1
|
Morcillo L, Muñoz-Rengifo JC, Torres-Ruiz JM, Delzon S, Moutahir H, Vilagrosa A. Post-drought conditions and hydraulic dysfunction determine tree resilience and mortality across Mediterranean Aleppo pine (Pinus halepensis) populations after an extreme drought event. TREE PHYSIOLOGY 2022; 42:1364-1376. [PMID: 35038335 DOI: 10.1093/treephys/tpac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality is a global phenomenon that currently affects a wide range of forests. Key functional variables on plant hydraulics, carbon economy, growth and allocation have been identified and play a role in tree drought responses. However, tree mortality thresholds based on such variables are difficult to identify, especially under field conditions. We studied several Aleppo pine populations differently affected by an extreme drought event in 2014, with mortality rates ranging from no mortality to 90% in the most severely affected population. We hypothesized that mortality is linked with high levels of xylem embolism, i.e., hydraulic dysfunction, which would also lead to lower tree resistance to drought in subsequent years. Despite not finding any differences among populations in the vulnerability curves to xylem embolism, there were large differences in the hydraulic safety margin (HSM) and the hydraulic dysfunction level. High mortality rates were associated with a negative HSM when xylem embolism reached values over 60%. We also found forest weakening and post-drought mortality related to a low hydraulic water transport capacity, reduced plant growth, low carbohydrate contents and high pest infestation rates. Our results highlight the importance of drought severity and the hydraulic dysfunction level on pine mortality, as well as post-drought conditions during recovery processes.
Collapse
Affiliation(s)
- L Morcillo
- Mediterranean Center for Environmental Studies (CEAM Foundation), Joint Research Unit University of Alicante-CEAM, University of Alicante, Alicante 03690, Spain
| | - J C Muñoz-Rengifo
- Department of Ecology, University of Alicante, Alicante 03690, Spain
- Department of Earth Science, Universidad Estatal Amazónica, Pastaza 160150, Ecuador
| | - J M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63000, France
| | - S Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac 33615, France
| | - H Moutahir
- Mediterranean Center for Environmental Studies (CEAM Foundation), Joint Research Unit University of Alicante-CEAM, University of Alicante, Alicante 03690, Spain
| | - A Vilagrosa
- Mediterranean Center for Environmental Studies (CEAM Foundation), Joint Research Unit University of Alicante-CEAM, University of Alicante, Alicante 03690, Spain
- Department of Ecology, University of Alicante, Alicante 03690, Spain
| |
Collapse
|
2
|
Gale MG, Cary GJ. Stand boundary effects on obligate seeding
Eucalyptus delegatensis
regeneration and fuel dynamics following high and low severity fire: Implications for species resilience to recurrent fire. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew G. Gale
- Fenner School of Environment & Society The Australian National University Canberra Australian Capital Territory2600Australia
| | - Geoffrey J. Cary
- Fenner School of Environment & Society The Australian National University Canberra Australian Capital Territory2600Australia
| |
Collapse
|
3
|
Ramírez-Valiente JA, Solé-Medina A, Pyhäjärvi T, Savolainen O, Cervantes S, Kesälahti R, Kujala ST, Kumpula T, Heer K, Opgenoorth L, Siebertz J, Danusevicius D, Notivol E, Benavides R, Robledo-Arnuncio JJ. Selection patterns on early-life phenotypic traits in Pinus sylvestris are associated with precipitation and temperature along a climatic gradient in Europe. THE NEW PHYTOLOGIST 2021; 229:3009-3025. [PMID: 33098590 DOI: 10.1111/nph.17029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Understanding the dynamics of selection is key to predicting the response of tree species to new environmental conditions in the current context of climate change. However, selection patterns acting on early recruitment stages and their climatic drivers remain largely unknown in most tree species, despite being a critical period of their life cycle. We measured phenotypic selection on Pinus sylvestris seed mass, emergence time and early growth rate over 2 yr in four common garden experiments established along the latitudinal gradient of the species in Europe. Significant phenotypic plasticity and among-population genetic variation were found for all measured phenotypic traits. Heat and drought negatively affected fitness in the southern sites, but heavy rainfalls also decreased early survival in middle latitudes. Climate-driven directional selection was found for higher seed mass and earlier emergence time, while the form of selection on seedling growth rates differed among sites and populations. Evidence of adaptive and maladaptive phenotypic plasticity was found for emergence time and early growth rate, respectively. Seed mass, emergence time and early growth rate have an adaptive role in the early stages of P. sylvestris and climate strongly influences the patterns of selection on these fitness-related traits.
Collapse
Affiliation(s)
| | - Aida Solé-Medina
- Department of Forest Ecology & Genetics, INIA-CIFOR, Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933, Spain
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
- Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
| | - Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
- Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Robert Kesälahti
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
| | - Sonja T Kujala
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
- Natural Resources Institute Finland (Luke), Jokioinen, 90570, Finland
| | - Timo Kumpula
- Department of Ecology and Genetics, University of Oulu, Oulu, FIN-90014, Finland
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Jan Siebertz
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Darius Danusevicius
- Faculty of Forest Science and Ecology, Vytautas Magnus University, Studentų str. 11, Akademija, Kaunas, LT-53361, Lithuania
| | - Eduardo Notivol
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza, 50059, Spain
| | - Raquel Benavides
- Department of Biogeography and Global Change, LINCGlobal, Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | | |
Collapse
|
4
|
Ecological Diversity within Rear-Edge: A Case Study from Mediterranean Quercus pyrenaica Willd. FORESTS 2020. [DOI: 10.3390/f12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the ecology of populations located in the rear edge of their distribution is key to assessing the response of the species to changing environmental conditions. Here, we focus on rear-edge populations of Quercus pyrenaica in Sierra Nevada (southern Iberian Peninsula) to analyze their ecological and floristic diversity. We perform multivariate analyses using high-resolution environmental information and forest inventories to determine how environmental variables differ among oak populations, and to identify population groups based on environmental and floristic composition. We find that water availability is a key variable in explaining the distribution of Q. pyrenaica and the floristic diversity of their accompanying communities within its rear edge. Three cluster of oak populations were identified based on environmental variables. We found differences among these clusters regarding plant diversity, but not for forest attributes. A remarkable match between the populations clustering derived from analysis of environmental variables and the ordination of the populations according to species composition was found. The diversity of ecological behaviors for Q. pyrenaica populations in this rear edge are consistent with the high genetic diversity shown by populations of this oak in the Sierra Nevada. The identification of differences between oak populations within the rear-edge with respect to environmental variables can aid with planning the forest management and restoration actions, particularly considering the importance of some environmental factors in key ecological aspects.
Collapse
|
5
|
Matías L, Linares JC, Sánchez-Miranda Á, Jump AS. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. GLOBAL CHANGE BIOLOGY 2017; 23:4106-4116. [PMID: 28100041 DOI: 10.1111/gcb.13627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/09/2017] [Indexed: 05/25/2023]
Abstract
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes.
Collapse
Affiliation(s)
- Luis Matías
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41080, Sevilla, Spain
| | - Juan C Linares
- Department of Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera Km 1, E-41013, Sevilla, Spain
| | - Ángela Sánchez-Miranda
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
6
|
Elasticity of population growth with respect to the intensity of biotic or abiotic driving factors. Ecology 2017; 98:1016-1025. [DOI: 10.1002/ecy.1687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 11/07/2022]
|
7
|
Canham CD, Murphy L. The demography of tree species response to climate: sapling and canopy tree growth. Ecosphere 2016. [DOI: 10.1002/ecs2.1474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Charles D. Canham
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| | - Lora Murphy
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| |
Collapse
|
8
|
Máliš F, Kopecký M, Petřík P, Vladovič J, Merganič J, Vida T. Life stage, not climate change, explains observed tree range shifts. GLOBAL CHANGE BIOLOGY 2016; 22:1904-1914. [PMID: 26725258 PMCID: PMC5424071 DOI: 10.1111/gcb.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.
Collapse
Affiliation(s)
- František Máliš
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, SK-960 53, Zvolen, Slovak Republic
- Forest Research Institute Zvolen, National Forest Centre, T.G. Masaryka 22, SK-960 52, Zvolen, Slovak Republic
| | - Martin Kopecký
- Department of Vegetation Ecology, Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, CZ-602 00, Brno, Czech Republic
| | - Petr Petřík
- Department of GIS and Remote Sensing, Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jozef Vladovič
- Forest Research Institute Zvolen, National Forest Centre, T.G. Masaryka 22, SK-960 52, Zvolen, Slovak Republic
| | - Ján Merganič
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, SK-960 53, Zvolen, Slovak Republic
| | - Tomáš Vida
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, SK-960 53, Zvolen, Slovak Republic
| |
Collapse
|
9
|
Leverkus AB, Castro J, Delgado-Capel MJ, Molinas-González C, Pulgar M, Marañón-Jiménez S, Delgado-Huertas A, Querejeta JI. Restoring for the present or restoring for the future: enhanced performance of two sympatric oaks (Quercus ilex
and Quercus pyrenaica
) above the current forest limit. Restor Ecol 2015. [DOI: 10.1111/rec.12259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandro B. Leverkus
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Jorge Castro
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Manuel J. Delgado-Capel
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR; Unidad de Investigación de Biogeoquímica de Isótopos Estables; E-18100 Granada Spain
| | - Carlos Molinas-González
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Manuel Pulgar
- Departamento de Biología Animal, Vegetal y Ecología, Área de Ecología, Facultad de Ciencias Experimentales; Universidad de Jaén; E-23071 Jaén Spain
| | - Sara Marañón-Jiménez
- Department Hydrosystemmodellierung; Helmholtz-Zentrum für Umweltforschung GmbH-UFZ; Permoserstraße 15 D-04318 Leipzig Germany
| | - Antonio Delgado-Huertas
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR; Unidad de Investigación de Biogeoquímica de Isótopos Estables; E-18100 Granada Spain
| | - José I. Querejeta
- Departamento de Conservación de Suelo y Agua, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC); Campus Universitario de Espinardo; PO Box 164 E-30100 Murcia Spain
| |
Collapse
|
10
|
Elkin C, Giuggiola A, Rigling A, Bugmann H. Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1083-1098. [PMID: 26465044 DOI: 10.1890/14-0690.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In many regions of the world, drought is projected to increase under climate change, with potential negative consequences for forests and their ecosystem services (ES). Forest thinning has been proposed as a method for at least temporarily mitigating drought impacts, but its general applicability and longer-term impacts are unclear. We use a process-based forest model to upscale experimental data for evaluating the impacts of forest thinning in a drought-susceptible valley in the interior of the European Alps, with the specific aim of assessing (1) when and where thinning may be most effective and (2) the longer-term implications for forest dynamics. Simulations indicate that forests will be impacted by climate-induced increases in drought across a broad elevation range. At lower elevations, where drought is currently prevalent, thinning is projected to temporarily reduce tree mortality, but to have minor impacts on forest dynamics in the longer term. Thinning may be particularly useful at intermediate and higher elevations as a means of temporarily reducing mortality in drought-sensitive species such as Norway spruce and larch, which currently dominate these elevations. However, in the longer term, even intense thinning will likely not be sufficient to prevent a climate change induced dieback of these species, which is projected to occur under even moderate climate change. Thinning is also projected to have the largest impact on long-term forest dynamics at intermediate elevations, with the magnitude of the impact depending on the timing and intensity of thinning. More intense thinning that is done later is projected to more strongly promote a transition to more drought-tolerant species. We conclude that thinning is a viable option for temporarily reducing the negative drought impacts on forests, but that efficient implementation of thinning should be contingent on a site-specific evaluation of the near term risk of significant drought, and how thinning will impact the rate and direction of climate driven forest conversion.
Collapse
|
11
|
Stand competition determines how different tree species will cope with a warming climate. PLoS One 2015; 10:e0122255. [PMID: 25826446 PMCID: PMC4380403 DOI: 10.1371/journal.pone.0122255] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Plant-plant interactions influence how forests cope with climate and contribute to modulate species response to future climate scenarios. We analysed the functional relationships between growth, climate and competition for Pinus sylvestris, Quercus pyrenaica and Quercus faginea to investigate how stand competition modifies forest sensitivity to climate and simulated how annual growth rates of these species with different drought tolerance would change throughout the 21st century. Dendroecological data from stands subjected to thinning were modelled using a novel multiplicative nonlinear approach to overcome biases related to the general assumption of a linear relationship between covariates and to better mimic the biological relationships involved. Growth always decreased exponentially with increasing competition, which explained more growth variability than climate in Q. faginea and P. sylvestris. The effect of precipitation was asymptotic in all cases, while the relationship between growth and temperature reached an optimum after which growth declined with warmer temperatures. Our growth projections indicate that the less drought-tolerant P. sylvestris would be more negatively affected by climate change than the studied sub-Mediterranean oaks. Q. faginea and P. sylvestris mean growth would decrease under all the climate change scenarios assessed. However, P. sylvestris growth would decline regardless of the competition level, whereas this decrease would be offset by reduced competition in Q. faginea. Conversely, Q. pyrenaica growth would remain similar to current rates, except for the warmest scenario. Our models shed light on the nature of the species-specific interaction between climate and competition and yield important implications for management. Assuming that individual growth is directly related to tree performance, trees under low competition would better withstand the warmer conditions predicted under climate change scenarios but in a variable manner depending on the species. Thinning following an exponential rule may be desirable to ensure long-term conservation of high-density Mediterranean woodlands, particularly in drought-limited sites.
Collapse
|
12
|
Matías L, Jump AS. Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species. GLOBAL CHANGE BIOLOGY 2015; 21:882-96. [PMID: 25044677 DOI: 10.1111/gcb.12683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/06/2014] [Indexed: 05/14/2023]
Abstract
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data.
Collapse
Affiliation(s)
- Luis Matías
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | | |
Collapse
|
13
|
Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 2014; 17:1351-64. [PMID: 25205436 DOI: 10.1111/ele.12348] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/05/2014] [Accepted: 07/30/2014] [Indexed: 12/01/2022]
Abstract
Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.
Collapse
Affiliation(s)
- Fernando Valladares
- LINCGlobal, Department of Biogeography and Global Change, National Museum of Natural History, MNCN, CSIC, Serrano 115 bis, 28006, Madrid, Spain; Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933, Móstoles, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|