1
|
Hossain MF, Popsuj S, Vitrinel B, Kaplan NA, Stolfi A, Christiaen L, Ruggiu M. A conserved RNA switch for acetylcholine receptor clustering at neuromuscular junctions in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602308. [PMID: 39005407 PMCID: PMC11245090 DOI: 10.1101/2024.07.05.602308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, neuromuscular synapses rely on clustering of acetylcholine receptors (AChRs) in the muscle plasma membrane, ensuring optimal stimulation by motor neuron-released acetylcholine neurotransmitter. This clustering depends on a complex pathway based on alternative splicing of Agrin mRNAs by the RNA-binding proteins Nova1/2. Neuron-specific expression of Nova1/2 ensures the inclusion of small "Z" exons in Agrin, resulting in a neural-specific form of this extracellular proteoglycan carrying a short peptide motif that is required for binding to Lrp4 receptors on the muscle side, which in turn stimulate AChR clustering. Here we show that this intricate pathway is remarkably conserved in Ciona robusta, a non-vertebrate chordate in the tunicate subphylum. We use in vivo tissue-specific CRISPR/Cas9-mediated mutagenesis and heterologous "mini-gene" alternative splicing assays in cultured mammalian cells to show that Ciona Nova is also necessary and sufficient for Agrin Z exon inclusion and downstream AChR clustering. We present evidence that, although the overall pathway is well conserved, there are some surprising differences in Nova structure-function between Ciona and mammals. We further show that, in Ciona motor neurons, the transcription factor Ebf is a key activator of Nova expression, thus ultimately linking this RNA switch to a conserved, motor neuron-specific transcriptional regulatory network.
Collapse
Affiliation(s)
- Md. Faruk Hossain
- Department of Biological Sciences, St. John’s University, New York, NY, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Burcu Vitrinel
- Department of Biology, New York University, New York, NY, USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lionel Christiaen
- Department of Biology, New York University, New York, NY, USA
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Matteo Ruggiu
- Department of Biological Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
2
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Jiang L, Wang SC, Zhang J, Han FG, Zhao J, Xu Y. Case Report: Congenital Myasthenic Syndrome Presenting with Bilateral Vocal Cord Paralysis Caused by De-Novel Compound Heterozygous MUSK Mutation. Pharmgenomics Pers Med 2023; 16:373-379. [PMID: 37091828 PMCID: PMC10120818 DOI: 10.2147/pgpm.s398071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Background We report the genetic etiology of a case of bilateral vocal cord paralysis in a female infant. Case Description The female infant developed dyspnea after birth, which improved with treatment, allowing her to be discharged from the local hospital. At 2 months of age, the child experienced a recurrence of dyspnea and was treated in a local hospital with interventions such as tracheal intubation and mechanical ventilation. However, as the child continued to suffer from dyspnea, she was transferred to the neonatal intensive care unit of the Children's Hospital affiliated to Zhengzhou University for further treatment. A second electronic nasopharyngoscopy examination revealed bilateral vocal cord paralysis. The child underwent a tracheostomy due to a failure to wean from mechanical ventilation; after surgery, the respirator was effectively removed, and oxygen delivery ceased. The child and her parents underwent genetic testing with next-generation sequencing technology, which revealed that the child had two heterozygous variants in the MUSK gene, namely the c.2287G>A heterozygous mutation (p.Ala763Thr) and the c.790C>T heterozygous mutation. In addition, Sanger sequencing was performed, which confirmed that these two mutations were, respectively, inherited from the mother and father. Conclusion Congenital myasthenic syndrome caused by MUSK gene mutations can present clinically as bilateral vocal cord paralysis in neonates.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Affiliated to Zhengzhou University; Henan Children’s Hospital; Zhengzhou Children’s Hospital, Zhengzhou, 450003, People’s Republic of China
| | - Sheng-Cai Wang
- National Center for Children’s Health, Department of Otolaryngology Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Jie Zhang
- National Center for Children’s Health, Department of Otolaryngology Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Fu-Gen Han
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Affiliated to Zhengzhou University; Henan Children’s Hospital; Zhengzhou Children’s Hospital, Zhengzhou, 450003, People’s Republic of China
| | - Jing Zhao
- National Center for Children’s Health, Department of Otolaryngology Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Ying Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Affiliated to Zhengzhou University; Henan Children’s Hospital; Zhengzhou Children’s Hospital, Zhengzhou, 450003, People’s Republic of China
- Correspondence: Ying Xu, Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Affiliated to Zhengzhou University; Henan Children’s Hospital; Zhengzhou Children’s Hospital, Zhengzhou, 450003, People’s Republic of China, Tel/Fax +86 3718939569373, Email
| |
Collapse
|
4
|
Congenital Ophthalmoplegia and Late-Onset Limb Weakness Caused by MUSK Mutations. J Clin Neuromuscul Dis 2021; 21:222-224. [PMID: 32453097 DOI: 10.1097/cnd.0000000000000277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital myasthenic syndromes are clinically and genetically heterogeneous disorders characterized by a neuromuscular transmission defect. Mutations in novel genes have been described in recent years. Among these, MUSK gene mutations are extremely rare, with only 8 families identified worldwide to date. We report a Spanish case, a carrier of one known hetero-allelic missense mutation and one newly identified MUSK gene variant. Our patient presented with congenital onset ophthalmoplegia and palpebral ptosis associated with limb-girdle weakness and exercise intolerance without prominent fatigability, developed during his twenties. He was misdiagnosed as mitochondrial myopathy because of paraclinic and histologic findings, but detailed clinical examination prompted us to reassess him with repetitive stimulation technique, demonstrating decremental response and suggesting myasthenic syndrome. A genetic study confirmed the clinical diagnosis allowing us to started treatment with excellent clinical response.
Collapse
|
5
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
6
|
Guarino SR, Canciani A, Forneris F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front Mol Biosci 2020; 6:156. [PMID: 31998752 PMCID: PMC6966886 DOI: 10.3389/fmolb.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Synapse formation is a very elaborate process dependent upon accurate coordination of pre and post-synaptic specialization, requiring multiple steps and a variety of receptors and signaling molecules. Due to its relative structural simplicity and the ease in manipulation and observation, the neuromuscular synapse or neuromuscular junction (NMJ)-the connection between motor neurons and skeletal muscle-represents the archetype junction system for studying synapse formation and conservation. This junction is essential for survival, as it controls our ability to move and breath. NMJ formation requires coordinated interactions between motor neurons and muscle fibers, which ultimately result in the formation of a highly specialized post-synaptic architecture and a highly differentiated nerve terminal. Furthermore, to ensure a fast and reliable synaptic transmission following neurotransmitter release, ligand-gated channels (acetylcholine receptors, AChRs) are clustered on the post-synaptic muscle cell at high concentrations in sites opposite the presynaptic active zone, supporting a direct role for nerves in the organization of the post-synaptic membrane architecture. This organized clustering process, essential for NMJ formation and for life, relies on key signaling molecules and receptors and is regulated by soluble extracellular molecules localized within the synaptic cleft. Notably, several mutations as well as auto-antibodies against components of these signaling complexes have been related to neuromuscular disorders. The recent years have witnessed strong progress in the understanding of molecular identities, architectures, and functions of NMJ macromolecules. Among these, prominent roles have been proposed for neural variants of the proteoglycan agrin, its receptor at NMJs composed of the lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific kinase (MuSK), as well as the regulatory soluble synapse-specific protease Neurotrypsin. In this review we summarize the current state of the art regarding molecular structures and (agrin-dependent) canonical, as well as (agrin-independent) non-canonical, MuSK signaling mechanisms that underscore the formation of neuromuscular junctions, with the aim of providing a broad perspective to further stimulate molecular, cellular and tissue biology investigations on this fundamental intercellular contact.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Disorders of FZ-CRD; insights towards FZ-CRD folding and therapeutic landscape. Mol Med 2019; 26:4. [PMID: 31892318 PMCID: PMC6938638 DOI: 10.1186/s10020-019-0129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023] Open
Abstract
The ER is hub for protein folding. Proteins that harbor a Frizzled cysteine-rich domain (FZ-CRD) possess 10 conserved cysteine motifs held by a unique disulfide bridge pattern which attains a correct fold in the ER. Little is known about implications of disease-causing missense mutations within FZ-CRD families. Mutations in FZ-CRD of Frizzled class receptor 4 (FZD4) and Muscle, skeletal, receptor tyrosine kinase (MuSK) and Receptor tyrosine kinase-like orphan receptor 2 (ROR2) cause Familial Exudative Vitreoretinopathy (FEVR), Congenital Myasthenic Syndrome (CMS), and Robinow Syndrome (RS) respectively. We highlight reported pathogenic inherited missense mutations in FZ-CRD of FZD4, MuSK and ROR2 which misfold, and traffic abnormally in the ER, with ER-associated degradation (ERAD) as a common pathogenic mechanism for disease. Our review shows that all studied FZ-CRD mutants of RS, FEVR and CMS result in misfolded proteins and/or partially misfolded proteins with an ERAD fate, thus we coin them as “disorders of FZ-CRD”. Abnormal trafficking was demonstrated in 17 of 29 mutants studied; 16 mutants were within and/or surrounding the FZ-CRD with two mutants distant from FZ-CRD. These ER-retained mutants were improperly N-glycosylated confirming ER-localization. FZD4 and MuSK mutants were tagged with polyubiquitin chains confirming targeting for proteasomal degradation. Investigating the cellular and molecular mechanisms of these mutations is important since misfolded protein and ER-targeted therapies are in development. The P344R-MuSK kinase mutant showed around 50% of its in-vitro autophosphorylation activity and P344R-MuSK increased two-fold on proteasome inhibition. M105T-FZD4, C204Y-FZD4, and P344R-MuSK mutants are thermosensitive and therefore, might benefit from extending the investigation to a larger number of chemical chaperones and/or proteasome inhibitors. Nonetheless, FZ-CRD ER-lipidation it less characterized in the literature and recent structural data sheds light on the importance of lipidation in protein glycosylation, proper folding, and ER trafficking. Current treatment strategies in-place for the conformational disease landscape is highlighted. From this review, we envision that disorders of FZ-CRD might be receptive to therapies that target FZ-CRD misfolding, regulation of fatty acids, and/or ER therapies; thus paving the way for a newly explored paradigm to treat different diseases with common defects.
Collapse
|
8
|
Pinto MV, Saw JL, Milone M. Congenital Vocal Cord Paralysis and Late-Onset Limb-Girdle Weakness in MuSK-Congenital Myasthenic Syndrome. Front Neurol 2019; 10:1300. [PMID: 31920924 PMCID: PMC6934021 DOI: 10.3389/fneur.2019.01300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
A 30-year-old woman with congenital vocal cord paralysis presented for evaluation of fatigable proximal upper limb weakness and difficulty maintaining the neck erect. Neurologic examination showed bilateral asymmetric eyelid ptosis, mild weakness (MRC 4/5), and atrophy of neck extensors and shoulder girdle muscles, whereas lower limb muscle strength was normal. Repetitive nerve stimulation revealed decremental responses in orbicularis oculis and trapezius. Needle electromyography demonstrated myopathic changes in proximal and paraspinal muscles. Acetylcholine receptor and muscle skeletal receptor tyrosine kinase (MuSK) antibodies, creatine kinase (CK), and lactate were negative or normal. Next-generation sequencing detected two heterozygous variants in the MUSK gene. One variant, c.79+2T>G, is a known pathogenic variant, and the other, c.2165T>C (p.V722A), is a novel missense variant, predicted to be pathogenic by in silico analysis. The two variants were proven to be in trans. This case expands the clinical and molecular spectrum of MuSK congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Marcus V Pinto
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jacqui-Lyn Saw
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
9
|
Rodríguez Cruz PM, Cossins J, Cheung J, Maxwell S, Jayawant S, Herbst R, Waithe D, Kornev AP, Palace J, Beeson D. Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Hum Mutat 2019; 41:619-631. [PMID: 31765060 PMCID: PMC7028094 DOI: 10.1002/humu.23949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
MUSK encodes the muscle‐specific receptor tyrosine kinase (MuSK), a key component of the agrin‐LRP4‐MuSK‐DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early‐onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled‐like cysteine‐rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with β2‐adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Judith Cossins
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jonathan Cheung
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susan Maxwell
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sandeep Jayawant
- Department of Paediatric Neurology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical Science Divisions, Medical University of Vienna, Vienna, Austria
| | - Dominic Waithe
- MRC Centre for Computational Biology and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, California
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ, Mei L. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies. Neurol Clin 2019; 36:293-310. [PMID: 29655451 DOI: 10.1016/j.ncl.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed.
Collapse
Affiliation(s)
- Michael H Rivner
- EMG Lab, Augusta University, 1120 15th Street, BP-4390, Augusta, GA 30912, USA.
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66103, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 4017, Kansas City, KS 66160, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, CA-2014, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Murali C, Li D, Grand K, Hakonarson H, Bhoj E. Isolated vocal cord paralysis in two siblings with compound heterozygous variants in MUSK: Expanding the phenotypic spectrum. Am J Med Genet A 2019; 179:655-658. [PMID: 30719842 DOI: 10.1002/ajmg.a.61060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023]
Abstract
The congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders caused by perturbations in signal transduction at the neuromuscular junction. Defects in muscle, skeletal, receptor tyrosine kinase (MuSK) cause two distinct phenotypes: fetal akinesia with multiple congenital anomalies (Fetal akinesia deformation sequence [MIM:208150]) and early onset congenital myasthenia (myasthenic syndrome, congenital, 9, associated with acetylcholine receptor deficiency [MIM:616325]). Myasthenia due to MuSK deficiency has variable clinical features, ranging from a milder presentation of isolated late-onset proximal muscle weakness; to a severe presentation of prenatal-onset diffuse weakness, ophthalmoplegia, respiratory failure, and vocal cord paralysis (VCP). Here, we propose to expand the phenotypic spectrum for MuSK deficiency to include isolated VCP with the absence of other classical myasthenic symptoms. We evaluated two brothers who presented in the neonatal period with respiratory failure secondary to isolated VCP. Research-based exome sequencing revealed biallelic likely pathogenic variants in MUSK (MIM:601296). Both children had normal gross motor and fine motor development. One brother had speech delay, likely due to a combination of tracheostomy status and ankyloglossia. This case report suggests that CMS should be on the differential diagnosis for familial recurrence of VCP.
Collapse
Affiliation(s)
- Chaya Murali
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dong Li
- Department of Pediatrics, Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katheryn Grand
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics, Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Bhoj
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Owen D, Töpf A, Preethish-Kumar V, Lorenzoni PJ, Vroling B, Scola RH, Dias-Tosta E, Geraldo A, Polavarapu K, Nashi S, Cox D, Evangelista T, Dawson J, Thompson R, Senderek J, Laurie S, Beltran S, Gut M, Gut I, Nalini A, Lochmüller H. Recessive variants of MuSK are associated with late onset CMS and predominant limb girdle weakness. Am J Med Genet A 2018; 176:1594-1601. [PMID: 29704306 DOI: 10.1002/ajmg.a.38707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 03/20/2018] [Indexed: 11/07/2022]
Abstract
Congenital myasthenic syndrome (CMS) is a heterogeneous disorder that causes fatigable muscle weakness. CMS has been associated with variants in the MuSK gene and, to date, 16 patients have been reported. MuSK-CMS patients present a different phenotypic pattern of limb girdle weakness. Here, we describe four additional patients and discuss the phenotypic and clinical relationship with those previously reported. Two novel damaging missense variants are described: c.1742T > A; p.I581N found in homozygosis, and c.1634T > C; p.L545P found in compound heterozygosis with p.R166*. The reported patients had predominant limb girdle weakness with symptom onset at 12, 17, 18, and 30 years of age, and the majority exhibited a good clinical response to Salbutamol therapy, but not to esterase inhibitors. Meta-analysis including previously reported variants revealed an increased likelihood of a severe, respiratory phenotype with null alleles. Missense variants exclusively affecting the kinase domain, but not the catalytic site, are associated with late onset. These data refine the phenotype associated with MuSK-related CMS.
Collapse
Affiliation(s)
- David Owen
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Paulo José Lorenzoni
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Rosana Herminia Scola
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elza Dias-Tosta
- Unidade de Neurologia Clínica, Hospital de Base do Distrito Federal, Brasília, Brazil
| | - Argemiro Geraldo
- Serviço de Neurologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Daniel Cox
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Teresinha Evangelista
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Dawson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan Senderek
- Friedrich-Baur-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
15
|
Luan X, Tian W, Cao L. Limb-girdle congenital myasthenic syndrome in a Chinese family with novel mutations in MUSK gene and literature review. Clin Neurol Neurosurg 2016; 150:41-45. [DOI: 10.1016/j.clineuro.2016.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/04/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
|
16
|
MuSK Kinase Activity is Modulated By A Serine Phosphorylation Site in The Kinase Loop. Sci Rep 2016; 6:33583. [PMID: 27666825 PMCID: PMC5035991 DOI: 10.1038/srep33583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022] Open
Abstract
The neuromuscular junction (NMJ) forms when a motor neuron contacts a muscle fibre. A reciprocal exchange of signals initiates a cascade of signalling events that result in pre- and postsynaptic differentiation. At the centre of these signalling events stands muscle specific kinase (MuSK). MuSK activation, kinase activity and subsequent downstream signalling are crucial for NMJ formation as well as maintenance. Therefore MuSK kinase activity is tightly regulated to ensure proper NMJ development. We have identified a novel serine phosphorylation site at position 751 in MuSK that is increasingly phosphorylated upon agrin stimulation. S751 is also phosphorylated in muscle tissue and its phosphorylation depends on MuSK kinase activity. A phosphomimetic mutant of S751 increases MuSK kinase activity in response to non-saturating agrin concentrations . In addition, basal MuSK and AChR phosphorylation as well as AChR cluster size are increased. We believe that the phosphorylation of S751 provides a novel mechanism to relief the autoinhibition of the MuSK activation loop. Such a lower autoinhibition could foster or stabilize MuSK kinase activation, especially during stages when no or low level of agrin are present. Phosphorylation of S751 might therefore represent a novel mechanism to modulate MuSK kinase activity during prepatterning or NMJ maintenance.
Collapse
|
17
|
Sami N, Kumar V, Islam A, Ali S, Ahmad F, Hassan I. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Mol Neurobiol 2016; 54:5085-5106. [PMID: 27544236 DOI: 10.1007/s12035-016-0046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.
Collapse
Affiliation(s)
- Neha Sami
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
18
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
19
|
Selcen D, Ohkawara B, Shen XM, McEvoy K, Ohno K, Engel AG. Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4-Related Myasthenia. JAMA Neurol 2015; 72:889-96. [PMID: 26052878 PMCID: PMC4532561 DOI: 10.1001/jamaneurol.2015.0853] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
IMPORTANCE Congenital myasthenic syndromes (CMS) are heterogeneous disorders. Defining the phenotypic features, genetic basis, and pathomechanisms of a CMS is relevant to prognosis, genetic counseling, and therapy. OBJECTIVES To characterize clinical, structural, electrophysiologic, and genetic features of a CMS and to search for optimal therapy. DESIGN, SETTINGS, AND PARTICIPANTS Two sisters with CMS affecting the limb-girdle muscles were investigated between 2012 and 2014 at an academic medical center by clinical observation, in vitro analysis of neuromuscular transmission, cytochemical and electron microscopy studies of the neuromuscular junction, exome sequencing, expression studies in HEK293 and COS7 cells, and for response to therapy, and they were compared with 15 historical control participants. MAIN OUTCOMES AND MEASURES We identified the disease gene and mutation, confirmed pathogenicity of the mutation by expression studies, and instituted optimal pharmacotherapy. RESULTS Quantitative analysis of single EP regions was done for all 15 control participants and microelectrode studies of neuromuscular transmission and α-bgt binding sites per EP was conducted for 13 control participants. Examination of the older sister's intercostal muscle end plates (EPs) showed them to be abnormally small, with attenuated reactivities for the acetylcholine receptor and acetylcholinesterase. Most EPs had poorly differentiated or degenerate junctional folds, and some appeared denuded of nerve terminals. The amplitude of the EP potential (EPP), the miniature EPP, and the quantal content of the EPP were all markedly reduced. Exome sequencing identified a novel homozygous p.Glu1233Ala mutation in low-density lipoprotein receptor-related protein 4 (LRP4), a coreceptor for agrin to activate muscle-specific tyrosine kinase (MuSK), which is required for EP development and maintenance. Expression studies indicate that the mutation compromises the ability of LRP4 to bind to, phosphorylate, and activate MuSK. Treatment with albuterol sulfate improved the patients' symptoms. A previously identified patient harboring 2 heterozygous mutations in LRP4 had structurally abnormal intercostal EPs but no identifiable defect of neuromuscular transmission at these EPs. CONCLUSIONS AND RELEVANCE We identified a second CMS kinship harboring mutations in LRP4, identified the mechanisms that impair neuromuscular transmission, and mitigated the disease by appropriate therapy.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Giarrana ML, Joset P, Sticht H, Robb S, Steindl K, Rauch A, Klein A. A severe congenital myasthenic syndrome with “dropped head” caused by novel MUSK
mutations. Muscle Nerve 2015; 52:668-73. [DOI: 10.1002/mus.24687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Miriam L. Giarrana
- Department of Paediatric Neurology; University Children's Hospital; Steinwiesstrasse 75 8032 Zürich Switzerland
| | - Pascal Joset
- Institute of Medical Genetics; University of Zurich; Schlieren-Zurich Zurich Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry; Friedrich-Alexander-University Erlangen-Nuremberg; Erlangen Germany
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre; Great Ormond Street Hospital for Children; London UK
| | - Katharina Steindl
- Institute of Medical Genetics; University of Zurich; Schlieren-Zurich Zurich Switzerland
| | - Anita Rauch
- Institute of Medical Genetics; University of Zurich; Schlieren-Zurich Zurich Switzerland
| | - Andrea Klein
- Department of Paediatric Neurology; University Children's Hospital; Steinwiesstrasse 75 8032 Zürich Switzerland
| |
Collapse
|
21
|
Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015; 14:420-34. [PMID: 25792100 PMCID: PMC4520251 DOI: 10.1016/s1474-4422(14)70201-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The congenital myasthenic syndromes (CMS) are a diverse group of genetic disorders caused by abnormal signal transmission at the motor endplate, a special synaptic contact between motor axons and each skeletal muscle fibre. Most CMS stem from molecular defects in the muscle nicotinic acetylcholine receptor, but they can also be caused by mutations in presynaptic proteins, mutations in proteins associated with the synaptic basal lamina, defects in endplate development and maintenance, or defects in protein glycosylation. The specific diagnosis of some CMS can sometimes be reached by phenotypic clues pointing to the mutated gene. In the absence of such clues, exome sequencing is a useful technique for finding the disease gene. Greater understanding of the mechanisms of CMS have been obtained from structural and electrophysiological studies of the endplate, and from biochemical studies. Present therapies for the CMS include cholinergic agonists, long-lived open-channel blockers of the acetylcholine receptor ion channel, and adrenergic agonists. Although most CMS are treatable, caution should be exercised as some drugs that are beneficial in one syndrome can be detrimental in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Effects of electroacupuncture on recovery of the electrophysiological properties of the rabbit gastrocnemius after contusion: an in vivo animal study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:69. [PMID: 25887510 PMCID: PMC4376503 DOI: 10.1186/s12906-015-0601-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 01/09/2023]
Abstract
Background Our preliminary studies indicated that electroacupuncture (EA) at the ST36 and Ashi acupoints could promote regeneration of the rabbit gastrocnemius (GM) by improving microcirculation perfusion, promoting the recovery of myofiber structures, and inhibiting excessive fibrosis. However, the effects of EA on recovery of the electrophysiological properties of the GM after contusion are not yet clear. Thus, the purpose of this study was to investigate the effects of EA at the Zusanli (ST36) and Ashi acupoints with regard to recovery of the electrophysiological properties of the rabbit GM after contusion. Methods Forty-five rabbits were randomly divided into three groups: normal, contusion, and EA. After an acute GM contusion was produced (in rabbits in the contusion and EA groups), rabbits in the EA group were treated with electrostimulation at the ST36 and Ashi acupoints with 0.4 mA (2 Hz) for 15 min. The contusion group received no EA treatment. At different time points (7, 14, and 28 days) after contusion, we performed surface electromyography (EMG) and measured the nerve conduction velocity (NCV) of the GM and the GM branch of the tibial nerve. We also examined acetylcholinesterase (AchE) and Agrin expression in the neuromuscular junction (NMJ) via immunohistochemistry. Results Compared with the contusion group, the EMG amplitude and NCV in rabbits in the EA group were significantly higher at all time points after contusion. AchE and Agrin expression in the EA group were significantly higher than those in the contusion group. Conclusions Our results showed that EA at the ST36 and Ashi acupoints effectively promoted recovery of the electrophysiological properties of the rabbit GM after contusion. The effects of EA were realized by promotion of the regeneration of myofibers and nerve fibers, as well as acceleration of NMJ reconstruction by upregulation of AchE and Agrin expression in the motor endplate area.
Collapse
|
23
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|
24
|
Wilbe M, Ekvall S, Eurenius K, Ericson K, Casar-Borota O, Klar J, Dahl N, Ameur A, Annerén G, Bondeson ML. MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet 2015; 52:195-202. [PMID: 25612909 DOI: 10.1136/jmedgenet-2014-102730] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
Collapse
Affiliation(s)
- Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Eurenius
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Katharina Ericson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Olivera Casar-Borota
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Joakim Klar
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Milhem RM, Al-Gazali L, Ali BR. Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome. Int J Biochem Cell Biol 2015; 60:119-29. [PMID: 25562515 DOI: 10.1016/j.biocel.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/14/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
Muscle, skeletal, receptor tyrosine kinase (MuSK) is a key organizer at the postsynaptic membrane and critical for proper development and maintenance of the neuromuscular junction. Mutations in MUSK result in congenital myasthenic syndrome (CMS). We hypothesized that the CMS-causing missense mutation (P344R), found within the cysteine-rich domain of the protein, will affect its conformational tertiary structure. Consequently, the protein will misfold, get retained in the endoplasmic reticulum (ER) and lose its biological function through degradation by the highly conserved ER associated degradation (ERAD) machinery. We report that P344R-MuSK mutant is trafficking-deficient when expressed at 37°C in HeLa, COS-7 and HEK293 cell lines. It colocalized with the ER marker calnexin in contrast to wild-type MuSK which localized to the plasma membrane. The N-glycosylation status of P344R-MuSK is that of an immature and not properly post-translationally modified protein. Inhibition of protein synthesis showed that the P344R mutant's half-life is shorter than wild-type MuSK protein. Proteasomal inhibition resulted in the stabilization of the mutant protein. The mutant protein is highly ubiquitinated compared to wild-type confirming targeting for proteasomal degradation. The mutant showed around 50% of its in vivo autophosphorylation activity. P344R-MuSK mutant's trafficking defect is correctable by culturing the expressing cells at 27°C. Moreover, chemical compounds namely 2.5% glycerol, 1% dimethyl sulfoxide, 10 μM thapsigargin and 1 μM curcumin improved the maturation and exit of the mutant protein from the ER. These findings open perspectives for potential therapeutic intervention for patients with CMS harboring the P344R-MuSK mutation.
Collapse
Affiliation(s)
- Reham M Milhem
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
26
|
Tan-Sindhunata MB, Mathijssen IB, Smit M, Baas F, de Vries JI, van der Voorn JP, Kluijt I, Hagen MA, Blom EW, Sistermans E, Meijers-Heijboer H, Waisfisz Q, Weiss MM, Groffen AJ. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence. Eur J Hum Genet 2014; 23:1151-7. [PMID: 25537362 PMCID: PMC4538208 DOI: 10.1038/ejhg.2014.273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 01/11/2023] Open
Abstract
Fetal akinesia deformation sequence (FADS) refers to a clinically and genetically heterogeneous group of disorders with congenital malformations related to impaired fetal movement. FADS can result from mutations in CHRNG, CHRNA1, CHRND, DOK7 and RAPSN; however, these genes only account for a minority of cases. Here we identify MUSK as a novel cause of lethal FADS. Fourteen affected fetuses from a Dutch genetic isolate were traced back to common ancestors 11 generations ago. Homozygosity mapping in two fetuses revealed MUSK as a candidate gene. All tested cases carried an identical homozygous variant c.1724T>C; p.(Ile575Thr) in the intracellular domain of MUSK. The carrier frequency in the genetic isolate was 8%, exclusively found in heterozygous carriers. Consistent with the established role of MUSK as a tyrosine kinase that orchestrates neuromuscular synaptogenesis, the fetal myopathy was accompanied by impaired acetylcholine receptor clustering and reduced tyrosine kinase activity at motor nerve endings. A functional assay in myocytes derived from human fetuses confirmed that the variant blocks MUSK-dependent motor endplate formation. Taken together, the results strongly support a causal role of this founder mutation in MUSK, further expanding the gene set associated with FADS and offering new opportunities for prenatal genetic testing.
Collapse
Affiliation(s)
| | - Inge B Mathijssen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Margriet Smit
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Johanna I de Vries
- Department of Obstetrics and Gynaecology, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Irma Kluijt
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Marleen A Hagen
- Department of Obstetrics and Gynaecology, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - Eveline W Blom
- Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
| | - Erik Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- 1] Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands [2] Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander J Groffen
- 1] Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands [2] Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Brown R, Dissanayake KN, Skehel PA, Ribchester RR. Endomicroscopy and electromyography of neuromuscular junctions in situ. Ann Clin Transl Neurol 2014; 1:867-83. [PMID: 25540801 PMCID: PMC4265058 DOI: 10.1002/acn3.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics.
Collapse
Affiliation(s)
- Rosalind Brown
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Kosala N Dissanayake
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Paul A Skehel
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Richard R Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMSs) form a heterogeneous group of genetic diseases characterized by a dysfunction of neuromuscular transmission because of mutations in numerous genes. This review will focus on the causative genes recently identified and on the therapy of CMSs. RECENT FINDINGS Advances in exome sequencing allowed the discovery of a new group of genes that did not code for the known molecular components of the neuromuscular junction, and the definition of a new group of glycosylation-defective CMS. Rather than the specific drugs used, some of them having been known for decades, it is the rigorous therapeutic strategy that is now offered to the patient in relation to the identified mutated gene that is novel and promising. SUMMARY In addition to the above main points, we also present new data on the genes that were already known with an emphasis on the clinic and on animal models that may be of use to understand the pathophysiology of the disease. We also stress not only the diagnosis difficulties between congenital myopathies and CMSs, but also the continuum that may exist between the two.
Collapse
|
29
|
Eymard B, Hantaï D, Fournier E, Nicole S, Sternberg D, Richard P, Fardeau M. Syndromes myasthéniques congénitaux — L’expérience française. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2014. [DOI: 10.1016/s0001-4079(19)31341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Maggi L, Brugnoni R, Scaioli V, Winden TL, Morandi L, Engel AG, Mantegazza R, Bernasconi P. Marked phenotypic variability in two siblings with congenital myasthenic syndrome due to mutations in MUSK. J Neurol 2013; 260:10.1007/s00415-013-7118-5. [PMID: 24122059 PMCID: PMC3984612 DOI: 10.1007/s00415-013-7118-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Foundation IRCCS Neurological Institute "Carlo Besta", Via Celoria 11, 20133, Milan, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bruneteau G, Simonet T, Bauché S, Mandjee N, Malfatti E, Girard E, Tanguy ML, Behin A, Khiami F, Sariali E, Hell-Remy C, Salachas F, Pradat PF, Fournier E, Lacomblez L, Koenig J, Romero NB, Fontaine B, Meininger V, Schaeffer L, Hantaï D. Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. ACTA ACUST UNITED AC 2013; 136:2359-68. [PMID: 23824486 DOI: 10.1093/brain/awt164] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is a typically rapidly progressive neurodegenerative disorder affecting motor neurons leading to progressive muscle paralysis and death, usually from respiratory failure, in 3-5 years. Some patients have slow disease progression and prolonged survival, but the underlying mechanisms remain poorly understood. Riluzole, the only approved treatment, only modestly prolongs survival and has no effect on muscle function. In the early phase of the disease, motor neuron loss is initially compensated for by collateral reinnervation, but over time this compensation fails, leading to progressive muscle wasting. The crucial role of muscle histone deacetylase 4 and its regulator microRNA-206 in compensatory reinnervation and disease progression was recently suggested in a mouse model of amyotrophic lateral sclerosis (transgenic mice carrying human mutations in the superoxide dismutase gene). Here, we sought to investigate whether the microRNA-206-histone deacetylase 4 pathway plays a role in muscle compensatory reinnervation in patients with amyotrophic lateral sclerosis and thus contributes to disease outcome differences. We studied muscle reinnervation using high-resolution confocal imaging of neuromuscular junctions in muscle samples obtained from 11 patients with amyotrophic lateral sclerosis, including five long-term survivors. We showed that the proportion of reinnervated neuromuscular junctions was significantly higher in long-term survivors than in patients with rapidly progressive disease. We analysed the expression of muscle candidate genes involved in the reinnervation process and showed that histone deacetylase 4 upregulation was significantly greater in patients with rapidly progressive disease and was negatively correlated with the extent of muscle reinnervation and functional outcome. Conversely, the proposed regulator of histone deacetylase 4, microRNA-206, was upregulated in both patient groups, but did not correlate with disease progression or reinnervation. We conclude that muscle expression of histone deacetylase 4 may be a key factor for muscle reinnervation and disease progression in patients with amyotrophic lateral sclerosis. Specific histone deacetylase 4 inhibitors may then constitute a therapeutic approach to enhancing motor performance and slowing disease progression in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gaëlle Bruneteau
- APHP, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre référent SLA, Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders caused by genetic defects affecting neuromuscular transmission and leading to muscle weakness accentuated by exertion. The characterization of CMS comprises two complementary steps: establishing the diagnosis and identifying the pathophysiological type of CMS. The combination of clinical, electrophysiological, and morphological studies allows the physician to refer a given CMS to mutation(s) in one of the 18 causative genes discovered to date and, in turn, to classify the CMS according to the location of the mutated proteins at the neuromuscular junction into presynaptic compartment, synaptic basal lamina, and postsynaptic compartment CMS. This complete characterization is essential for counseling and therapy of the patient, depending on the molecular background of the respective CMS. Despite comprehensive characterization, the phenotypic expression of one given gene involved is variable, and the etiology of many CMS remains to be discovered.
Collapse
Affiliation(s)
- Bruno Eymard
- Reference Center for Neuromuscular Diseases, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|