1
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
2
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
3
|
Spafford JD. A governance of ion selectivity based on the occupancy of the "beacon" in one- and four-domain calcium and sodium channels. Channels (Austin) 2023; 17:2191773. [PMID: 37075164 PMCID: PMC10120453 DOI: 10.1080/19336950.2023.2191773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
One of nature's exceptions was discovered when a Cav3 T-type channel was observed to switch phenotype from a calcium channel into a sodium channel by neutralizing an aspartate residue in the high field strength (HFS) +1 position within the ion selectivity filter. The HFS+1 site is dubbed a "beacon" for its location at the entryway just above the constricted, minimum radius of the HFS site's electronegative ring. A classification is proposed based on the occupancy of the HFS+1 "beacon" which correlates with the calcium- or sodium-selectivity phenotype. If the beacon is a glycine, or neutral, non-glycine residue, then the cation channel is calcium-selective or sodium-permeable, respectively (Class I). Occupancy of a beacon aspartate are calcium-selective channels (Class II) or possessing a strong calcium block (Class III). A residue lacking in position of the sequence alignment for the beacon are sodium channels (Class IV). The extent to which animal channels are sodium-selective is dictated in the occupancy of the HFS site with a lysine residue (Class III/IV). Governance involving the beacon solves the quandary the HFS site as a basis for ion selectivity, where an electronegative ring of glutamates at the HFS site generates a sodium-selective channel in one-domain channels but generates a calcium-selective channel in four-domain channels. Discovery of a splice variant in an exceptional channel revealed nature's exploits, highlighting the "beacon" as a principal determinant for calcium and sodium selectivity, encompassing known ion channels composed of one and four domains, from bacteria to animals.
Collapse
Affiliation(s)
- J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
He J, Xu J, Chang Z, Yan J, Zhang L, Qin Y. NALCN is a potential biomarker and therapeutic target in human cancers. Front Genet 2023; 14:1164707. [PMID: 37152978 PMCID: PMC10154523 DOI: 10.3389/fgene.2023.1164707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Sodium leak channel non-selective (NALCN), known as a voltage-independent Na+ channel, is increasingly considered to play vital roles in tumorigenesis and metastasis of human cancers. However, no comprehensive pan-cancer analysis of NALCN has been conducted. Our study aims to explore the potential diagnostic, prognostic and therapeutic value of NALCN in human cancers. Methods: Through comprehensive application of datasets from Human Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Enhanced Version of Tumor Immune Estimation Resource (TIMER2.0), Tumor and Immune System Interaction Database (TISIDB), The University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cBioPortal, GeneMANIA and Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) databases, we explored the potential roles of NALCN in different cancers. The differential expression, prognostic implications, pathological stages and grades, molecular and immune subtypes, diagnostic accuracy, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) genes, immune checkpoint genes, chemokine genes, major histocompatibility complex (MHC)-related genes, tumor-infiltrating immune cells (TIICs), promoter methylation, mutations, copy number alteration (CNA), and functional enrichment related to NALCN were analyzed. Results: Most cancers lowly expressed NALCN. Upregulated NALCN expression was associated with poor or better prognosis in different cancers. Moreover, NALCN was correlated with clinicopathological features in multiple cancers. NALCN showed high diagnostic accuracy in 5 caner types. NALCN is highly linked with immune-related biomarkers, immune-related genes and TIICs. Significant methylation changes and genetic alteration of NALCN can be observed in many cancers. Enrichment analysis showed that NALCN is closely related to multiple tumor-related signaling pathways. Conclusion: Our study revealed the vital involvement of NALCN in cancer. NALCN can be used as a prognostic biomarker for immune infiltration and clinical outcomes, and has potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Jian He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanru Qin,
| |
Collapse
|
5
|
Wisedchaisri G, Gamal El-Din TM. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Front Pharmacol 2022; 13:858348. [PMID: 35370700 PMCID: PMC8968173 DOI: 10.3389/fphar.2022.858348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated ion channels are important drug targets because they play crucial physiological roles in both excitable and non-excitable cells. About 15% of clinical drugs used for treating human diseases target ion channels. However, most of these drugs do not provide sufficient specificity to a single subtype of the channels and their off-target side effects can be serious and sometimes fatal. Recent advancements in imaging techniques have enabled us for the first time to visualize unique and hidden parts of voltage-gated sodium channels in different structural conformations, and to develop drugs that further target a selected functional state in each channel subtype with the potential for high precision and low toxicity. In this review we describe the druggability of voltage-gated sodium channels in distinct functional states, which could potentially be used to selectively target the channels. We review classical drug receptors in the channels that have recently been structurally characterized by cryo-electron microscopy with natural neurotoxins and clinical drugs. We further examine recent drug discoveries for voltage-gated sodium channels and discuss opportunities to use distinct, state-dependent receptor sites in the voltage sensors as unique drug targets. Finally, we explore potential new receptor sites that are currently unknown for sodium channels but may be valuable for future drug discovery. The advancement presented here will help pave the way for drug development that selectively targets voltage-gated sodium channels.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, Yan Z. Structure of the human sodium leak channel NALCN in complex with FAM155A. Nat Commun 2020; 11:5831. [PMID: 33203861 PMCID: PMC7672056 DOI: 10.1038/s41467-020-19667-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
NALCN, a sodium leak channel expressed mainly in the central nervous system, is responsible for the resting Na+ permeability that controls neuronal excitability. Dysfunctions of the NALCN channelosome, NALCN with several auxiliary subunits, are associated with a variety of human diseases. Here, we report the cryo-EM structure of human NALCN in complex with FAM155A at an overall resolution of 3.1 angstroms. FAM155A forms extensive interactions with the extracellular loops of NALCN that may help stabilize NALCN in the membrane. A Na+ ion-binding site, reminiscent of a Ca2+ binding site in Cav channels, is identified in the unique EEKE selectivity filter. Despite its 'leaky' nature, the channel is closed and the intracellular gate is sealed by S6I, II-III linker and III-IV linker. Our study establishes the molecular basis of Na+ permeation and voltage sensitivity, and provides important clues to the mechanistic understanding of NALCN regulation and NALCN channelosome-related diseases.
Collapse
Affiliation(s)
- Jiongfang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Meng Ke
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shiyi Lin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jin Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jiabei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
8
|
Chua HC, Wulf M, Weidling C, Rasmussen LP, Pless SA. The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. SCIENCE ADVANCES 2020; 6:eaaz3154. [PMID: 32494638 PMCID: PMC7182417 DOI: 10.1126/sciadv.aaz3154] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
The sodium leak channel (NALCN) is essential for survival in mammals: NALCN mutations are life-threatening in humans and knockout is lethal in mice. However, the basic functional and pharmacological properties of NALCN have remained elusive. Here, we found that robust function of NALCN in heterologous systems requires co-expression of UNC79, UNC80, and FAM155A. The resulting NALCN channel complex is constitutively active and conducts monovalent cations but is blocked by physiological concentrations of extracellular divalent cations. Our data support the notion that NALCN is directly responsible for the increased excitability observed in a variety of neurons in reduced extracellular Ca2+. Despite the smaller number of voltage-sensing residues in NALCN, the constitutive activity is modulated by voltage, suggesting that voltage-sensing domains can give rise to a broader range of gating phenotypes than previously anticipated. Our work points toward formerly unknown contributions of NALCN to neuronal excitability and opens avenues for pharmacological targeting.
Collapse
|
9
|
Wang W, Mellor RL, Nerbonne JM, Balke CW. Regional differences in the expression of tetrodotoxin-sensitive inward Ca 2+ and outward Cs +/K + currents in mouse and human ventricles. Channels (Austin) 2019; 13:72-87. [PMID: 30704344 PMCID: PMC6380286 DOI: 10.1080/19336950.2019.1568146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tetrodotoxin (TTX) sensitive inward Ca2+ currents, ICa(TTX), have been identified in cardiac myocytes from several species, although it is unclear if ICa(TTX) is expressed in all cardiac cell types, and if ICa(TTX) reflects Ca2+ entry through the main, Nav1.5-encoded, cardiac Na+ (Nav) channels. To address these questions, recordings were obtained with 2 mm Ca2+ and 0 mm Na+ in the bath and 120 mm Cs+ in the pipettes from myocytes isolated from adult mouse interventricular septum (IVS), left ventricular (LV) endocardium, apex, and epicardium and from human LV endocardium and epicardium. On membrane depolarizations from a holding potential of −100 mV, ICa(TTX) was identified in mouse IVS and LV endocardial myocytes and in human LV endocardial myocytes, whereas only TTX-sensitive outward Cs+/K+ currents were observed in mouse LV apex and epicardial myocytes and human LV epicardial myocytes. The inward Ca2+, but not the outward Cs+/K+, currents were blocked by mm concentrations of MTSEA, a selective blocker of cardiac Nav1.5-encoded Na+ channels. In addition, in Nav1.5-expressing tsA-201 cells, ICa(TTX) was observed in 3 (of 20) cells, and TTX-sensitive outward Cs+/K+ currents were observed in the other (17) cells. The time- and voltage-dependent properties of the TTX-sensitive inward Ca2+ and outward Cs+/K+ currents recorded in Nav1.5-expressing tsA-201 were indistinguishable from native currents in mouse and human cardiac myocytes. Overall, the results presented here suggest marked regional, cell type-specific, differences in the relative ion selectivity, and likely the molecular architecture, of native SCN5A-/Scn5a- (Nav1.5-) encoded cardiac Na+ channels in mouse and human ventricles.
Collapse
Affiliation(s)
- Wei Wang
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Rebecca L Mellor
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Jeanne M Nerbonne
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| | - C William Balke
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| |
Collapse
|
10
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
11
|
Gap Junctions and NCA Cation Channels Are Critical for Developmentally Timed Sleep and Arousal in Caenorhabditis elegans. Genetics 2018; 210:1369-1381. [PMID: 30323068 DOI: 10.1534/genetics.118.301551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
An essential characteristic of sleep is heightened arousal threshold, with decreased behavioral response to external stimuli. The molecular and cellular mechanisms underlying arousal threshold changes during sleep are not fully understood. We report that loss of UNC-7 or UNC-9 innexin function dramatically reduced sleep and decreased arousal threshold during developmentally timed sleep in Caenorhabditis elegans UNC-7 function was required in premotor interneurons and UNC-9 function was required in motor neurons in this paradigm. Simultaneous transient overexpression of UNC-7 and UNC-9 was sufficient to induce anachronistic sleep in adult animals. Moreover, loss of UNC-7 or UNC-9 suppressed the increased sleep of EGL-4 gain-of-function animals, which have increased cyclic-GMP-dependent protein kinase activity. These results suggest C. elegans gap junctions may act downstream of previously identified sleep regulators. In other paradigms, the NCA cation channels act upstream of gap junctions. Consistent with this, diminished NCA channel activity in C. elegans robustly increased arousal thresholds during sleep bouts in L4-to-adult developmentally timed sleep. Total time in sleep bouts was only modestly increased in animals lacking NCA channel auxiliary subunit UNC-79, whereas increased channel activity dramatically decreased sleep. Loss of EGL-4 or innexin proteins suppressed UNC-79 loss-of-function sleep and arousal defects. In Drosophila, the ion channel narrow abdomen, an ortholog of the C. elegans NCA channels, drive the pigment dispersing factor (PDF) neuropeptide release, regulating circadian behavior. However, in C. elegans, we found that loss of the PDF receptor PDFR-1 did not suppress gain-of-function sleep defects, suggesting an alternative downstream pathway. This study emphasizes the conservation and importance of neuronal activity modulation during sleep, and unequivocally demonstrates that gap junction function is critical for normal sleep.
Collapse
|
12
|
Pozdnyakov I, Matantseva O, Skarlato S. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 2018; 8:3539. [PMID: 29476068 PMCID: PMC5824947 DOI: 10.1038/s41598-018-21897-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Four-domain voltage-gated cation channels (FVCCs) represent a large family of pseudo-tetrameric ion channels which includes voltage-gated calcium (Cav) and sodium (Nav) channels, as well as their homologues. These transmembrane proteins are involved in a wide range of physiological processes, such as membrane excitability, rhythmical activity, intracellular signalling, etc. Information about actual diversity and phylogenetic relationships of FVCCs across the eukaryotic tree of life is scarce. We for the first time performed a taxonomically broad phylogenetic analysis of 277 FVCC sequences from a variety of eukaryotes and showed that many groups of eukaryotic organisms have their own clades of FVCCs. Moreover, the number of FVCC lineages in several groups of unicellular eukaryotes is comparable to that in animals. Based on the primary structure of FVCC sequences, we characterised their functional determinants (selectivity filter, voltage sensor, Nav-like inactivation gates, Cavβ-interaction motif, and calmodulin-binding region) and mapped them on the obtained phylogeny. This allowed uncovering of lineage-specific structural gains and losses in the course of FVCC evolution and identification of ancient structural features of these channels. Our results indicate that the ancestral FVCC was voltage-sensitive, possessed a Cav-like selectivity filter, Nav-like inactivation gates, calmodulin-binding motifs and did not bear the structure for Cavβ-binding.
Collapse
Affiliation(s)
- Ilya Pozdnyakov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
| | - Olga Matantseva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
13
|
Egan JM, Peterson CA, Fry WM. Lack of current observed in HEK293 cells expressing NALCN channels. BIOCHIMIE OPEN 2018; 6:24-28. [PMID: 29892559 PMCID: PMC5991895 DOI: 10.1016/j.biopen.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
The sodium leak channel NALCN is poorly understood, but is reported as a Na+-permeable, nonselective cation leak channel which regulates resting membrane potential and electrical excitability. Previous work has indicated that NALCN currents can be stimulated by activation of several G protein coupled receptors, including the M3 muscarinic receptor. We undertook a study using voltage clamp electrophysiology to investigate NALCN currents. We compared currents elicited from untransfected control HEK239 cells in response to M3R agonists muscarine or Oxotremorine M to currents elicited from cells transfected with M3R only or the M3R plus NALCN and cDNA encoding accessory proteins UNC-80 and Src. Currents with similar properties were observed in all three groups of cells in response to muscarine agonists, in similar proportions of cells tested, from all three groups of cells. Our findings do not support previous electrophysiological studies suggesting that heterologously expressed NALCN functions as a Na+ leak channel in HEK293 cells. More research will be required to determine the molecular requirements for successful expression of the NALCN channel. NALCN (sodium leak channel, non-selective) is a poorly understood ion channel. Several reports indicate that NALCN current can be recorded from transfected cells. Conflicting reports indicate NALCN currents are simply leaky patch clamp seals. We were unable to record currents attributable to NALCN in transfected HEK293 cells. Our experiments suggest that NALCN does not form channels in HEK293 cells.
Collapse
Affiliation(s)
- Jennifer M Egan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Colleen A Peterson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
14
|
Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. Evolution of Animal Neural Systems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
| | - Hans A. Hofmann
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - David M. Hillis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Harold H. Zakon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
15
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
16
|
Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Front Microbiol 2017. [PMID: 28634472 PMCID: PMC5459920 DOI: 10.3389/fmicb.2017.00984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv), its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus) was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein) was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein) and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively) showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM). The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM). The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first cysteine-containing scorpion toxin. Since Ts1 is a multifunctional toxin, we suggest that it could be used as a template in the design of engineered scorpion AMPs and in the search for new mechanisms of action of antifungal drugs.
Collapse
Affiliation(s)
- Welligton M Santussi
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Karla C F Bordon
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ana P N Rodrigues Alves
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Camila T Cologna
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Suraia Said
- Laboratory of Industrial Enzymology, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Eliane C Arantes
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
17
|
The NCA-1 and NCA-2 Ion Channels Function Downstream of G q and Rho To Regulate Locomotion in Caenorhabditis elegans. Genetics 2017; 206:265-282. [PMID: 28325749 DOI: 10.1534/genetics.116.198820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric G protein Gq positively regulates neuronal activity and synaptic transmission. Previously, the Rho guanine nucleotide exchange factor Trio was identified as a direct effector of Gq that acts in parallel to the canonical Gq effector phospholipase C. Here, we examine how Trio and Rho act to stimulate neuronal activity downstream of Gq in the nematode Caenorhabditis elegans Through two forward genetic screens, we identify the cation channels NCA-1 and NCA-2, orthologs of mammalian NALCN, as downstream targets of the Gq-Rho pathway. By performing genetic epistasis analysis using dominant activating mutations and recessive loss-of-function mutations in the members of this pathway, we show that NCA-1 and NCA-2 act downstream of Gq in a linear pathway. Through cell-specific rescue experiments, we show that function of these channels in head acetylcholine neurons is sufficient for normal locomotion in C. elegans Our results suggest that NCA-1 and NCA-2 are physiologically relevant targets of neuronal Gq-Rho signaling in C. elegans.
Collapse
|
18
|
Randhawa PK, Jaggi AS. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:887-96. [PMID: 27118661 DOI: 10.1007/s00210-016-1251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 01/16/2023]
Abstract
Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
19
|
Zubcevic L, Wang S, Bavro VN, Lee SJ, Nichols CG, Tucker SJ. Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic 'Inward Rectifier' (NirBac) channels. Sci Rep 2015; 5:15305. [PMID: 26470642 PMCID: PMC4607889 DOI: 10.1038/srep15305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022] Open
Abstract
Potassium channels exhibit a modular design with distinct structural and functional domains; in particular, a highly conserved pore-loop sequence that determines their ionic selectivity. We now report the functional characterisation of a novel group of functionally non-selective members of the prokaryotic 'inward rectifier' subfamily of K(+) channels. These channels share all the key structural domains of eukaryotic and prokaryotic Kir/KirBac channels, but instead possess unique pore-loop selectivity filter sequences unrelated to any other known ionic selectivity filter. The strikingly unusual architecture of these 'NirBac' channels defines a new family of functionally non-selective ion channels, and also provides important insights into the modular design of ion channels, as well as the evolution of ionic selectivity within this superfamily of tetrameric cation channels.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Shizhen Wang
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Vassiliy N. Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Sun-Joo Lee
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Colin G. Nichols
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Reinl EL, Cabeza R, Gregory IA, Cahill AG, England SK. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women. Mol Hum Reprod 2015; 21:816-24. [PMID: 26134120 PMCID: PMC4586347 DOI: 10.1093/molehr/gav038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/25/2023] Open
Abstract
Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability.
Collapse
Affiliation(s)
- Erin L Reinl
- Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rafael Cabeza
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52442, USA
| | - Ismail A Gregory
- Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Alison G Cahill
- Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Stephens RF, Guan W, Zhorov BS, Spafford JD. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front Physiol 2015; 6:153. [PMID: 26042044 PMCID: PMC4436565 DOI: 10.3389/fphys.2015.00153] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022] Open
Abstract
How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel.
Collapse
Affiliation(s)
| | - W Guan
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada ; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - J David Spafford
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
22
|
Abstract
Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss.
Collapse
|
23
|
Dudev T, Lim C. Ion selectivity strategies of sodium channel selectivity filters. Acc Chem Res 2014; 47:3580-7. [PMID: 25343535 DOI: 10.1021/ar5002878] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONSPECTUS: Sodium ion channels selectively transport Na(+) cations across the cell membrane. These integral parts of the cell machinery are implicated in regulating the cardiac, skeletal and smooth muscle contraction, nerve impulses, salt and water homeostasis, as well as pain and taste perception. Their malfunction often results in various channelopathies of the heart, brain, skeletal muscles, and lung; thus, sodium channels are key drug targets for various disorders including cardiac arrhythmias, heart attack, stroke, migraine, epilepsy, pain, cancer, and autoimmune disorders. The ability of sodium channels to discriminate the native Na(+) among other competing ions in the surrounding fluids is crucial for proper cellular functions. The selectivity filter (SF), the narrowest part of the channel's open pore, lined with amino acid residues that specifically interact with the permeating ion, plays a major role in determining Na(+) selectivity. Different sodium channels have different SFs, which vary in the symmetry, number, charge, arrangement, and chemical type of the metal-ligating groups and pore size: epithelial/degenerin/acid-sensing ion channels have generally trimeric SFs lined with three conserved neutral serines and/or backbone carbonyls; eukaryotic sodium channels have EKEE, EEKE, DKEA, and DEKA SFs with an invariant positively charged lysine from the second or third domain; and bacterial voltage-gated sodium (Nav) channels exhibit symmetrical EEEE SFs, reminiscent of eukaryotic voltage-gated calcium channels. How do these different sodium channel SFs achieve high selectivity for Na(+) over its key rivals, K(+) and Ca(2+)? What factors govern the metal competition in these SFs and which of these factors are exploited to achieve Na(+) selectivity in the different sodium channel SFs? The free energies for replacing K(+) or Ca(2+) bound inside different model SFs with Na(+), evaluated by a combination of density functional theory and continuum dielectric calculations, have shed light on these questions. The SFs of epithelial and eukaryotic Nav channels select Na(+) by providing an optimal number and ligating strength of metal ligands as well as a rigid pore whose size fits the cognate Na(+) ideally. On the other hand, the SFs of bacterial Nav channels select Na(+), as the protein matrix attenuates ion-protein interactions relative to ion-solvent interactions by enlarging the pore and allowing water to enter, so the ion interacts indirectly with the conserved glutamates via bridging water molecules. This shows how these various SFs have adapted to the specific physicochemical properties of the native ion, using different strategies to select Na(+) among its contenders.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
24
|
Boone AN, Senatore A, Chemin J, Monteil A, Spafford JD. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings. PLoS One 2014; 9:e98808. [PMID: 24945283 PMCID: PMC4063719 DOI: 10.1371/journal.pone.0098808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023] Open
Abstract
The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE) and calcium (EEEE) selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM) was lowered to 0.1 mM and were inhibited (>40% to >90%) with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (<30%) to 1 mM Ni2+ and exhibited a variable amount of block with 1 mM verapamil and were insensitive to 100 µM mibefradil or 100 µM nifedipine. We hypothesize that the rapid changes in leak current size in response to changing external cations or drugs relates to their influences on the membrane seal adherence and the electro-osmotic flow of mobile cations channeling in crevices of a particular pore size in the interface between the negatively charged patch electrode and the lipid membrane. Observed sodium leak conductance currents in weak patch seals are reproducible between the electrode glass interface with cell membranes, artificial lipid or Sylgard rubber.
Collapse
Affiliation(s)
| | | | - Jean Chemin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, INSERM, U661, Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - Arnaud Monteil
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, INSERM, U661, Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
25
|
Cochet-Bissuel M, Lory P, Monteil A. The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 2014; 8:132. [PMID: 24904279 PMCID: PMC4033012 DOI: 10.3389/fncel.2014.00132] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.
Collapse
Affiliation(s)
- Maud Cochet-Bissuel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| |
Collapse
|
26
|
Ghezzi A, Liebeskind BJ, Thompson A, Atkinson NS, Zakon HH. Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals. Front Mol Neurosci 2014; 7:15. [PMID: 24639627 PMCID: PMC3945613 DOI: 10.3389/fnmol.2014.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Neuronal resting potential can tune the excitability of neural networks, affecting downstream behavior. Sodium leak channels (NALCN) play a key role in rhythmic behaviors by helping set, or subtly changing neuronal resting potential. The full complexity of these newly described channels is just beginning to be appreciated, however. NALCN channels can associate with numerous subunits in different tissues and can be activated by several different peptides and second messengers. We recently showed that NALCN channels are closely related to fungal calcium channels, which they functionally resemble. Here, we use this relationship to predict a family of NALCN-associated proteins in animals on the basis of homology with the yeast protein Mid1, the subunit of the yeast calcium channel. These proteins all share a cysteine-rich region that is necessary for Mid1 function in yeast. We validate this predicted association by showing that the Mid1 homolog in Drosophila, encoded by the CG33988 gene, is coordinately expressed with NALCN, and that knockdown of either protein creates identical phenotypes in several behaviors associated with NALCN function. The relationship between Mid1 and leak channels has therefore persisted over a billion years of evolution, despite drastic changes to both proteins and the organisms in which they exist.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA
| | | | - Ammon Thompson
- Department of Integrative Biology, University of Texas at Austin TX, USA
| | - Nigel S Atkinson
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin Austin, TX, USA ; Department of Integrative Biology, University of Texas at Austin TX, USA ; Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| |
Collapse
|
27
|
Senatore A, Guan W, Boone AN, Spafford JD. T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter. J Biol Chem 2014; 289:11952-11969. [PMID: 24596098 DOI: 10.1074/jbc.m114.551473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T-type (Cav3) channels are categorized as calcium channels, but invertebrate ones can be highly sodium-selective channels. We illustrate that the snail LCav3 T-type channel becomes highly sodium-permeable through exon splicing of an extracellular turret and descending helix in domain II of the four-domain Cav3 channel. Highly sodium-permeable T-type channels are generated without altering the invariant ring of charged residues in the selectivity filter that governs calcium selectivity in calcium channels. The highly sodium-permeant T-type channel expresses in the brain and is the only splice isoform expressed in the snail heart. This unique splicing of turret residues offers T-type channels a capacity to serve as a pacemaking sodium current in the primitive heart and brain in lieu of Nav1-type sodium channels and to substitute for voltage-gated sodium channels lacking in many invertebrates. T-type channels would also contribute substantially to sodium leak conductances at rest in invertebrates because of their large window currents.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wendy Guan
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Adrienne N Boone
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
28
|
Dudev T, Lim C. Evolution of Eukaryotic Ion Channels: Principles Underlying the Conversion of Ca2+-Selective to Na+-Selective Channels. J Am Chem Soc 2014; 136:3553-9. [DOI: 10.1021/ja4121132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Todor Dudev
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
29
|
Senatore A, Guan W, Spafford JD. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 2014; 466:645-60. [PMID: 24515291 DOI: 10.1007/s00424-014-1449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Senatore
- Department of Biology, University of Waterloo, B1-173, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
30
|
Taiakina V, Boone AN, Fux J, Senatore A, Weber-Adrian D, Guillemette JG, Spafford JD. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS One 2013; 8:e61765. [PMID: 23626724 PMCID: PMC3634016 DOI: 10.1371/journal.pone.0061765] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.
Collapse
Affiliation(s)
| | | | - Julia Fux
- Department of Biology, University of Waterloo, Waterloo, Canada
| | | | | | | | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
31
|
Senatore A, Spafford JD. A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin) 2013; 7:60-8. [PMID: 23442378 PMCID: PMC3667885 DOI: 10.4161/chan.23981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN's most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd ( 3+) -sensitive, NMDG (+) -impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav 1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|