109 in human non-small cell lung cancer (NSCLC) cells, returns these cells to an epithelial like growth phenotype. On the transcriptional level, we describe changes in cell-cell contact and epithelial-mesenchymal transition associated gene clusters. At the cell surface, we identify desmoglein-2 (DSG2) as a new interaction partner of CD109 and demonstrate CD109 dependent targeting of DSG2 to the apical cell surface, where it forms desmosomes between apical and basal cell poles. Both, CD109 and DSG2 are genetic risk factors, linked to reduced overall survival in lung adenocarcinoma patients (subtype of NSCLC). In this study, we show the expression of both proteins in the same tumor and suggest a new CD109-DSG2 axis in NSCLC patients that could present a targetable therapeutic option in the future.
Collapse
Affiliation(s)
| | - Maitreyi Rathod
- Department of Biomedicine, University of Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Möbus
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE,), Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Simon Bub
- Anatomical Institute, Kiel University, Germany
| | | | - Felix Elsner
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
5
|
Verkerk AJMH, Andrei D, Vermeer MCSC, Kramer D, Schouten M, Arp P, Verlouw JAM, Pas HH, Meijer HJ, van der Molen M, Oberdorf-Maass S, Nijenhuis M, Romero-Herrera PH, Hoes MF, Bremer J, Slotman JA, van den Akker PC, Diercks GFH, Giepmans BNG, Stoop H, Saris JJ, van den Ouweland AMW, Willemsen R, Hublin JJ, Dean MC, Hoogeboom AJM, Silljé HHW, Uitterlinden AG, van der Meer P, Bolling MC. Disruption of TUFT1, a Desmosome-Associated Protein, Causes Skin Fragility, Woolly Hair, and Palmoplantar Keratoderma. J Invest Dermatol 2024; 144:284-295.e16. [PMID: 37716648 DOI: 10.1016/j.jid.2023.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 09/18/2023]
Abstract
Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.
Collapse
Affiliation(s)
- Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marloes Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost A M Verlouw
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Hillegonda J Meijer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Silke Oberdorf-Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Pedro H Romero-Herrera
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Chaire de Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, Paris, France
| | - M Christopher Dean
- Centre for Human Origins Research, Natural History Museum, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
6
|
Uchechukwu CF, Anyaduba UL, Udekwu CC, Orababa OQ, Kade AE. Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications. J Gen Virol 2023; 104. [PMID: 37815458 DOI: 10.1099/jgv.0.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.
Collapse
Affiliation(s)
- Chidiebere F Uchechukwu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | | | | | | |
Collapse
|
7
|
Fuchs M, Radeva MY, Spindler V, Vielmuth F, Kugelmann D, Waschke J. Cytoskeletal anchorage of different Dsg3 pools revealed by combination of hybrid STED/SMFS-AFM. Cell Mol Life Sci 2023; 80:25. [PMID: 36602635 PMCID: PMC9816259 DOI: 10.1007/s00018-022-04681-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.
Collapse
Affiliation(s)
- Michael Fuchs
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Volker Spindler
- Department of Biomedicine and Institute of Anatomy, University of Basel, Basel, Switzerland
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniela Kugelmann
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
8
|
Kugelmann D, Anders M, Sigmund AM, Egu DT, Eichkorn RA, Yazdi AS, Sárdy M, Hertl M, Didona D, Hashimoto T, Waschke J. Role of ADAM10 and ADAM17 in the Regulation of Keratinocyte Adhesion in Pemphigus Vulgaris. Front Immunol 2022; 13:884248. [PMID: 35844545 PMCID: PMC9279611 DOI: 10.3389/fimmu.2022.884248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The severe autoimmune blistering disease Pemphigus vulgaris (PV) is mainly caused by autoantibodies (IgG) against desmoglein (Dsg) 3 and Dsg1. The mechanisms leading to the development of blisters are not fully understood, but intracellular signaling seems to play an important role. Sheddases ADAM10 and ADAM17 are involved in the turnover of the desmosomal cadherin Dsg2 and ADAM10 has been shown to contribute to acantholysis in a murine pemphigus model. In the present study, we further examined the role of ADAM10 and ADAM17 both in keratinocyte adhesion and in the pathogenesis of PV. First, we found that inhibition of ADAM10 enhanced adhesion of primary human keratinocytes but not of immortalized keratinocytes. In dissociation assays, inhibition of ADAM10 shifted keratinocyte adhesion towards a hyperadhesive state. However, ADAM inhibition did neither modulate protein levels of Dsg1 and Dsg3 nor activation of EGFR at Y1068 and Y845. In primary human keratinocytes, inhibition of ADAM10, but not ADAM17, reduced loss of cell adhesion and fragmentation of Dsg1 and Dsg3 immunostaining in response to a PV1-IgG from a mucocutaneous PV patient. Similarly, inhibition of ADAM10 in dissociation assay decreased fragmentation of primary keratinocytes induced by a monoclonal antibody against Dsg3 and by PV-IgG from two other patients both suffering from mucosal PV. However, such protective effect was not observed in both cultured cells and ex vivo disease models, when another mucocutaneous PV4-IgG containing more Dsg1 autoantibodies was used. Taken together, ADAM10 modulates both hyperadhesion and PV-IgG-induced loss of cell adhesion dependent on the autoantibody profile.
Collapse
Affiliation(s)
- Daniela Kugelmann
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Maresa Anders
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Anna M. Sigmund
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Desalegn T. Egu
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ramona A. Eichkorn
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- *Correspondence: Jens Waschke,
| |
Collapse
|
9
|
Hiermaier M, Kugelmann D, Radeva MY, Didona D, Ghoreschi K, Farzan S, Hertl M, Waschke J. Pemphigus Foliaceus Autoantibodies Induce Redistribution Primarily of Extradesmosomal Desmoglein 1 in the Cell Membrane. Front Immunol 2022; 13:882116. [PMID: 35634274 PMCID: PMC9134081 DOI: 10.3389/fimmu.2022.882116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The autoimmune dermatosis pemphigus foliaceus (PF) is predominantly caused by IgG autoantibodies against the desmosomal cadherin desmoglein (Dsg) 1. The exact mechanisms that lead to the characteristic epidermal blistering are not yet fully understood. In the present study, we used a variety of biophysical methods to examine the fate of membrane-bound Dsg1 after incubation with PF patients' IgG. Dispase-based dissociation assays confirmed that PF-IgG used for this study reduced intercellular adhesion in a manner dependent on phospholipase C (PLC)/Ca2+ and extracellular signal-regulated kinase (ERK) 1/2 signaling. Atomic force microscopy (AFM) revealed that Dsg1 binding on single molecule level paralleled effects on keratinocyte adhesion under the different conditions. Stimulated emission depletion (STED) super-resolution microscopy was used to investigate the localization of Dsg1 after PF-IgG incubation for 24 h. Under control conditions, Dsg1 was found to be in part co-localized with desmoplakin and thus inside of desmosomes as well as extra-desmosomal along the cell border. Incubation with PF-IgG reduced the extra-desmosomal Dsg1 fraction. In line with this, fluorescence recovery after photobleaching (FRAP) experiments demonstrated a strongly reduced mobility of Dsg1 in the cell membrane after PF-IgG treatment indicating remaining Dsg1 molecules were primarily located inside desmosomes. Mechanistically, experiments confirmed the involvement of PLC/Ca2+ since inhibition of PLC or 1,4,5-trisphosphate (IP3) receptor to reduce cytosolic Ca2+ reverted the effects of PF-IgG on Dsg1 intra-membrane mobility and localization. Taken together, our findings suggest that during the first 24 h PF-IgG induce redistribution predominantly of membrane-bound extradesmosomal Dsg1 in a PLC/Ca2+ dependent manner whereas Dsg1-containing desmosomes remain.
Collapse
Affiliation(s)
- Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Daniela Kugelmann
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Mariya Y. Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Dermatology, University Medical Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Solimani Farzan
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| |
Collapse
|
10
|
Yeruva S, Waschke J. Structure and regulation of desmosomes in intercalated discs: Lessons from epithelia. J Anat 2022; 242:81-90. [PMID: 35128661 PMCID: PMC9773171 DOI: 10.1111/joa.13634] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
For electromechanical coupling of cardiomyocytes, intercalated discs (ICDs) are pivotal as highly specialized intercellular contact areas. ICD consists of adhesive contacts, such as desmosomes and adherens junctions (AJs) that are partially intermingled and thereby form an area composita to provide mechanical strength, as well as gap junctions (GJ) and sodium channels for excitation propagation. In contrast, in epithelia, mixed junctions with features of desmosomes and AJs are regarded as transitory primarily during the formation of desmosomes. The anatomy of desmosomes is defined by a typical ultrastructure with dense intracellular plaques anchoring the cadherin-type adhesion molecules to the intermediate filament cytoskeleton. Desmosomal diseases characterized by impaired adhesive and signalling functions of desmosomal contacts lead to arrhythmogenic cardiomyopathy when affecting cardiomyocytes and cause pemphigus when manifesting in keratinocytes or present as cardiocutaneous syndromes when both cell types are targeted by the disease, which underscores the high biomedical relevance of these cell contacts. Therefore, comparative analyses regarding the structure and regulation of desmosomal contacts in cardiomyocytes and epithelial cells are helpful to better understand disease pathogenesis. In this brief review, we describe the structural properties of ICD compared to epithelial desmosomes and suggest that mechanisms regulating adhesion may at least in part be comparable. Also, we discuss whether phenomena such as hyperadhesion or the bidirectional regulation of desmosomes to serve as signalling hubs in epithelial cells may also be relevant for ICD.
Collapse
Affiliation(s)
- Sunil Yeruva
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| | - Jens Waschke
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| |
Collapse
|
11
|
Miguel MCB, Julio TA, Vernal S, de Paula NA, Lieber A, Roselino AM. Autoantibodies against desmoglein 2 are not pathogenic in pemphigus. An Bras Dermatol 2022; 97:145-156. [PMID: 35058080 PMCID: PMC9073259 DOI: 10.1016/j.abd.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 06/11/2021] [Indexed: 11/01/2022] Open
|
12
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
13
|
Wanuske M, Brantschen D, Schinner C, Stüdle C, Walter E, Hiermaier M, Vielmuth F, Waschke J, Spindler V. Clustering of desmosomal cadherins by desmoplakin is essential for cell-cell adhesion. Acta Physiol (Oxf) 2021; 231:e13609. [PMID: 33354837 DOI: 10.1111/apha.13609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022]
Abstract
AIM Desmoplakin (Dp) is a crucial component of the desmosome, a supramolecular cell junction complex anchoring intermediate filaments. The mechanisms how Dp modulates cell-cell adhesion are only partially understood. Here, we studied the impact of Dp on the function of desmosomal adhesion molecules, desmosome turnover and intercellular adhesion. METHODS CRISPR/Cas9 was used for gene editing of human keratinocytes which were characterized by Western blot and immunostaining. Desmosomal ultrastructure and function were assessed by electron microscopy and cell adhesion assays. Single molecule binding properties and localization of desmosomal cadherins were studied by atomic force microscopy and super-resolution imaging. RESULTS Knockout (ko) of Dp impaired cell cohesion to drastically higher extents as ko of another desmosomal protein, plakoglobin (Pg). In contrast to Pg ko, desmosomes were completely absent in Dp ko. Binding properties of the desmosomal adhesion molecules desmocollin (Dsc) 3 and desmoglein (Dsg) 3 remained unaltered under loss of Dp. Dp was required for assembling desmosomal cadherins into large clusters, as Dsg2 and Dsc3, adhesion molecules primarily localized within desmosomes, were redistributed into small puncta in the cell membrane of Dp ko cells. Additional silencing of desmosomal cadherins in Dp ko did not further increase loss of intercellular adhesion. CONCLUSION Our data demonstrate that Dp is essential for desmosome formation but does not influence intercellular adhesion on the level of individual cadherin binding properties. Rather, macro-clustering of desmosomal adhesion molecules through Dp is crucial. These results may help to better understand severe diseases which are caused by Dp dysfunction.
Collapse
Affiliation(s)
- Marie‐Therès Wanuske
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | | | - Camilla Schinner
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Chiara Stüdle
- Department of Biomedicine University of Basel Basel Switzerland
| | - Elias Walter
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Matthias Hiermaier
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Franziska Vielmuth
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Jens Waschke
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Volker Spindler
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| |
Collapse
|
14
|
Lin ZC, Hwang TL, Huang TH, Tahara K, Trousil J, Fang JY. Monovalent antibody-conjugated lipid-polymer nanohybrids for active targeting to desmoglein 3 of keratinocytes to attenuate psoriasiform inflammation. Theranostics 2021; 11:4567-4584. [PMID: 33754014 PMCID: PMC7978323 DOI: 10.7150/thno.56995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
To improve the treatment of psoriasiform inflammation, we developed actively targeted nanocarriers loaded with the phosphodiesterase 4 inhibitor AN2728. Methods: Phospholipid-poly(lactic-co-glycolic acid) nanohybrids were prepared and conjugated with monovalent anti-desmoglein 3 antibody to bind keratinocytes. Results: The actively targeted nanohybrids were 229 nm in mean size with a nearly neutral surface charge. Flow cytometry and confocal microscopy showed a 9-fold increase in keratinocyte uptake of targeted nanohybrids relative to non-targeted nanoparticles. The nanoparticles localized mainly in lysosomes after internalization. AN2728-loaded antibody-conjugated nanocarriers inhibited cytokine/chemokine overexpression in activated keratinocytes without affecting cell viability. The targeted nanohybrids also suppressed neutrophil migration by reducing CXCL1 and CXCL2 release from keratinocytes. Following subcutaneous administration in mice, the nanohybrids distributed to the epidermis and hair follicles. In a psoriasis-like skin mouse model, the actively targeted nanoparticles were superior to free drug and non-targeted nanoparticles in mitigating skin inflammation. Intervention with the targeted nanosystem reduced the epidermal thickness of the psoriasiform lesion from 191 to 42 µm, decreased the Psoriasis Area Severity Index by 74%, restored barrier function, and returned chemokine levels to baseline. Conclusions: Our developed nanosystem was safe and demonstrated efficient targeting properties for the treatment of cutaneous inflammation.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
15
|
Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients. Acta Physiol (Oxf) 2021; 231:e13492. [PMID: 32419327 DOI: 10.1111/apha.13492] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and Ulcerative colitis (UC) have a complex and multifactorial pathogenesis which is incompletely understood. A typical feature closely associated with clinical symptoms is impaired intestinal epithelial barrier function. Mounting evidence suggests that desmosomes, which together with tight junctions (TJ) and adherens junctions (AJ) form the intestinal epithelial barrier, play a distinct role in IBD pathogenesis. This is based on the finding that desmoglein (Dsg) 2, a cadherin-type adhesion molecule of desmosomes, is required for maintenance of intestinal barrier properties both in vitro and in vivo, presumably via Dsg2-mediated regulation of TJ. Mice deficient for intestinal Dsg2 show increased basal permeability and are highly susceptible to experimental colitis. In several cohorts of IBD patients, intestinal protein levels of Dsg2 are reduced and desmosome ultrastructure is altered suggesting that Dsg2 is involved in IBD pathogenesis. In addition to its adhesive function, Dsg2 contributes to enterocyte cohesion and intestinal barrier function. Dsg2 is also involved in enterocyte proliferation, barrier differentiation and induction of apoptosis, in part by regulation of p38MAPK and EGFR signalling. In IBD, the function of Dsg2 appears to be compromised via p38MAPK activation, which is a critical pathway for regulation of desmosomes and is associated with keratin phosphorylation in IBD patients. In this review, the current findings on the role of Dsg2 as a novel promising target to prevent loss of intestinal barrier function in IBD patients are discussed.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Kevin Boerner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Faculty of Medicine Ludwig Maximilians University Munich Munich Germany
| |
Collapse
|
16
|
Sigmund AM, Steinert LS, Egu DT, Bayerbach FC, Waschke J, Vielmuth F. Dsg2 Upregulation as a Rescue Mechanism in Pemphigus. Front Immunol 2020; 11:581370. [PMID: 33193387 PMCID: PMC7655986 DOI: 10.3389/fimmu.2020.581370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
In pemphigus vulgaris (PV), autoantibodies directed against the desmosomal cadherin desmoglein (Dsg) 3 cause loss of intercellular adhesion. It is known that Dsg3 interactions are directly inhibited by autoantibody binding and that Dsg2 is upregulated in epidermis of PV patients. Here, we investigated whether heterophilic Dsg2-Dsg3 interactions occur and would modulate PV pathogenesis. Dsg2 was upregulated in PV patients’ biopsies and in a human ex vivo pemphigus skin model. Immunoprecipitation and cell-free atomic force microscopy (AFM) experiments demonstrated heterophilic Dsg2-Dsg3 interactions. Similarly, in Dsg3-deficient keratinocytes with severely disturbed intercellular adhesion Dsg2 was upregulated in the desmosome containing fraction. AFM revealed that Dsg2-Dsg3 heterophilic interactions showed binding frequency, strength, Ca2+-dependency and catch-bond behavior comparable to homophilic Dsg3-Dsg3 or homophilic Dsg2-Dsg2 interactions. However, heterophilic Dsg2-Dsg3 interactions had a longer lifetime compared to homophilic Dsg2-Dsg2 interactions and PV autoantibody-induced direct inhibition was significantly less pronounced for heterophilic Dsg2-Dsg3 interactions compared to homophilic Dsg3 interactions. In contrast, a monoclonal anti-Dsg2 inhibitory antibody reduced heterophilic Dsg2-Dsg3 and homophilic Dsg2-Dsg2 binding to the same degree and further impaired intercellular adhesion in Dsg3-deficient keratinocytes. Taken together, the data demonstrate that Dsg2 undergoes heterophilic interactions with Dsg3, which may attenuate autoantibody-induced loss of keratinocyte adhesion in pemphigus.
Collapse
Affiliation(s)
- Anna M Sigmund
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Letyfee S Steinert
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Desalegn T Egu
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska C Bayerbach
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jens Waschke
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Vielmuth
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
17
|
Hiermaier M, Kliewe F, Schinner C, Stüdle C, Maly IP, Wanuske MT, Rötzer V, Endlich N, Vielmuth F, Waschke J, Spindler V. The Actin-Binding Protein α-Adducin Modulates Desmosomal Turnover and Plasticity. J Invest Dermatol 2020; 141:1219-1229.e11. [PMID: 33098828 DOI: 10.1016/j.jid.2020.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Intercellular adhesion is essential for tissue integrity and homeostasis. Desmosomes are abundant in the epidermis and the myocardium-tissues, which are under constantly changing mechanical stresses. Yet, it is largely unclear whether desmosomal adhesion can be rapidly adapted to changing demands, and the mechanisms underlying desmosome turnover are only partially understood. In this study we show that the loss of the actin-binding protein α-adducin resulted in reduced desmosome numbers and prevented the ability of cultured keratinocytes or murine epidermis to withstand mechanical stress. This effect was not primarily caused by decreased levels or impaired adhesive properties of desmosomal molecules but rather by altered desmosome turnover. Mechanistically, reduced cortical actin density in α-adducin knockout keratinocytes resulted in increased mobility of the desmosomal adhesion molecule desmoglein 3 and impaired interactions with E-cadherin, a crucial step in desmosome formation. Accordingly, the loss of α-adducin prevented increased membrane localization of desmoglein 3 in response to cyclic stretch or shear stress. Our data demonstrate the plasticity of desmosomal molecules in response to mechanical stimuli and unravel a mechanism of how the actin cytoskeleton indirectly shapes intercellular adhesion by restricting the membrane mobility of desmosomal molecules.
Collapse
Affiliation(s)
- Matthias Hiermaier
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Camilla Schinner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chiara Stüdle
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - I Piotr Maly
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marie-Therès Wanuske
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vera Rötzer
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Franziska Vielmuth
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
18
|
Fuchs M, Sigmund AM, Waschke J, Vielmuth F. Desmosomal Hyperadhesion Is Accompanied with Enhanced Binding Strength of Desmoglein 3 Molecules. Biophys J 2020; 119:1489-1500. [PMID: 33031738 DOI: 10.1016/j.bpj.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Intercellular adhesion of keratinocytes depends critically on desmosomes that, during maturation, acquire a hyperadhesive and thus Ca2+ independent state. Here, we investigated the roles of desmoglein (Dsg) 3 and plakophilins (Pkps) in hyperadhesion. Atomic force microscopy single molecule force mappings revealed increased Dsg3 molecules but not Dsg1 molecules binding strength in murine keratinocytes. However, keratinocytes lacking Dsg3 or Pkp1 or 3 revealed reduced Ca2+ independency. In addition, Pkp1- or 3-deficient keratinocytes did not exhibit changes in Dsg3 binding on the molecular level. Further, wild-type keratinocytes showed increased levels of Dsg3 oligomers during acquisition of hyperadhesion, and Pkp1 deficiency abolished the formation of Ca2+ independent Dsg3 oligomers. In concordance, immunostaining for Dsg1 but not for Dsg3 was reduced after 24 h of Ca2+ chelation in an ex vivo human skin model, suggesting that desmosomal cadherins may have different roles during acquisition of hyperadhesion. Taken together, these data indicate that hyperadhesion may not be a state acquired by entire desmosomes but rather is paralleled by enhanced binding of specific Dsg isoforms such as Dsg3, a process for which plaque proteins including Pkp 1 and 3 are required as well.
Collapse
Affiliation(s)
- Michael Fuchs
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anna Magdalena Sigmund
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
19
|
Shoykhet M, Trenz S, Kempf E, Williams T, Gerull B, Schinner C, Yeruva S, Waschke J. Cardiomyocyte adhesion and hyperadhesion differentially require ERK1/2 and plakoglobin. JCI Insight 2020; 5:140066. [PMID: 32841221 PMCID: PMC7526536 DOI: 10.1172/jci.insight.140066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart disease often caused by mutations in genes coding for desmosomal proteins, including desmoglein-2 (DSG2), plakoglobin (PG), and desmoplakin (DP). Therapy is based on symptoms and limiting arrhythmia, because the mechanisms by which desmosomal components control cardiomyocyte function are largely unknown. A new paradigm could be to stabilize desmosomal cardiomyocyte adhesion and hyperadhesion, which renders desmosomal adhesion independent from Ca2+. Here, we further characterized the mechanisms behind enhanced cardiomyocyte adhesion and hyperadhesion. Dissociation assays performed in HL-1 cells and murine ventricular cardiac slice cultures allowed us to define a set of signaling pathways regulating cardiomyocyte adhesion under basal and hyperadhesive conditions. Adrenergic signaling, activation of PKC, and inhibition of p38MAPK enhanced cardiomyocyte adhesion, referred to as positive adhesiotropy, and induced hyperadhesion. Activation of ERK1/2 paralleled positive adhesiotropy, whereas adrenergic signaling induced PG phosphorylation at S665 under both basal and hyperadhesive conditions. Adrenergic signaling and p38MAPK inhibition recruited DSG2 to cell junctions. In PG-deficient mice with an AC phenotype, only PKC activation and p38MAPK inhibition enhanced cardiomyocyte adhesion. Our results demonstrate that cardiomyocyte adhesion can be stabilized by different signaling mechanisms, which are in part offset in PG-deficient AC. Desmosome mediated cardiomyocyte adhesion, crucial in the pathology of arrhythmogenic cardiomyopathy, is differentially regulated by multiple signaling mechanisms that depend either on ERK1/2 or plakoglobin.
Collapse
Affiliation(s)
- Maria Shoykhet
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Trenz
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
20
|
Herlin MK, Le VQ, Højland AT, Ernst A, Okkels H, Petersen AC, Petersen MB, Pedersen IS. Whole-exome sequencing identifies a GREB1L variant in a three-generation family with Müllerian and renal agenesis: a novel candidate gene in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. A case report. Hum Reprod 2020; 34:1838-1846. [PMID: 31424080 DOI: 10.1093/humrep/dez126] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/14/2022] Open
Abstract
The aetiology of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, characterized by uterovaginal agenesis in 46,XX women, remains poorly understood. Since familial occurrences are rare, genetic findings reported so far only apply to a minority of mainly sporadic cases and most studies have not included other family members enabling segregation analysis. Herein, we report on the investigation of a unique three-generation family of two female cousins with MRKH syndrome and unilateral renal agenesis (RA) and two deceased male relatives with RA. We performed whole-exome sequencing (WES) in eight family members leading to the identification of a novel pathogenic (CADD = 33) c.705G>T missense variant in GREB1L, a gene recently identified as a novel cause of RA. Previous reports include several cases of female fetuses with bilateral RA and uterus agenesis, which support GREB1L as an important gene in both kidney and female genital tract development. The pedigree is compatible with autosomal dominant inheritance with incomplete penetrance following a parent-origin-specific manner, which could be due to imprinting. To our knowledge, this is the first investigation of a larger MRKH syndrome pedigree using WES, and we suggest GREB1L as a novel and promising candidate gene in the aetiology of MRKH syndrome.
Collapse
Affiliation(s)
- Morten K Herlin
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Pediatrics and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Vang Q Le
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Allan T Højland
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Anja Ernst
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegårdsgade 3, 9000 Aalborg, Denmark
| | - Michael B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Inge S Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| |
Collapse
|
21
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. HIV, progestins, genital epithelial barrier function, and the burden of objectivity†. Biol Reprod 2020; 103:318-322. [PMID: 32561906 PMCID: PMC7401028 DOI: 10.1093/biolre/ioaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Contributions from a diverse set of scientific disciplines will be needed to help individuals make fully informed decisions regarding contraceptive choices least likely to promote HIV susceptibility. This commentary recaps contrasting interpretations of results from the Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial, a study that compared HIV risk in women using the progestin-only injectable contraceptive depot medroxyprogesterone acetate (DMPA) vs. two other contraceptive choices. It also summarizes results from basic and translational research that establish biological plausibility for earlier clinical studies that identified enhanced HIV susceptibility in women using DMPA.
Collapse
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Schinner C, Erber BM, Yeruva S, Schlipp A, Rötzer V, Kempf E, Kant S, Leube RE, Mueller TD, Waschke J. Stabilization of desmoglein-2 binding rescues arrhythmia in arrhythmogenic cardiomyopathy. JCI Insight 2020; 5:130141. [PMID: 32376797 DOI: 10.1172/jci.insight.130141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/08/2020] [Indexed: 12/28/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a genetic disease causing arrhythmia and sudden cardiac death with only symptomatic therapy available at present. Mutations of desmosomal proteins, including desmoglein-2 (Dsg2) and plakoglobin (Pg), are the major cause of AC and have been shown to lead to impaired gap junction function. Recent data indicated the involvement of anti-Dsg2 autoantibodies in AC pathogenesis. We applied a peptide to stabilize Dsg2 binding similar to a translational approach to pemphigus, which is caused by anti-desmoglein autoantibodies. We provide evidence that stabilization of Dsg2 binding by a linking peptide (Dsg2-LP) is efficient to rescue arrhythmia in an AC mouse model immediately upon perfusion. Dsg2-LP, designed to cross-link Dsg2 molecules in proximity to the known binding pocket, stabilized Dsg2-mediated interactions on the surface of living cardiomyocytes as revealed by atomic force microscopy and induced Dsg2 oligomerization. Moreover, Dsg2-LP rescued disrupted cohesion induced by siRNA-mediated Pg or Dsg2 depletion or l-tryptophan, which was applied to impair overall cadherin binding. Dsg2-LP rescued connexin-43 mislocalization and conduction irregularities in response to impaired cardiomyocyte cohesion. These results demonstrate that stabilization of Dsg2 binding by Dsg2-LP can serve as a novel approach to treat arrhythmia in patients with AC.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Markus Erber
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Angela Schlipp
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Vera Rötzer
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Julius-Maximilians-Universität, Würzburg, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
23
|
Fuchs M, Foresti M, Radeva MY, Kugelmann D, Keil R, Hatzfeld M, Spindler V, Waschke J, Vielmuth F. Plakophilin 1 but not plakophilin 3 regulates desmoglein clustering. Cell Mol Life Sci 2019; 76:3465-3476. [PMID: 30949721 PMCID: PMC11105395 DOI: 10.1007/s00018-019-03083-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering. As revealed by atomic force microscopy (AFM), both Pkp-deficient keratinocyte cell lines showed reduced membrane availability and binding frequency of Dsg1 and 3 at cell borders. Extracellular crosslinking and AFM cluster mapping demonstrated that Pkp1 but not Pkp3 is required for Dsg3 clustering. Accordingly, Dsg3 overexpression reconstituted cluster formation in Pkp3- but not Pkp1-deficient keratinocytes as shown by AFM and STED experiments. Taken together, these data demonstrate that both Pkp1 and 3 regulate Dsg membrane availability, whereas Pkp1 but not Pkp3 is required for Dsg3 clustering.
Collapse
Affiliation(s)
- Michael Fuchs
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Marco Foresti
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Daniela Kugelmann
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Rene Keil
- Division of Pathobiochemistry, Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Division of Pathobiochemistry, Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Waschke
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany.
| | - Franziska Vielmuth
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany.
| |
Collapse
|
24
|
Radeva MY, Walter E, Stach RA, Yazdi AS, Schlegel N, Sarig O, Sprecher E, Waschke J. ST18 Enhances PV-IgG-Induced Loss of Keratinocyte Cohesion in Parallel to Increased ERK Activation. Front Immunol 2019; 10:770. [PMID: 31057535 PMCID: PMC6478701 DOI: 10.3389/fimmu.2019.00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Pemphigus is an autoimmune blistering disease targeting the desmosomal proteins desmoglein (Dsg) 1 and Dsg3. Recently, a genetic variant of the Suppression of tumorigenicity 18 (ST18) promoter was reported to cause ST18 up-regulation, associated with pemphigus vulgaris (PV)-IgG-mediated increase in cytokine secretion and more prominent loss of keratinocyte cohesion. Here we tested the effects of PV-IgG and the pathogenic pemphigus mouse anti-Dsg3 antibody AK23 on cytokine secretion and ERK activity in human keratinocytes dependent on ST18 expression. Without ST18 overexpression, both PV-IgG and AK23 induced loss of keratinocyte cohesion which was accompanied by prominent fragmentation of Dsg3 immunostaining along cell borders. In contrast, release of pro-inflammatory cytokines such as IL-1α, IL-6, TNFα, and IFN-γ was not altered significantly in both HaCaT and primary NHEK cells. These experiments indicate that cytokine expression is not strictly required for loss of keratinocyte cohesion. Upon ST18 overexpression, fragmentation of cell monolayers increased significantly in response to autoantibody incubation. Furthermore, production of IL-1α and IL-6 was enhanced in some experiments but not in others whereas release of TNF-α dropped significantly upon PV-IgG application in both EV- and ST18-transfected HaCaT cells. Additionally, in NHEK, application of PV-IgG but not of AK23 significantly increased ERK activity. In contrast, ST18 overexpression in HaCaT cells augmented ERK activation in response to both c-IgG and AK23 but not PV-IgG. Because inhibition of ERK by U0126 abolished PV-IgG- and AK23-induced loss of cell cohesion in ST18-expressing cells, we conclude that autoantibody-induced ERK activation was relevant in this scenario. In summary, similar to the situation in PV patients carrying ST18 polymorphism, overexpression of ST18 enhanced keratinocyte susceptibility to autoantibody-induced loss of cell adhesion, which may be caused in part by enhanced ERK signaling.
Collapse
Affiliation(s)
- Mariya Y Radeva
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Elias Walter
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ramona Alexandra Stach
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Amir S Yazdi
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany.,Department of Dermatology, RWTH Aachen, Aachen, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Paediatric Surgery, Julius-Maximilians-Universität, Würzburg, Germany
| | - Ofer Sarig
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
25
|
Kumar C, Song S, Jiang L, He X, Zhao Q, Pu Y, Malhi KK, Kamboh AA, Ma Y. Sequence Characterization of DSG3 Gene to Know Its Role in High-Altitude Hypoxia Adaptation in the Chinese Cashmere Goat. Front Genet 2018; 9:553. [PMID: 30510564 PMCID: PMC6254015 DOI: 10.3389/fgene.2018.00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
The Tibetan cashmere goat is one of the main goat breeds used by people living in the plateau. It exhibits the distinct phenotypic characteristics observed in lowland goats, allowing them to adapt to the challenging conditions at high altitudes. It provides an ideal model for understanding the genetic mechanisms underlying high-altitude adaptation and hypoxia-related diseases. Our previous exome sequencing of five Chinese cashmere breeds revealed a candidate gene, DSG3 (Desmoglein 3), responsible for the high-altitude adaptation of the Tibetan goat. However, the whole DSG3 gene (44 kbp) consisting of 16 exons in the goat genome was not entirely covered by the exome sequencing. In this study, we resequenced all the 16 exons of the DSG3 gene in ten Chinese native goat populations. Twenty-seven SNP variants were found between the lowland and highland goat populations. The genetic distance (FST) of significant SNPs between the lowland and highland populations ranged from 0.42 to 0.58. By using correlation coefficient analysis, linkage disequilibrium, and haplotype network construction, we found three non-synonymous SNPs (R597E, T595I, and G572S) in exon 5 and two synonymous SNPs in exons 8 and 16 in DSG3. These mutations significantly segregated high- and low-altitude goats in two clusters, indicating the contribution of DSG3 to the high-altitude hypoxia adaptation in the Tibetan goat.
Collapse
Affiliation(s)
- Chandar Kumar
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam, Pakistan
| | - Shen Song
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanwar Kumar Malhi
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University, Tando Jam, Pakistan
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University, Tando Jam, Pakistan
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Inhibition of N-glycosylation by tunicamycin attenuates cell-cell adhesion via impaired desmosome formation in normal human epidermal keratinocytes. Biosci Rep 2018; 38:BSR20171641. [PMID: 30291216 PMCID: PMC6259015 DOI: 10.1042/bsr20171641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 01/12/2023] Open
Abstract
N-Glycosylation affects protein functions such as location, stability, and susceptibility to proteases. Desmosomes in keratinocytes are essential to maintain epidermal tissue integrity to protect against environmental insults. However, it is not yet known whether N-glycosylation affects desmosomal functions in primary keratinocytes. Tunicamycin is an inhibitor of N-glycosylation that has been a useful tool in glycobiology. Therefore, we investigated the effect of inhibiting N-glycosylation by tunicamycin treatment on desmosomes in primary keratinocytes. In our experiments, cell–cell adhesive strength was reduced in tunicamycin-treated primary keratinocytes. TEM showed that desmosome formation was impaired by tunicamycin. Desmogleins (Dsgs) 1 and 3, which constitute the core structure of desmosomes, were well transported to the cell–cell borders, but the amount decreased and showed an aberrant distribution at the cell borders in tunicamycin-treated keratinocytes. The stability of both desmoglein proteins was also reduced, and they were degraded through both proteasomal and lysosomal pathways, although inhibiting degradation did not restore the cell–cell adhesion. Finally, tunicamycin induced desmosomal instability, enhancing their disassembly. In conclusion, these results indicate that N-glycosylation is critical to the desmosome complex to maintain cell–cell adhesive strength in primary keratinocytes.
Collapse
|
27
|
Shafraz O, Rübsam M, Stahley SN, Caldara AL, Kowalczyk AP, Niessen CM, Sivasankar S. E-cadherin binds to desmoglein to facilitate desmosome assembly. eLife 2018; 7:37629. [PMID: 29999492 PMCID: PMC6066328 DOI: 10.7554/elife.37629] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023] Open
Abstract
Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans (between opposing cells) and cis (on the same cell surface) conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| | - Matthias Rübsam
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| |
Collapse
|
28
|
Schlögl E, Radeva MY, Vielmuth F, Schinner C, Waschke J, Spindler V. Keratin Retraction and Desmoglein3 Internalization Independently Contribute to Autoantibody-Induced Cell Dissociation in Pemphigus Vulgaris. Front Immunol 2018; 9:858. [PMID: 29922278 PMCID: PMC5996934 DOI: 10.3389/fimmu.2018.00858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 01/12/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune disease characterized by blister formation of the skin and mucous membranes and is caused by autoantibodies against desmoglein (Dsg) 1 and Dsg3. Dsg1 and Dsg3 are linked to keratin filaments in desmosomes, adhering junctions abundant in tissues exposed to high levels of mechanical stress. The binding of the autoantibodies leads to internalization of Dsg3 and a collapse of the keratin cytoskeleton-yet, the relevance and interdependence of these changes for loss of cell-cell adhesion and blistering is poorly understood. In live-cell imaging studies, loss of the keratin network at the cell periphery was detectable starting after 60 min of incubation with immunoglobulin G fractions of PV patients (PV-IgG). These rapid changes correlated with loss of cell-cell adhesion detected by dispase-based dissociation assays and were followed by a condensation of keratin filaments into thick bundles after several hours. Dsg3 internalization started at 90 min of PV-IgG treatment, thus following the early keratin changes. By inhibiting casein kinase 1 (CK-1), we provoked keratin alterations resembling the effects of PV-IgG. Although CK-1-induced loss of peripheral keratin network correlated with loss of cell cohesion and Dsg3 clustering in the membrane, it was not sufficient to trigger the internalization of Dsg3. However, additional incubation with PV-IgG was effective to promote Dsg3 loss at the membrane, indicating that Dsg3 internalization is independent from keratin alterations. Vice versa, inhibiting Dsg3 internalization did not prevent PV-IgG-induced keratin retraction and only partially rescued cell cohesion. Together, keratin changes appear very early after autoantibody binding and temporally overlap with loss of cell cohesion. These early alterations appear to be distinct from Dsg3 internalization, suggesting a crucial role for initial loss of cell cohesion in PV.
Collapse
Affiliation(s)
- Elisabeth Schlögl
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Camilla Schinner
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Volker Spindler
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Vielmuth F, Walter E, Fuchs M, Radeva MY, Buechau F, Magin TM, Spindler V, Waschke J. Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus. Front Immunol 2018; 9:528. [PMID: 29616033 PMCID: PMC5868517 DOI: 10.3389/fimmu.2018.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of intercellular adhesion in wt cells and restored baseline cell cohesion in keratin-deficient cells, we conclude that p38MAPK signaling is (i) critical for regulation of cell adhesion, (ii) regulated by keratins, and (iii) targets both keratin-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elias Walter
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Fuchs
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mariya Y Radeva
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fanny Buechau
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Volker Spindler
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
30
|
Spindler V, Waschke J. Pemphigus-A Disease of Desmosome Dysfunction Caused by Multiple Mechanisms. Front Immunol 2018; 9:136. [PMID: 29449846 PMCID: PMC5799217 DOI: 10.3389/fimmu.2018.00136] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/16/2018] [Indexed: 02/01/2023] Open
Abstract
Pemphigus is a severe autoimmune-blistering disease of the skin and mucous membranes caused by autoantibodies reducing desmosomal adhesion between epithelial cells. Autoantibodies against the desmosomal cadherins desmogleins (Dsgs) 1 and 3 as well as desmocollin 3 were shown to be pathogenic, whereas the role of other antibodies is unclear. Dsg3 interactions can be directly reduced by specific autoantibodies. Autoantibodies also alter the activity of signaling pathways, some of which regulate cell cohesion under baseline conditions and alter the turnover of desmosomal components. These pathways include Ca2+, p38MAPK, PKC, Src, EGFR/Erk, and several others. In this review, we delineate the mechanisms relevant for pemphigus pathogenesis based on the histology and the ultrastructure of patients’ lesions. We then dissect the mechanisms which can explain the ultrastructural hallmarks detectable in pemphigus patient skin. Finally, we reevaluate the concept that the spectrum of mechanisms, which induce desmosome dysfunction upon binding of pemphigus autoantibodies, finally defines the clinical phenotype.
Collapse
Affiliation(s)
- Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
31
|
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, Gniadecki R, Hertl M, López-Zabalza MJ, Lotti R, Pincelli C, Pittelkow M, Schmidt E, Sinha AA, Sprecher E, Grando SA. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol 2018; 25:839-846. [PMID: 27305362 DOI: 10.1111/exd.13106] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology of Tufts University and Center for Blistering Diseases, Boston, MA, USA
| | - Marco Carrozzo
- School of Dental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Frédéric Caux
- Department of Dermatology, University Paris 13, Avicenne Hospital, APHP, Bobigny, France
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, Vic., Australia
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agustín España Alonso
- Department of Dermatology, School of Medicine, University Clinic of Navarra, University of Navarra, Navarra, Spain
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Roberta Lotti
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
32
|
Vielmuth F, Wanuske MT, Radeva MY, Hiermaier M, Kugelmann D, Walter E, Buechau F, Magin TM, Waschke J, Spindler V. Keratins Regulate the Adhesive Properties of Desmosomal Cadherins through Signaling. J Invest Dermatol 2017; 138:121-131. [PMID: 28899688 DOI: 10.1016/j.jid.2017.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 11/17/2022]
Abstract
Tightly controlled intercellular adhesion is crucial for the integrity and function of the epidermis. The keratin filament cytoskeleton anchors desmosomes, supramolecular complexes required for strong intercellular adhesion. We tested whether keratin filaments control cell adhesion by regulating the adhesive properties of desmosomal cadherins such as desmoglein (Dsg) 3. Atomic force microscopy and fluorescence recovery after photobleaching experiments showed reduced Dsg3 adhesive forces and membrane stability in murine keratinocytes lacking all keratin filaments. Impairment of the actin cytoskeleton also resulted in decreased Dsg3 immobilization but did not affect Dsg3 binding properties, indicating that the latter are exclusively controlled by keratins. Reduced binding forces were dependent on p38 mitogen-activated protein kinase activity, which was deregulated in keratin-deficient cells. In contrast, inhibition of protein kinase C signaling, which is known to be controlled by keratins, promoted and spatially stabilized Dsg3-mediated interactions in the membrane. These results show a previously unreported mechanism for how keratins stabilize intercellular adhesion on the level of single desmosomal adhesion molecules.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie-Therès Wanuske
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mariya Y Radeva
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Matthias Hiermaier
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniela Kugelmann
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Elias Walter
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Fanny Buechau
- Institute of Biology and Translational Center for Regenerative Medicine, Sächsischer Inkubator für klinische Translation, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, Sächsischer Inkubator für klinische Translation, University of Leipzig, Leipzig, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
33
|
Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Sci Rep 2017; 7:6329. [PMID: 28740231 PMCID: PMC5524837 DOI: 10.1038/s41598-017-06713-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn’s disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins.
Collapse
|
34
|
Nagasawa A, Wakisaka E, Kidena H, Nomura T, Hotta M, Taguchi H, Moriwaki S. t-Flavanone Improves the Male Pattern of Hair Loss by Enhancing Hair-Anchoring Strength: A Randomized, Double-Blind, Placebo-Controlled Study. Dermatol Ther (Heidelb) 2016; 6:59-68. [PMID: 26897375 PMCID: PMC4799041 DOI: 10.1007/s13555-016-0101-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 11/28/2022] Open
Abstract
Introduction trans-3,4′-Dimethyl-3-hydroxyflavanone (t-flavanone) is a derivative of astilbin that actively stimulates hair growth. The aim of the present study was to identify the mechanisms of action of t-flavanone on hair growth. Methods A double-blind usage test was performed with healthy volunteers who had androgenic alopecia (AGA). The subjects were divided into three groups with equal average baldness. The members in each group applied a vasodilator-containing hair lotion supplemented with either 0, 0.1, or 0.3% (wt) t-flavanone twice a day for 30 weeks. The efficacy of t-flavanone was evaluated based on the parietal global and microscopic images. At week 30, the anchoring strength of hair was measured by the average peak force required for plucking out a single hair in a non-bald area using a digital force gauge. Desmoglein expression in the cultured human hair follicle was analyzed by Western blotting. Results After 30 weeks, t-flavanone significantly improved AGA and enhanced the hair-anchoring strength in a hair diameter-independent manner. Culture of human hair follicles in vitro with t-flavanone resulted in the upregulation of desmoglein protein expression. Conclusions The results of our in vivo and in vitro studies demonstrated that t-flavanone enhanced the cell-cell adhesions in hair follicles; thus, reinforcement of hair rooting may be a mechanism by which t-flavanone promotes hair growth. Funding Kao Corp.
Collapse
Affiliation(s)
- Azumi Nagasawa
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan.
| | - Etsuji Wakisaka
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Hideshi Kidena
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Tomoko Nomura
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Mitsuyuki Hotta
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Hiroyuki Taguchi
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Shigeru Moriwaki
- R&D-Core Technology-Biological Science Research, Kao Corp., 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| |
Collapse
|
35
|
Randall DR, Park PS, Chau JK. Identification of altered protein abundances in cholesteatoma matrix via mass spectrometry-based proteomic analysis. J Otolaryngol Head Neck Surg 2015; 44:50. [PMID: 26608071 PMCID: PMC4660678 DOI: 10.1186/s40463-015-0104-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022] Open
Abstract
Background Cholesteatoma are cyst-like structures lined with a matrix of differentiated squamous epithelium overlying connective tissue. Although epithelium normally exhibits self-limited growth, cholesteatoma matrix erodes mucosa and bone suggesting changes in matrix protein constituents that permit destructive behaviour. Differential proteomic studies can measure and compare the cholesteatoma proteome to normal tissues, revealing protein alterations that may propagate the destructive process. Methods Human cholesteatoma matrix, cholesteatoma-involved ossicles, and normal middle ear mucosa, post-auricular skin, and non-involved ossicles were harvested. These tissues were subjected to multiplex peptide labeling followed by liquid chromatography and tandem mass spectrometry analysis. Relative protein abundances were compared and evaluated for ontologic function and putative involvement in cholesteatoma. Results Our methodology detected 10 764 peptides constituting 1662 unique proteins at 95 % confidence or greater. Twenty-nine candidate proteins were identified in soft tissue analysis, with 29 additional proteins showing altered abundances in bone samples. Ontologic functions and known relevance to cholesteatoma are discussed, with several candidates highlighted for their roles in epithelial integrity, evasion of apoptosis, and immunologic function. Conclusion This study produced an extensive cholesteatoma proteome and identified 58 proteins with altered abundances contributing to disease pathopathysiology. As well, potential biomarkers of residual disease were highlighted. Further investigation into these proteins may provide useful options for novel therapeutics or monitoring disease status.
Collapse
Affiliation(s)
- Derrick R Randall
- Section of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of Calgary, Calgary, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Phillip S Park
- Section of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of Calgary, Calgary, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Justin K Chau
- Section of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of Calgary, Calgary, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, AB, T2N 2T9, Canada.
| |
Collapse
|
36
|
Abstract
BACKGROUND The intestinal epithelium of patients with Crohn's disease (CD) is characterized by defects in permeability and alterations in tight junction morphology sealing the paracellular cleft. Desmosomes are primarily considered to mediate strong intercellular cohesion. Because barrier properties of epithelial cells were shown to depend on the function of the desmosomal adhesion molecule desmoglein 2 (Dsg2), we here investigated the relevance of Dsg2 for CD. METHODS Biopsies from the terminal ileum of 14 patients with CD and 12 healthy controls were investigated for changes in cell adhesion molecules. Two intestinal epithelial cell lines were used for functional studies. A tandem peptide modulating Dsg binding was applied to strengthen Dsg2 interaction. RESULTS Dsg2 but not the adherens junction molecule E-cadherin was strongly reduced in the mucosa of patients with CD. TNF-α, a central cytokine in CD pathogenesis, led to loss of cell cohesion and increased permeability in cultured epithelial cells, which was paralleled by loss of Dsg2 at cell borders, reduction of the tight junction component claudin-1, and upregulation of claudin-2. These effects were mediated at least in part by increased activity of p38MAPK because inhibition of this kinase restored intercellular adhesion and blunted the permeability increase induced by TNF-α. Importantly, stabilizing desmosomal adhesion through tandem peptide ameliorated loss of barrier functions and prevented claudin-2 increase. CONCLUSIONS We show an important role of p38MAPK-mediated regulation of desmosomal adhesion resulting in upregulation of claudin-2 in CD. Our data suggest peptide-mediated strengthening of impaired Dsg2 adhesion as a novel therapeutic approach in CD.
Collapse
|
37
|
Birse K, Arnold KB, Novak RM, McCorrister S, Shaw S, Westmacott GR, Ball TB, Lauffenburger DA, Burgener A. Molecular Signatures of Immune Activation and Epithelial Barrier Remodeling Are Enhanced during the Luteal Phase of the Menstrual Cycle: Implications for HIV Susceptibility. J Virol 2015; 89:8793-805. [PMID: 26085144 PMCID: PMC4524071 DOI: 10.1128/jvi.00756-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/03/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The variable infectivity and transmissibility of HIV/SHIV has been recently associated with the menstrual cycle, with particular susceptibility observed during the luteal phase in nonhuman primate models and ex vivo human explant cultures, but the mechanism is poorly understood. Here, we performed an unbiased, mass spectrometry-based proteomic analysis to better understand the mucosal immunological processes underpinning this observed susceptibility to HIV infection. Cervicovaginal lavage samples (n = 19) were collected, characterized as follicular or luteal phase using days since last menstrual period, and analyzed by tandem mass spectrometry. Biological insights from these data were gained using a spectrum of computational methods, including hierarchical clustering, pathway analysis, gene set enrichment analysis, and partial least-squares discriminant analysis with LASSO feature selection. Of the 384 proteins identified, 43 were differentially abundant between phases (P < 0.05, ≥2-fold change). Cell-cell adhesion proteins and antiproteases were reduced, and leukocyte recruitment (interleukin-8 pathway, P = 1.41E-5) and extravasation proteins (P = 5.62E-4) were elevated during the luteal phase. LASSO/PLSDA identified a minimal profile of 18 proteins that best distinguished the luteal phase. This profile included cytoskeletal elements and proteases known to be involved in cellular movement. Gene set enrichment analysis associated CD4(+) T cell and neutrophil gene set signatures with the luteal phase (P < 0.05). Taken together, our findings indicate a strong association between proteins involved in tissue remodeling and leukocyte infiltration with the luteal phase, which may represent potential hormone-associated mechanisms of increased susceptibility to HIV. IMPORTANCE Recent studies have discovered an enhanced susceptibility to HIV infection during the progesterone-dominant luteal phase of the menstrual cycle. However, the mechanism responsible for this enhanced susceptibility has not yet been determined. Understanding the source of this vulnerability will be important for designing efficacious HIV prevention technologies for women. Furthermore, these findings may also be extrapolated to better understand the impact of exogenous hormone application, such as the use of hormonal contraceptives, on HIV acquisition risk. Hormonal contraceptives are the most widely used contraceptive method in sub-Saharan Africa, the most HIV-burdened area of the world. For this reason, research conducted to better understand how hormones impact host immunity and susceptibility factors important for HIV infection is a global health priority.
Collapse
Affiliation(s)
- Kenzie Birse
- National Lab for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kelly B Arnold
- Department of Biological Engineering and Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard M Novak
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stuart McCorrister
- Mass Spectrometry Core Facility, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Souradet Shaw
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Garrett R Westmacott
- Mass Spectrometry Core Facility, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Terry B Ball
- National Lab for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Medical Microbiology, University of Nairobi, Department of Medical Microbiology, Nairobi, Kenya
| | - Douglas A Lauffenburger
- Department of Biological Engineering and Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam Burgener
- National Lab for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
39
|
Sharma P, Bansal A, Sharma PC. RNA-seq-based transcriptome profiling reveals differential gene expression in the lungs of Sprague-Dawley rats during early-phase acute hypobaric hypoxia. Mol Genet Genomics 2015; 290:2225-40. [PMID: 26050109 DOI: 10.1007/s00438-015-1064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Abstract
Individuals subjected to hypobaric hypoxia at high altitudes may exhibit differential physiological responses in terms of susceptibility and tolerance to the development of hypoxia-related disorders. We studied early-phase gene expression in the lungs of Sprague-Dawley rats exhibiting such differential physiological responses after exposure to acute hypobaric hypoxia for 1 h at a simulated altitude of 9144 m. RNA-seq transcriptome profiling of lung tissues revealed differential gene expression in tolerant and susceptible groups, subsequently validated by qRT-PCR for ten selected differentially expressed genes. The gene expression pattern indicated hypometabolism and negative regulation of vasoconstriction in all groups except susceptible rats, coupled with altered MAPK, p53 and JAK-STAT signaling. Upregulation of early-phase response genes including Dusp1 (dual specificity phosphatase), Cdkn1a (cyclin-dependent kinase inhibitor 1A), Txnip (thioredoxin-interacting protein), Rgs1 (regulator of G-protein signaling 1) and Rgs2 (regulator of G-protein signaling 2) in susceptible rats indicated a progression toward growth arrest and apoptosis. Enhanced expression of cell adhesion molecules, wound healing and repair bioprocesses was observed in tolerant males. Upregulated Kcnj15 (potassium inwardly rectifying channel subfamily j membrane 15) and Vsig4 (V-set and Ig domain containing 4) variants in tolerant females suggested adaptation to hypoxia possibly by fluid reabsorption to avoid edematous conditions and suppression of T cell proliferation to avoid acute lung inflammation. Our study might help in understanding the molecular-physiological mechanisms associated with progressive damage in the lung tissues of susceptible and tissue-protective measures in tolerant rats during acute hypobaric hypoxia.
Collapse
Affiliation(s)
- Priyanka Sharma
- University School of Biotechnology (USBT), Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Anju Bansal
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Timarpur, Lucknow Road, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology (USBT), Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
40
|
Gupta A, Nitoiu D, Brennan-Crispi D, Addya S, Riobo NA, Kelsell DP, Mahoney MG. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion. PLoS One 2015; 10:e0120091. [PMID: 25785582 PMCID: PMC4364902 DOI: 10.1371/journal.pone.0120091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.
Collapse
Affiliation(s)
- Abhilasha Gupta
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Daniela Nitoiu
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Donna Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sankar Addya
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Natalia A. Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David P. Kelsell
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Pietkiewicz P, Gornowicz-Porowska J, Bowszyc-Dmochowska M, Jagielska J, Helak-Łapaj C, Kaczmarek E, Dmochowski M. Discordant expression of desmoglein 2 and 3 at the mRNA and protein levels in nodular and superficial basal cell carcinoma revealed by immunohistochemistry and fluorescent in situ hybridization. Clin Exp Dermatol 2015; 39:628-35. [PMID: 24934917 DOI: 10.1111/ced.12355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common human cancer. It is thought that skewed expression of desmogleins (Dsgs) in BCC may promote tumourigenesis. AIM To comparatively examine expression of Dsg2/Dsg3, using fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC) in BCC subtypes. METHODS In total, 84 frozen sections from patients with various clinical or histological subtypes of BCC were analyzed. Expressions of Dsg2/Dsg3 protein and Dsg2/Dsg3 mRNA were evaluated using IHC and FISH, respectively, in BCC nests and BCC-free epidermis, and then quantitatively measured. RESULTS There was loss of correlation between Dsg2 and Dsg3 (IHC) in nodular and superficial BCC (nBCC, sBCC), and significant correlation between Dsg2 and Dsg3 (FISH) in BCC, but not nBCC and sBCC. CONCLUSIONS Because more prominent aberrations of Dsg2/Dsg3 expression were seen at the protein than at the mRNA level in BCC, these comparative observations indicate greater importance of events at the proteome level than those at the genome level in tumour functional compartments. Different Dsg2/Dsg3 expression in sBCC and nBCC might corroborate the possibility that sBCC and nBCC are separate conditions. These results may contribute to better understanding of the biological behaviour of BCC.
Collapse
Affiliation(s)
- P Pietkiewicz
- Autoimmune Blistering Dermatoses Section, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
42
|
Gholizadeh N, Khoini Poorfar H, TaghaviZenouz A, Vatandoost M, Mehdipour M. Comparison of Serum Autoantibodies to Desmogleins I, III in Patients with Oral Lichen Planus and Healthy Controls. IRANIAN JOURNAL OF PATHOLOGY 2015; 10:136-140. [PMID: 26351474 PMCID: PMC4539751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 04/12/2014] [Indexed: 06/05/2023]
Abstract
BACKGROUND & OBJECTIVE Lichen planus is a mucocutaneous disease which is relatively common and in 30-70% of patients, mucosal lesions can be seen and known as a precancerous lesion but its etiology is not completely understood. Desmogleins I and III are the main desmosomal transmembrane proteins. These proteins have been identified as the autoantigen of the autoimmune disease. The aim of this study was evaluation of serum autoantibodies against desmogleins Ι, ΙΙΙ in oral lichen planus . METHODS We attempted to determine the etiology of this disease with evaluation of these serum factors. Thirty-five patients with oral lichen planus and 35 healthy controls were recruited and tested for serum autoantibodies against desmogleins Ι, ΙΙΙ and indirect immunofluorescence also performed. Data were analyzed by statistical-analytical methods (Independent sample t -test) with using the SPSS.15 software. RESULTS Serum autoantibody against desmoglein Ι had no significant difference in the two groups ( P =0.31 ) but significant increase in serum autoantibody to desmoglein ΙΙΙ was found in patients with oral lichen planus ( P =0.00) . CONCLUSION It seems that autoantibody against desmoglein III has a significant role in the pathogenesis of oral lichen planus.
Collapse
Affiliation(s)
- Narges Gholizadeh
- Dept. of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Khoini Poorfar
- Dept. of Pediatric Hematology and Oncology, Hamadan University of Medical Science, Hamadan, Iran
| | - Ali TaghaviZenouz
- Dept. of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz
| | - Masoumeh Vatandoost
- Dept. of Pediatric Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | - Masoumeh Mehdipour
- Dept. of Oral and Maxillofacial Medicine, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Vielmuth F, Hartlieb E, Kugelmann D, Waschke J, Spindler V. Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:511-20. [PMID: 25510735 DOI: 10.1016/j.nano.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/30/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Eva Hartlieb
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
44
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
45
|
FANG WANGKAI, LIAO LIANDI, ZENG FAMIN, ZHANG PIXIAN, WU JIANYI, SHEN JIAN, XU LIYAN, LI ENMIN. Desmocollin‑2 affects the adhesive strength and cytoskeletal arrangement in esophageal squamous cell carcinoma cells. Mol Med Rep 2014; 10:2358-64. [PMID: 25119898 PMCID: PMC4214350 DOI: 10.3892/mmr.2014.2485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/08/2014] [Indexed: 02/05/2023] Open
Abstract
Desmocollin‑2 (DSC2), a transmembrane glycoprotein belonging to the desmosomal cadherin family, has been found to be differentially expressed in several types of cancer and to be involved in tumor progression. The tumor metastasis suppressing property of DSC2 in esophageal squamous cell carcinoma (ESCC) has been described, however, its contribution to cell cohesion in ESCC remains to be elucidated. In the present study, using RNA interference (RNAi), the expression of DSC2 was silenced in SHEEC and KYSE510 cells. Hanging drop and fragmentation assays were performed to investigate the role of DSC2 in cell‑cell adhesion. Western blot analysis and confocal microscopy were used to analyze the expression and localization of cell adhesion molecules and cytoskeletal arrangement. The results demonstrated that DSC2 knock down by RNAi caused defects in cell‑cell adhesion and a concomitant reduction in desmosomal protein expression and adherens junction molecule distribution. A decrease in the expression of DSC2 caused an increase in free γ‑catenin levels, thus promoting its recruitment to the adherens junction complex. In addition, the RNAi‑mediated inhibition of DSC2 led to keratin intermediate filament retraction and filamentous‑actin cytoskeleton rearrangement. Taken together, these data support our previous findings and the proposal that DSC2 may be involved in the regulation of the invasive behavior of cells by a mechanism that controls cell‑cell attachment and cytoskeleton rearrangement.
Collapse
Affiliation(s)
- WANG-KAI FANG
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LIAN-DI LIAO
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - FA-MIN ZENG
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - PI-XIAN ZHANG
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JIAN-YI WU
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JIAN SHEN
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-YAN XU
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Li-Yan Xu, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Professor En-Min Li, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - EN-MIN LI
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Li-Yan Xu, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Professor En-Min Li, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
46
|
Abstract
Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.
Collapse
Affiliation(s)
- Mohamed Berika
- Department of Anatomy, Faculty of Medicine, Mansoura University , Mansoura City , Egypt
| | | |
Collapse
|
47
|
Schlipp A, Schinner C, Spindler V, Vielmuth F, Gehmlich K, Syrris P, Mckenna WJ, Dendorfer A, Hartlieb E, Waschke J. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc Res 2014; 104:245-57. [DOI: 10.1093/cvr/cvu206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
48
|
Aberrant expression and altered cellular localization of desmosomal and hemidesmosomal proteins are associated with aggressive clinicopathological features of oral squamous cell carcinoma. Virchows Arch 2014; 465:35-47. [PMID: 24849508 DOI: 10.1007/s00428-014-1594-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/22/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Disruption of cell adhesion plays a central role in dedifferentiation, invasion, and metastasis of various cancers. The desmosome and hemidesmosome are anchoring junctions that control cell-cell and cell-matrix adhesion, respectively. To clarify their contributions in mediating the biological properties of oral cancer, we immunohistochemically examined the expression of desmoglein 1 (DSG1), DSG2, DSG3, desmocollin 2 (DSC2), integrin beta 4 (ITGB4), laminin gamma chain 2 (LAMC2), and collagen type 17 alpha 1 (COL17A1) in 51 cases of oral squamous cell carcinoma. On normal oral epithelial cells, DSG1, DSG3, DSC2, and COL17A1 were expressed on the plasma membrane, while ITGB4 and mature LAMC2 were present at the basement membrane. In cancer, the expression of DSG1, DSG3, DSC2, and COL17A1 decreased and internalized to the cytoplasm. Cytoplasmic expression of DSG2, ITGB4, and LAMC2 was induced in the cancer cells facing to the stroma. We scored immunohistochemical expression and correlated this to clinicopathological parameters including histologic differentiation, pattern of invasion, and presence of lymph node metastasis. Decrease of DSG3 and DSC2 expression correlated with a more aggressive cancer phenotype: less differentiated and more invasive histologic features and a higher incidence of nodal metastasis. Lower COL17A1 and higher LAMC2 expression were also associated with a more aggressive phenotype. The present study demonstrates that aberrant expression and altered cellular localization of desmosomal and hemidesmosomal proteins are associated with aggressive clinicopathological features of oral cancer. This reinforces the notion that disturbance of the keratin-associated anchoring junctions confers aggressive features to cancer cells.
Collapse
|
49
|
Hartlieb E, Rötzer V, Radeva M, Spindler V, Waschke J. Desmoglein 2 compensates for desmoglein 3 but does not control cell adhesion via regulation of p38 mitogen-activated protein kinase in keratinocytes. J Biol Chem 2014; 289:17043-53. [PMID: 24782306 DOI: 10.1074/jbc.m113.489336] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1-4) and desmocollin (Dsc1-3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function.
Collapse
Affiliation(s)
- Eva Hartlieb
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Vera Rötzer
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Mariya Radeva
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| |
Collapse
|
50
|
Rötzer V, Breit A, Waschke J, Spindler V. Adducin is required for desmosomal cohesion in keratinocytes. J Biol Chem 2014; 289:14925-40. [PMID: 24711455 DOI: 10.1074/jbc.m113.527127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca(2+) influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.
Collapse
Affiliation(s)
- Vera Rötzer
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Andreas Breit
- the Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich D-80336, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| |
Collapse
|