1
|
Kang T, Choi YJ, Kim J, Park HJ, Jang WJ. Whole genome sequence and comparative genomic analysis of novel Rickettsia koreansis strain CNH17-7 isolated from human. Eur J Clin Microbiol Infect Dis 2024; 43:1909-1918. [PMID: 39031268 DOI: 10.1007/s10096-024-04876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To determine the genomic feature of novel spotted fever-causing Rickettsia koreansis strain CNH17-7, which is different from R. japonica that is a causative agent for Japanese spotted fever (JSF), and to perform its comparative genomic analysis. METHODS Whole genome sequencing (WGS) was performed on R. koreansis strain CNH17-7 by using the Illumina Miseq system. After WGS, assembly and annotation were done by SPAdes. Then, its genomic features were compared with 19 different Rickettsia species. Based on the average nucleotide identity (ANI) value, an unweighted pair group method with an arithmetic mean (UPGMA) dendrogram was generated. Following the dendrogram analysis, pan-and core-genome analysis was performed. Then additional comparative analyses with two genetically closest Rickettsia species were conducted based on gene repertoire. RESULTS R. koreansis strain CNH17-7 has a chromosome consisting of 1,392,633 bp with GC content of 32.4%. The ANI-derived UPGMA showed that R. koreansis strain CNH17-7 is genetically close to R. japonica YH and R. heilongjiangensis 054 but is distinctively differentiated. The ANI value of R. koreansis strain CNH17-7 to R. japonica YH and R. heilongjiangensis 054 are 98.14% and 98.04% respectively, indicating R. koreansis strain CNH17-7 is sufficient to be classified as a new species. Other than ANI, R. koreansis strain CNH17-7 also contains novel CDS and its COG functional category proportion which is distinct compared to R. japonica YH and R. heilongjiangensis 054. CONCLUSION We have revealed genomic features of the novel R. koreansis strain CNH17-7. Hence, we propose R. koreansis strain CNH17-7 as new Rickettsia species.
Collapse
Affiliation(s)
- Taeuk Kang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeon-Joo Choi
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jeoungyeon Kim
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye-Jin Park
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Jong Jang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Li R, Li X, Tang J, Xie C, Wang J. The Development of a Fluorescent Microsatellite Marker Assay for the Pitaya Canker Pathogen ( Neoscytalidium dimidiatum). Genes (Basel) 2024; 15:885. [PMID: 39062664 PMCID: PMC11275628 DOI: 10.3390/genes15070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Pitaya canker, caused by Neoscytalidium dimidiatum, is a destructive disease that significantly threatens the safety of the pitaya industry. The authors of previous studies have mainly focused on its biological characteristics and chemical control. However, there are no molecular markers available thus far that can be used for the population genetics study of this pathogen. In the present study, a draft genome of N. dimidiatum with a total length of 41.46 MB was assembled in which 9863 coding genes were predicted and annotated. In particular, the microsatellite sequences in the draft genome were investigated. To improve the successful screening rate of potentially polymorphic microsatellite makers, another five N. dimidiatum isolates were resequenced and assembled. A total of eight pairs of polymorphic microsatellite primers were screened out based on the polymorphic microsatellite loci after investigating the sequencing and resequencing assemblies of the six isolates. A total of thirteen representative isolates sampled from different pitaya plantations were genotyped in order to validate the polymorphism of the resulting eight markers. The results indicated that these markers were able to distinguish the isolates well. Lastly, a neighbor-joining tree of 35 isolates, sampled from different pitaya plantations located in different regions, was constructed according to the genotypes of the eight molecular markers. The developed tree indicated that these molecular markers had sufficient genotyping capabilities for our test panel of isolates. In summary, we developed a set of polymorphic microsatellite markers in the following study that can effectively genotype and distinguish N. dimidiatum isolates and be utilized in the population genetics study of N. dimidiatum.
Collapse
Affiliation(s)
- Rui Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Xi Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Jingcheng Tang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Changping Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| | - Jianan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (X.L.); (J.T.); (C.X.)
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education of China, Haikou 570228, China
| |
Collapse
|
3
|
Burns JA, Becker KP, Casagrande D, Daniels J, Roberts P, Orenstein E, Vogt DM, Teoh ZE, Wood R, Yin AH, Genot B, Gruber DF, Katija K, Wood RJ, Phillips BT. An in situ digital synthesis strategy for the discovery and description of ocean life. SCIENCE ADVANCES 2024; 10:eadj4960. [PMID: 38232174 PMCID: PMC10793947 DOI: 10.1126/sciadv.adj4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.
Collapse
Affiliation(s)
- John A. Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Kaitlyn P. Becker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David Casagrande
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Joost Daniels
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Paul Roberts
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Eric Orenstein
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Daniel M. Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Ryan Wood
- PA Consulting, Concord, MA 01742, USA
| | - Alexander H. Yin
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Baptiste Genot
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - David F. Gruber
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY 10010, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, CA 95039, USA
| | - Robert J. Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Brennan T. Phillips
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI 02882, USA
| |
Collapse
|
4
|
Rádai Z, Váradi A, Takács P, Nagy NA, Schmitt N, Prépost E, Kardos G, Laczkó L. An overlooked phenomenon: complex interactions of potential error sources on the quality of bacterial de novo genome assemblies. BMC Genomics 2024; 25:45. [PMID: 38195441 PMCID: PMC10777565 DOI: 10.1186/s12864-023-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Parameters adversely affecting the contiguity and accuracy of the assemblies from Illumina next-generation sequencing (NGS) are well described. However, past studies generally focused on their additive effects, overlooking their potential interactions possibly exacerbating one another's effects in a multiplicative manner. To investigate whether or not they act interactively on de novo genome assembly quality, we simulated sequencing data for 13 bacterial reference genomes, with varying levels of error rate, sequencing depth, PCR and optical duplicate ratios. RESULTS We assessed the quality of assemblies from the simulated sequencing data with a number of contiguity and accuracy metrics, which we used to quantify both additive and multiplicative effects of the four parameters. We found that the tested parameters are engaged in complex interactions, exerting multiplicative, rather than additive, effects on assembly quality. Also, the ratio of non-repeated regions and GC% of the original genomes can shape how the four parameters affect assembly quality. CONCLUSIONS We provide a framework for consideration in future studies using de novo genome assembly of bacterial genomes, e.g. in choosing the optimal sequencing depth, balancing between its positive effect on contiguity and negative effect on accuracy due to its interaction with error rate. Furthermore, the properties of the genomes to be sequenced also should be taken into account, as they might influence the effects of error sources themselves.
Collapse
Affiliation(s)
- Zoltán Rádai
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary.
- Department of Dermatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Alex Váradi
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Takács
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Department of Health Informatics, Institute of Health Sciences, Faculty of Health, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Andrea Nagy
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology, ELKH-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Nicholas Schmitt
- Department of Dermatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eszter Prépost
- Department of Health Industry, University of Debrecen, Debrecen, Hungary
| | - Gábor Kardos
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- ELKH-DE Conservation Biology Research Group, Debrecen, Hungary
| |
Collapse
|
5
|
Ousmael K, Whetten RW, Xu J, Nielsen UB, Lamour K, Hansen OK. Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach). Sci Rep 2023; 13:22488. [PMID: 38110478 PMCID: PMC10728141 DOI: 10.1038/s41598-023-49462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Single nucleotide polymorphism (SNP) markers are powerful tools for investigating population structures, linkage analysis, and genome-wide association studies, as well as for breeding and population management. The availability of SNP markers has been limited to the most commercially important timber species, primarily due to the cost of genome sequencing required for SNP discovery. In this study, a combination of reference-based and reference-free approaches were used to identify SNPs in Nordmann fir (Abies nordmanniana), a species previously lacking genomic sequence information. Using a combination of a genome assembly of the closely related Silver fir (Abies alba) species and a de novo assembly of low-copy regions of the Nordmann fir genome, we identified a high density of reliable SNPs. Reference-based approaches identified two million SNPs in common between the Silver fir genome and low-copy regions of Nordmann fir. A combination of one reference-free and two reference-based approaches identified 250 shared SNPs. A subset of 200 SNPs were used to genotype 342 individuals and thereby tested and validated in the context of identity analysis and/or clone identification. The tested SNPs successfully identified all ramets per clone and five mislabeled individuals via identity and genomic relatedness analysis. The identified SNPs will be used in ad hoc breeding of Nordmann fir in Denmark.
Collapse
Affiliation(s)
- Kedra Ousmael
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jing Xu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Ulrik B Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Ole K Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Riley R, Bowers RM, Camargo AP, Campbell A, Egan R, Eloe-Fadrosh EA, Foster B, Hofmeyr S, Huntemann M, Kellom M, Kimbrel JA, Oliker L, Yelick K, Pett-Ridge J, Salamov A, Varghese NJ, Clum A. Terabase-Scale Coassembly of a Tropical Soil Microbiome. Microbiol Spectr 2023; 11:e0020023. [PMID: 37310219 PMCID: PMC10434106 DOI: 10.1128/spectrum.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.
Collapse
Affiliation(s)
- Robert Riley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Robert M. Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Antonio Pedro Camargo
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Ashley Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Rob Egan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | | | - Brian Foster
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Steven Hofmeyr
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marcel Huntemann
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Matthew Kellom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Leonid Oliker
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine Yelick
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Asaf Salamov
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Neha J. Varghese
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Alicia Clum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| |
Collapse
|
7
|
Martin S, Ayling M, Patrono L, Caccamo M, Murcia P, Leggett RM. Capturing variation in metagenomic assembly graphs with MetaCortex. Bioinformatics 2023; 39:6986127. [PMID: 36722204 PMCID: PMC9889960 DOI: 10.1093/bioinformatics/btad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
MOTIVATION The assembly of contiguous sequence from metagenomic samples presents a particular challenge, due to the presence of multiple species, often closely related, at varying levels of abundance. Capturing diversity within species, for example, viral haplotypes, or bacterial strain-level diversity, is even more challenging. RESULTS We present MetaCortex, a metagenome assembler that captures intra-species diversity by searching for signatures of local variation along assembled sequences in the underlying assembly graph and outputting these sequences in sequence graph format. We show that MetaCortex produces accurate assemblies with higher genome coverage and contiguity than other popular metagenomic assemblers on mock viral communities with high levels of strain-level diversity and on simulated communities containing simulated strains. AVAILABILITY AND IMPLEMENTATION Source code is freely available to download from https://github.com/SR-Martin/metacortex, is implemented in C and supported on MacOS and Linux. The version used for the results presented in this article is available at doi.org/10.5281/zenodo.7273627. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | - Pablo Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | | |
Collapse
|
8
|
Critical Assessment of Short-Read Assemblers for the Metagenomic Identification of Foodborne and Waterborne Pathogens Using Simulated Bacterial Communities. Microorganisms 2022; 10:microorganisms10122416. [PMID: 36557669 PMCID: PMC9784204 DOI: 10.3390/microorganisms10122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Metagenomics offers the highest level of strain discrimination of bacterial pathogens from complex food and water microbiota. With the rapid evolvement of assembly algorithms, defining an optimal assembler based on the performance in the metagenomic identification of foodborne and waterborne pathogens is warranted. We aimed to benchmark short-read assemblers for the metagenomic identification of foodborne and waterborne pathogens using simulated bacterial communities. Bacterial communities on fresh spinach and in surface water were simulated by generating paired-end short reads of Illumina HiSeq, MiSeq, and NovaSeq at different sequencing depths. Multidrug-resistant Salmonella Indiana SI43 and Pseudomonas aeruginosa PAO1 were included in the simulated communities on fresh spinach and in surface water, respectively. ABySS, IDBA-UD, MaSuRCA, MEGAHIT, metaSPAdes, and Ray Meta were benchmarked in terms of assembly quality, identifications of plasmids, virulence genes, Salmonella pathogenicity island, antimicrobial resistance genes, chromosomal point mutations, serotyping, multilocus sequence typing, and whole-genome phylogeny. Overall, MEGHIT, metaSPAdes, and Ray Meta were more effective for metagenomic identification. We did not obtain an optimal assembler when using the extracted reads classified as Salmonella or P. aeruginosa for downstream genomic analyses, but the extracted reads showed consistent phylogenetic topology with the reference genome when they were aligned with Salmonella or P. aeruginosa strains. In most cases, HiSeq, MiSeq, and NovaSeq were comparable at the same sequencing depth, while higher sequencing depths generally led to more accurate results. As assembly algorithms advance and mature, the evaluation of assemblers should be a continuous process.
Collapse
|
9
|
Zhang Z, Xie P, Guo Y, Zhou W, Liu E, Yu Y. Easy353: A Tool to Get Angiosperms353 Genes for Phylogenomic Research. Mol Biol Evol 2022; 39:6862883. [PMID: 36458838 PMCID: PMC9757696 DOI: 10.1093/molbev/msac261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The Angiosperms353 gene set (AGS) consists of a set of 353 universal low-copy nuclear genes that were selected by examining more than 600 angiosperm species. These genes can be used for phylogenetic studies and population genetics at multiple taxonomic scales. However, current pipelines are not able to recover Angiosperms353 genes efficiently and accurately from high-throughput sequences. Here, we developed Easy353, a reference-guided assembly tool to recover the AGS from high-throughput sequencing (HTS) data (including genome skimming, RNA-seq, and target enrichment). Easy353 is an open-source user-friendly assembler for diverse types of high-throughput data. It has a graphical user interface and a command-line interface that is compatible with all widely-used computer systems. Evaluations, based on both simulated and empirical data, suggest that Easy353 yields low rates of assembly errors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Pulin Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yongling Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wenbin Zhou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Enyan Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yan Yu
- Corresponding author: E-mail:
| |
Collapse
|
10
|
Cheng J, Morselli M, Huang WL, Heo YJ, Pinheiro-Ferreira T, Li F, Wei F, Chia D, Kim Y, He HJ, Cole KD, Su WC, Pellegrini M, Wong DT. Plasma contains ultrashort single-stranded DNA in addition to nucleosomal cell-free DNA. iScience 2022; 25:104554. [PMID: 35800774 PMCID: PMC9254344 DOI: 10.1016/j.isci.2022.104554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
Plasma cell-free DNA is being widely explored as a biomarker for clinical screening. Currently, methods are optimized for the extraction and detection of double-stranded mononucleosomal cell-free DNA of ∼160bp in length. We introduce uscfDNA-seq, a single-stranded cell-free DNA next-generation sequencing pipeline, which bypasses previous limitations to reveal a population of ultrashort single-stranded cell-free DNA in human plasma. This species has a modal size of 50nt and is distinctly separate from mononucleosomal cell-free DNA. Treatment with single-stranded and double-stranded specific nucleases suggests that ultrashort cell-free DNA is primarily single-stranded. It is distributed evenly across chromosomes and has a similar distribution profile over functional elements as the genome, albeit with an enrichment over promoters, exons, and introns, which may be suggestive of a terminal state of genome degradation. The examination of this cfDNA species could reveal new features of cell death pathways or it can be used for cell-free DNA biomarker discovery.
Collapse
Affiliation(s)
- Jordan Cheng
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cellular & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 704, Taiwan
| | - You Jeong Heo
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, Republic of Korea
| | | | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - David Chia
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Hua-Jun He
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Kenneth D. Cole
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Matteo Pellegrini
- Department of Molecular, Cellular & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - David T.W. Wong
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Li S, Park S, Ye C, Danyko C, Wroten M, Andrews P, Wigler M, Levy D. Targeted de novo phasing and long-range assembly by template mutagenesis. Nucleic Acids Res 2022; 50:e103. [PMID: 35822882 PMCID: PMC9561374 DOI: 10.1093/nar/gkac592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023] Open
Abstract
Short-read sequencers provide highly accurate reads at very low cost. Unfortunately, short reads are often inadequate for important applications such as assembly in complex regions or phasing across distant heterozygous sites. In this study, we describe novel bench protocols and algorithms to obtain haplotype-phased sequence assemblies with ultra-low error for regions 10 kb and longer using short reads only. We accomplish this by imprinting each template strand from a target region with a dense and unique mutation pattern. The mutation process randomly and independently converts ∼50% of cytosines to uracils. Sequencing libraries are made from both mutated and unmutated templates. Using de Bruijn graphs and paired-end read information, we assemble each mutated template and use the unmutated library to correct the mutated bases. Templates are partitioned into two or more haplotypes, and the final haplotypes are assembled and corrected for residual template mutations and PCR errors. With sufficient template coverage, the final assemblies have per-base error rates below 10–9. We demonstrate this method on a four-member nuclear family, correctly assembling and phasing three genomic intervals, including the highly polymorphic HLA-B gene.
Collapse
Affiliation(s)
- Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sarah Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Catherine Ye
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cassidy Danyko
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew Wroten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
12
|
Liedtke HC, Cruz F, Gómez-Garrido J, Fuentes Palacios D, Marcet-Houben M, Gut M, Alioto T, Gabaldón T, Gomez-Mestre I. Chromosome-level assembly, annotation and phylome of Pelobates cultripes, the western spadefoot toad. DNA Res 2022; 29:6588074. [PMID: 35583263 PMCID: PMC9164646 DOI: 10.1093/dnares/dsac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Genomic resources for amphibians are still hugely under-represented in vertebrate genomic research, despite being a group of major interest for ecology, evolution and conservation. Amphibians constitute a highly threatened group of vertebrates, present a vast diversity in reproductive modes, are extremely diverse in morphology, occupy most ecoregions of the world, and present the widest range in genome sizes of any major group of vertebrates. We combined Illumina, Nanopore and Hi-C sequencing technologies to assemble a chromosome-level genome sequence for an anuran with a moderate genome size (assembly span 3.09 Gb); Pelobates cultripes, the western spadefoot toad. The genome has an N50 length of 330 Mb with 98.6% of the total sequence length assembled into 14 super scaffolds, and 87.7% complete BUSCO genes. We use published transcriptomic data to provide annotations, identifying 32,684 protein-coding genes. We also reconstruct the P. cultripes phylome and identify 2,527 gene expansions. We contribute the first draft of the genome of the western spadefoot toad, P. cultripes. This species represents a relatively basal lineage in the anuran tree with an interesting ecology and a high degree of developmental plasticity, and thus is an important resource for amphibian genomic research.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Diego Fuentes Palacios
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| |
Collapse
|
13
|
Abstract
The availability of public genomics data has become essential for modern life sciences research, yet the quality, traceability, and curation of these data have significant impacts on a broad range of microbial genomics research. While microbial genome databases such as NCBI’s RefSeq database leverage the scalability of crowd sourcing for growth, genomics data provenance and authenticity of the source materials used to produce data are not strict requirements. Here, we describe the de novo assembly of 1,113 bacterial genome references produced from authenticated materials sourced from the American Type Culture Collection (ATCC), each with full genomics data provenance relating to bioinformatics methods, quality control, and passage history. Comparative genomics analysis of ATCC standard reference genomes (ASRGs) revealed significant issues with regard to NCBI’s RefSeq bacterial genome assemblies related to completeness, mutations, structure, strain metadata, and gaps in traceability to the original biological source materials. Nearly half of RefSeq assemblies lack details on sample source information, sequencing technology, or bioinformatics methods. Deep curation of these records is not within the scope of NCBI’s core mission in supporting open science, which aims to collect sequence records that are submitted by the public. Nonetheless, we propose that gaps in metadata accuracy and data provenance represent an “elephant in the room” for microbial genomics research. Effectively addressing these issues will require raising the level of accountability for data depositors and acknowledging the need for higher expectations of quality among the researchers whose research depends on accurate and attributable reference genome data. IMPORTANCE The traceability of microbial genomics data to authenticated physical biological materials is not a requirement for depositing these data into public genome databases. This creates significant risks for the reliability and data provenance of these important genomics research resources, the impact of which is not well understood. We sought to investigate this by carrying out a comparative genomics study of 1,113 ATCC standard reference genomes (ASRGs) produced by ATCC from authenticated and traceable materials using the latest sequencing technologies. We found widespread discrepancies in genome assembly quality, genetic variability, and the quality and completeness of the associated metadata among hundreds of reference genomes for ATCC strains found in NCBI’s RefSeq database. We present a comparative analysis of de novo-assembled ASRGs, their respective metadata, and variant analysis using RefSeq genomes as a reference. Although assembly quality in RefSeq has generally improved over time, we found that significant quality issues remain, especially as related to genomic data and metadata provenance. Our work highlights the importance of data authentication and provenance for the microbial genomics community, and underscores the risks of ignoring this issue in the future.
Collapse
|
14
|
Wang H, Gao S, Liu Y, Wang P, Zhang Z, Chen D. A pipeline for effectively developing highly polymorphic simple sequence repeats markers based on multi-sample genomic data. Ecol Evol 2022; 12:e8705. [PMID: 35342577 PMCID: PMC8928897 DOI: 10.1002/ece3.8705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 01/24/2023] Open
Abstract
Simple sequence repeats (SSRs) are widely used genetic markers in ecology, evolution, and conservation even in the genomics era, while a general limitation to their application is the difficulty of developing polymorphic SSR markers. Next-generation sequencing (NGS) offers the opportunity for the rapid development of SSRs; however, previous studies developing SSRs using genomic data from only one individual need redundant experiments to test the polymorphisms of SSRs. In this study, we designed a pipeline for the rapid development of polymorphic SSR markers from multi-sample genomic data. We used bioinformatic software to genotype multiple individuals using resequencing data, detected highly polymorphic SSRs prior to experimental validation, significantly improved the efficiency and reduced the experimental effort. The pipeline was successfully applied to a globally threatened species, the brown eared-pheasant (Crossoptilon mantchuricum), which showed very low genomic diversity. The 20 newly developed SSR markers were highly polymorphic, the average number of alleles was much higher than the genomic average. We also evaluated the effect of the number of individuals and sequencing depth on the SSR mining results, and we found that 10 individuals and ~10X sequencing data were enough to obtain a sufficient number of polymorphic SSRs, even for species with low genetic diversity. Furthermore, the genome assembly of NGS data from the optimal number of individuals and sequencing depth can be used as an alternative reference genome if a high-quality genome is not available. Our pipeline provided a paradigm for the application of NGS technology to mining and developing molecular markers for ecological and evolutionary studies.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| | - Shenghan Gao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yu Liu
- MOE Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zhengwang Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| | - De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
15
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Lawrence D, Campbell DE, Schriefer LA, Rodgers R, Walker FC, Turkin M, Droit L, Parkes M, Handley SA, Baldridge MT. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes 2022; 14:2029673. [PMID: 35130125 PMCID: PMC8824198 DOI: 10.1080/19490976.2022.2029673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
As our understanding of the importance of the human microbiota in health and disease grows, so does our need to carefully resolve and delineate its genomic content. 16S rRNA gene-based analyses yield important insights into taxonomic composition, and metagenomics-based approaches reveal the functional potential of microbial communities. However, these methods generally fail to directly link genetic features, including bacterial genes and mobile genetic elements, to each other and to their source bacterial genomes. Further, they are inadequate to capture the microdiversity present within a genus, species, or strain of bacteria within these complex communities. Here, we present a method utilizing fluorescence-activated cell sorting for isolation of single bacterial cells, amplifying their genomes, screening them by 16S rRNA gene analysis, and selecting cells for genomic sequencing. We apply this method to both a cultured laboratory strain of Escherichia coli and human stool samples. Our analyses reveal the capacity of this method to provide nearly complete coverage of bacterial genomes when applied to isolates and partial genomes of bacterial species recovered from complex communities. Additionally, this method permits exploration and comparison of conserved and variable genomic features between individual cells. We generate assemblies of novel genomes within the Ruminococcaceae family and the Holdemanella genus by combining several 16S rRNA gene-matched single cells, and report novel prophages and conjugative transposons for both Bifidobacterium and Ruminococcaceae. Thus, we demonstrate an approach for flow cytometric separation and sequencing of single bacterial cells from the human microbiota, which yields a variety of critical insights into both the functional potential of individual microbes and the variation among those microbes. This method definitively links a variety of conserved and mobile genomic features, and can be extended to further resolve diverse elements present in the human microbiota.
Collapse
Affiliation(s)
- Dylan Lawrence
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest C. Walker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa Turkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke’s Hospital and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Tracing the source and route of uterine colonization by exploring the genetic relationship of Escherichia coli isolated from the reproductive and gastrointestinal tract of dairy cows. Vet Microbiol 2022; 266:109355. [DOI: 10.1016/j.vetmic.2022.109355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023]
|
18
|
Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, Nikolaou E, Tate N, Pastusiak A, Turner C, Chewapreecha C, Frost SDW, Corander J, Croucher NJ, Turner P, Bentley SD. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat Microbiol 2022; 7:1791-1804. [PMID: 36216891 PMCID: PMC9613479 DOI: 10.1038/s41564-022-01238-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
Characterizing the genetic diversity of pathogens within the host promises to greatly improve surveillance and reconstruction of transmission chains. For bacteria, it also informs our understanding of inter-strain competition and how this shapes the distribution of resistant and sensitive bacteria. Here we study the genetic diversity of Streptococcus pneumoniae within 468 infants and 145 of their mothers by deep sequencing whole pneumococcal populations from 3,761 longitudinal nasopharyngeal samples. We demonstrate that deep sequencing has unsurpassed sensitivity for detecting multiple colonization, doubling the rate at which highly invasive serotype 1 bacteria were detected in carriage compared with gold-standard methods. The greater resolution identified an elevated rate of transmission from mothers to their children in the first year of the child's life. Comprehensive treatment data demonstrated that infants were at an elevated risk of both the acquisition and persistent colonization of a multidrug-resistant bacterium following antimicrobial treatment. Some alleles were enriched after antimicrobial treatment, suggesting that they aided persistence, but generally purifying selection dominated within-host evolution. Rates of co-colonization imply that in the absence of treatment, susceptible lineages outcompeted resistant lineages within the host. These results demonstrate the many benefits of deep sequencing for the genomic surveillance of bacterial pathogens.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway
| | - Clare Ling
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chrispin Chaguza
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.47100.320000000419368710Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Susannah J. Salter
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pattaraporn Hinfonthong
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Elissavet Nikolaou
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria Australia
| | - Natalie Tate
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Claudia Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Claire Chewapreecha
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Simon D. W. Frost
- grid.419815.00000 0001 2181 3404Microsoft Research, Redmond, WA USA ,grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Nicholas J. Croucher
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Paul Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Stephen D. Bentley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| |
Collapse
|
19
|
Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM. Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:170-182. [PMID: 35083439 PMCID: PMC8785237 DOI: 10.1089/phage.2021.0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All sequencing projects of bacteriophages (phages) should seek to report an accurate and comprehensive annotation of their genomes. This article defines 14 questions for those new to phage genomics that should be addressed before submitting a genome sequence to the International Nucleotide Sequence Database Collaboration or writing a publication.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | - Igor Tolstoy
- Viral Resources, National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, Maryland, USA
| | - Andrew M. Kropinski
- Department of Food Science, and University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Hess JF, Hess ME, Zengerle R, Paust N, Boerries M, Hutzenlaub T. Automated library preparation for whole genome sequencing by centrifugal microfluidics. Anal Chim Acta 2021; 1182:338954. [PMID: 34602197 DOI: 10.1016/j.aca.2021.338954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Next generation sequencing is evolving from a research tool into a method applied in diagnostic routine. The complete sequencing workflow includes sample pre-processing, library preparation, sequencing and bioinformatics. High quality in each of these steps is necessary to obtain excellent sequencing results. The tedious and error-prone library preparation poses a significant challenge for smaller laboratories, where high throughput pipetting robots are not cost-effective. Here we present an automated library preparation for whole genome sequencing using centrifugal microfluidics. Two samples can be run per cartridge. Precise metering of reagents allows the required liquid volumes to be reduced by 40% and the amount of sample used by 60%. The functionality of the cartridge is demonstrated with bacteria and DNA extracted from a human FFPE sample. For the bacterial sample, mean sequencing depths from 140 to 183 reads and a coverage of 99.8% of the reference genome were detected. For the human DNA, mean sequencing depths of 4.4-5.7 reads and a coverage of 78.2% of the effective reference genome were observed.
Collapse
Affiliation(s)
- Jacob Friedrich Hess
- Laboratory for MEMS Applications, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany.
| | - Maria Elena Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Nils Paust
- Laboratory for MEMS Applications, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Hutzenlaub
- Laboratory for MEMS Applications, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
21
|
Ayling M, Clark MD, Leggett RM. New approaches for metagenome assembly with short reads. Brief Bioinform 2021; 21:584-594. [PMID: 30815668 PMCID: PMC7299287 DOI: 10.1093/bib/bbz020] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the use of longer range read data combined with advances in assembly algorithms has stimulated big improvements in the contiguity and quality of genome assemblies. However, these advances have not directly transferred to metagenomic data sets, as assumptions made by the single genome assembly algorithms do not apply when assembling multiple genomes at varying levels of abundance. The development of dedicated assemblers for metagenomic data was a relatively late innovation and for many years, researchers had to make do using tools designed for single genomes. This has changed in the last few years and we have seen the emergence of a new type of tool built using different principles. In this review, we describe the challenges inherent in metagenomic assemblies and compare the different approaches taken by these novel assembly tools.
Collapse
Affiliation(s)
- Martin Ayling
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
22
|
Zou K, Liu X, Hu Q, Zhang D, Fu S, Zhang S, Huang H, Lei F, Zhang G, Miao B, Meng D, Jiang L, Liu H, Yin H, Liang Y. Root Endophytes and Ginkgo biloba Are Likely to Share and Compensate Secondary Metabolic Processes, and Potentially Exchange Genetic Information by LTR-RTs. FRONTIERS IN PLANT SCIENCE 2021; 12:704985. [PMID: 34305992 PMCID: PMC8301071 DOI: 10.3389/fpls.2021.704985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 05/21/2023]
Abstract
Ginkgo biloba is a pharmaceutical resource for terpenes and flavonoids. However, few insights discussed endophytes' role in Ginkgo, and whether genetic exchange happens between Ginkgo and endophytes remains unclear. Herein, functional gene profiles and repetitive sequences were analyzed to focus on these issues. A total of 25 endophyte strains were isolated from the Ginkgo root and distributed in 16 genera of 6 phyla. Significant morphological diversities lead to the diversity in the COG functional classification. KEGG mapping revealed that endophytic bacteria and fungi potentially synthesize chalcone, while endophytic fungi might also promote flavonoid derivatization. Both bacteria and fungi may facilitate the lignin synthesis. Aspergillus sp. Gbtc_1 exhibited the feasibility of regulating alcohols to lignans. Although Ginkgo and the endophytes have not observed the critical levopimaradiene synthase in ginkgolides synthesis, the upstream pathways of terpenoid precursors are likely intact. The MVK genes in Ginkgo may have alternative non-homologous copies or be compensated by endophytes in long-term symbiosis. Cellulomonas sp. Gbtc_1 became the only bacteria to harbor both MEP and MVA pathways. Endophytes may perform the mutual transformation of IPP and DMAPP in the root. Ginkgo and bacteria may lead to the synthesis and derivatization of the carotenoid pathway. The isoquinoline alkaloid biosynthesis seemed lost in the Ginkgo root community, but L-dopa is more probably converted into dopamine as an essential signal-transduction substance. So, endophytes may participate in the secondary metabolism of the Ginkgo in a shared or complementary manner. Moreover, a few endophytic sequences predicted as Ty3/Gypsy and Ty1/Copia superfamilies exhibited extremely high similarity to those of Ginkgo. CDSs in such endophytic LTR-RT sequences were also highly homologous to one Ginkgo CDS. Therefore, LTR-RTs may be a rare unit flowing between the Ginkgo host and endophytes to exchange genetic information. Collectively, this research effectively expanded the insight on the symbiotic relationship between the Ginkgo host and the endophytes in the root.
Collapse
Affiliation(s)
- Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Qi Hu
- NEOMICS Institute, Shenzhen, China
| | - Du Zhang
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Haonan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Fangying Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Guoqing Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| |
Collapse
|
23
|
Massaiu I, Songia P, Chiesa M, Valerio V, Moschetta D, Alfieri V, Myasoedova VA, Schmid M, Cassetta L, Colombo GI, D’Alessandra Y, Poggio P. Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. Int J Mol Sci 2021; 22:ijms22126317. [PMID: 34204756 PMCID: PMC8231517 DOI: 10.3390/ijms22126317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.
Collapse
Affiliation(s)
- Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Valentina Alfieri
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Michael Schmid
- Genexa AG, Dienerstrasse 7, CH-8004 Zürich, Switzerland;
| | - Luca Cassetta
- The Queen’s Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Yuri D’Alessandra
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20131 Milan, Italy; (I.M.); (P.S.); (M.C.); (V.V.); (D.M.); (V.A.); (V.A.M.); (G.I.C.); (Y.D.)
- Correspondence:
| |
Collapse
|
24
|
|
25
|
The Genome Sequence of the Octocoral Paramuricea clavata - A Key Resource To Study the Impact of Climate Change in the Mediterranean. G3-GENES GENOMES GENETICS 2020; 10:2941-2952. [PMID: 32660973 PMCID: PMC7467007 DOI: 10.1534/g3.120.401371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The octocoral, Paramuricea clavata, is a habitat-forming anthozoan with a key ecological role in rocky benthic and biodiversity-rich communities in the Mediterranean and Eastern Atlantic. Shallow populations of P. clavata in the North-Western Mediterranean are severely affected by warming-induced mass mortality events (MMEs). These MMEs have differentially impacted individuals and populations of P. clavata (i.e., varied levels of tissue necrosis and mortality rates) over thousands of kilometers of coastal areas. The eco-evolutionary processes, including genetic factors, contributing to these differential responses remain to be characterized. Here, we sequenced a P. clavata individual with short and long read technologies, producing 169.98 Gb of Illumina paired-end and 3.55 Gb of Oxford Nanopore Technologies (ONT) reads. We obtained a de novo genome assembly accounting for 607 Mb in 64,145 scaffolds. The contig and scaffold N50s are 19.15 Kb and 23.92 Kb, respectively. Despite of the low contiguity of the assembly, its gene completeness is relatively high, including 75.8% complete and 9.4% fragmented genes out of the 978 metazoan genes contained in the metazoa_odb9 database. A total of 62,652 protein-coding genes have been annotated. This assembly is one of the few octocoral genomes currently available. This is undoubtedly a valuable resource for characterizing the genetic bases of the differential responses to thermal stress and for the identification of thermo-resistant individuals and populations. Overall, having the genome of P. clavata will facilitate studies of various aspects of its evolutionary ecology and elaboration of effective conservation plans such as active restoration to overcome the threats of global change.
Collapse
|
26
|
Hurel J, Schbath S, Bougeard S, Rolland M, Petrillo M, Touzain F. DUGMO: tool for the detection of unknown genetically modified organisms with high-throughput sequencing data for pure bacterial samples. BMC Bioinformatics 2020; 21:284. [PMID: 32631215 PMCID: PMC7336441 DOI: 10.1186/s12859-020-03611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background The European Community has adopted very restrictive policies regarding the dissemination and use of genetically modified organisms (GMOs). In fact, a maximum threshold of 0.9% of contaminating GMOs is tolerated for a “GMO-free” label. In recent years, imports of undescribed GMOs have been detected. Their sequences are not described and therefore not detectable by conventional approaches, such as PCR. Results We developed DUGMO, a bioinformatics pipeline for the detection of genetically modified (GM) bacteria, including unknown GM bacteria, based on Illumina paired-end sequencing data. The method is currently focused on the detection of GM bacteria with – possibly partial – transgenes in pure bacterial samples. In the preliminary steps, coding sequences (CDSs) are aligned through two successive BLASTN against the host pangenome with relevant tuned parameters to discriminate CDSs belonging to the wild type genome (wgCDS) from potential GM coding sequences (pgmCDSs). Then, Bray-Curtis distances are calculated between the wgCDS and each pgmCDS, based on the difference of genomic vocabulary. Finally, two machine learning methods, namely the Random Forest and Generalized Linear Model, are carried out to target true GM CDS(s), based on six variables including Bray-Curtis distances and GC content. Tests carried out on a GM Bacillus subtilis showed 25 positive CDSs corresponding to the chloramphenicol resistance gene and CDSs of the inserted plasmids. On a wild type B. subtilis, no false positive sequences were detected. Conclusion DUGMO detects exogenous CDS, truncated, fused or highly mutated wild CDSs in high-throughput sequencing data, and was shown to be efficient at detecting GM sequences, but it might also be employed for the identification of recent horizontal gene transfers.
Collapse
Affiliation(s)
- Julie Hurel
- ANSES, Laboratoire de Ploufragan, GVB unit, 22440, Ploufragan, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Stéphanie Bougeard
- ANSES, Laboratoire de Ploufragan, EPISABE unit, 22440, Ploufragan, France
| | - Mathieu Rolland
- ANSES, Laboratoire de la santé des végétaux, 49000, Angers, France
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Fabrice Touzain
- ANSES, Laboratoire de Ploufragan, GVB unit, 22440, Ploufragan, France.
| |
Collapse
|
27
|
Miao X, Li B, Shen Y, Yu H, Zhu G, Liang C, Fu X, Wang C, Li S, Zhang B. Development and Verification of an Economical Method of Custom Target Library Construction. ACS OMEGA 2020; 5:13087-13095. [PMID: 32548494 PMCID: PMC7288555 DOI: 10.1021/acsomega.0c01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/21/2020] [Indexed: 05/13/2023]
Abstract
Although technological advances have greatly reduced the cost of DNA sequencing, sample preparation time and reagent costs remain the limiting factors for many studies. Based on low-cost targeted amplification, we developed an economical method for custom target library construction based on DNA nanoball (DNB) technology and two-step polymerase chain reaction (PCR). Here, we refer to this method as the two-step PCR, which was compared to traditional multiplex PCR methods in three aspects, data quality, efficiency, and specificity to humans. The results confirmed that two-step PCR reduces to finishing 128 sequencing libraries in only 2 h 24 min 59 s of the total PCR time and at a data utilization rate of 0.44 at a cost of approximately $1.70 per sample for targeted sequencing via the two-step PCR. The replacement of traditional multiplex PCR methods with this strategy makes the sample preparation process before sequencing relatively more cost-effective and further reduces the cost of next-generation sequencing (NGS). This method may also be free from the interference of other species and the limitations of sample type and DNA content. These findings reveal possibilities for broad applications of this approach in forensic research.
Collapse
Affiliation(s)
- Xinyao Miao
- School
of Forensic Sciences, Xi’an Jiaotong
University, 710049 Xi’an, P. R. China
| | - Bowen Li
- School
of Life Sciences, Sichuan University, 610207 Chengdu, P. R. China
| | - Yuesheng Shen
- School
of Life Sciences, Northwest University, 710069 Xi’an, P. R. China
| | - Huiyun Yu
- School
of Life Sciences, Northwest A&F University, 712100 Yangling, P. R. China
| | - Guoqiang Zhu
- Key
Laboratory of Bio-Resources and Eco-Environment of Ministry of Education,
College of Life Sciences, Sichuan University, 610065 Chengdu, P. R. China
| | - Chen Liang
- School of
Mechanical Engineering, Xi’an Jiaotong
University, 710049 Xi’an, P. R. China
| | - Xiao Fu
- The
Beijing Genomics Institute (BGI)—Tianjin, 301700 Tianjin, P. R. China
| | - Chu Wang
- School
of Life Sciences, Xiamen Medical College, 361023 Xiamen, P. R. China
| | - Shengbin Li
- School
of Forensic Sciences, Xi’an Jiaotong
University, 710049 Xi’an, P. R. China
| | - Bao Zhang
- School
of Forensic Sciences, Xi’an Jiaotong
University, 710049 Xi’an, P. R. China
| |
Collapse
|
28
|
Groza C, Kwan T, Soranzo N, Pastinen T, Bourque G. Personalized and graph genomes reveal missing signal in epigenomic data. Genome Biol 2020; 21:124. [PMID: 32450900 PMCID: PMC7249353 DOI: 10.1186/s13059-020-02038-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epigenomic studies that use next generation sequencing experiments typically rely on the alignment of reads to a reference sequence. However, because of genetic diversity and the diploid nature of the human genome, we hypothesize that using a generic reference could lead to incorrectly mapped reads and bias downstream results. RESULTS We show that accounting for genetic variation using a modified reference genome or a de novo assembled genome can alter histone H3K4me1 and H3K27ac ChIP-seq peak calls either by creating new personal peaks or by the loss of reference peaks. Using permissive cutoffs, modified reference genomes are found to alter approximately 1% of peak calls while de novo assembled genomes alter up to 5% of peaks. We also show statistically significant differences in the amount of reads observed in regions associated with the new, altered, and unchanged peaks. We report that short insertions and deletions (indels), followed by single nucleotide variants (SNVs), have the highest probability of modifying peak calls. We show that using a graph personalized genome represents a reasonable compromise between modified reference genomes and de novo assembled genomes. We demonstrate that altered peaks have a genomic distribution typical of other peaks. CONCLUSIONS Analyzing epigenomic datasets with personalized and graph genomes allows the recovery of new peaks enriched for indels and SNVs. These altered peaks are more likely to differ between individuals and, as such, could be relevant in the study of various human phenotypes.
Collapse
Affiliation(s)
| | - Tony Kwan
- Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Nicole Soranzo
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambdridge, UK
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambdridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambdridge, UK
| | - Tomi Pastinen
- Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
- Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Guillaume Bourque
- Human Genetics, McGill University, Montreal, QC, Canada.
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada.
- Canadian Centre for Computational Genomics, Montreal, QC, Canada.
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Jiang Y, Jiang Y, Wang S, Zhang Q, Ding X. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinformatics 2019; 20:556. [PMID: 31703550 PMCID: PMC6839175 DOI: 10.1186/s12859-019-3164-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As whole-genome sequencing is becoming a routine technique, it is important to identify a cost-effective depth of sequencing for such studies. However, the relationship between sequencing depth and biological results from the aspects of whole-genome coverage, variant discovery power and the quality of variants is unclear, especially in pigs. We sequenced the genomes of three Yorkshire boars at an approximately 20X depth on the Illumina HiSeq X Ten platform and downloaded whole-genome sequencing data for three Duroc and three Landrace pigs with an approximately 20X depth for each individual. Then, we downsampled the deep genome data by extracting twelve different proportions of 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 paired reads from the original bam files to mimic the sequence data of the same individuals at sequencing depths of 1.09X, 2.18X, 3.26X, 4.35X, 6.53X, 8.70X, 10.88X, 13.05X, 15.22X, 17.40X, 19.57X and 21.75X to evaluate the influence of genome coverage, the variant discovery rate and genotyping accuracy as a function of sequencing depth. In addition, SNP chip data for Yorkshire pigs were used as a validation for the comparison of single-sample calling and multisample calling algorithms. RESULTS Our results indicated that 10X is an ideal practical depth for achieving plateau coverage and discovering accurate variants, which achieved greater than 99% genome coverage. The number of false-positive variants was increased dramatically at a depth of less than 4X, which covered 95% of the whole genome. In addition, the comparison of multi- and single-sample calling showed that multisample calling was more sensitive than single-sample calling, especially at lower depths. The number of variants discovered under multisample calling was 13-fold and 2-fold higher than that under single-sample calling at 1X and 22X, respectively. A large difference was observed when the depth was less than 4.38X. However, more false-positive variants were detected under multisample calling. CONCLUSIONS Our research will inform important study design decisions regarding whole-genome sequencing depth. Our results will be helpful for choosing the appropriate depth to achieve the same power for studies performed under limited budgets.
Collapse
Affiliation(s)
- Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Sheng Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271001 China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
30
|
Sydenham TV, Overballe-Petersen S, Hasman H, Wexler H, Kemp M, Justesen US. Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom 2019; 5:e000312. [PMID: 31697231 PMCID: PMC6927303 DOI: 10.1099/mgen.0.000312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Bacteroides fragilis constitutes a significant part of the normal human gut microbiota and can also act as an opportunistic pathogen. Antimicrobial resistance (AMR) and the prevalence of AMR genes are increasing, and prediction of antimicrobial susceptibility based on sequence information could support targeted antimicrobial therapy in a clinical setting. Complete identification of insertion sequence (IS) elements carrying promoter sequences upstream of resistance genes is necessary for prediction of AMR. However, de novo assemblies from short reads alone are often fractured due to repeat regions and the presence of multiple copies of identical IS elements. Identification of plasmids in clinical isolates can aid in the surveillance of the dissemination of AMR, and comprehensive sequence databases support microbiome and metagenomic studies. We tested several short-read, hybrid and long-lead assembly pipelines by assembling the type strain B. fragilis CCUG4856T (=ATCC25285=NCTC9343) with Illumina short reads and long reads generated by Oxford Nanopore Technologies (ONT) MinION sequencing. Hybrid assembly with Unicycler, using quality filtered Illumina reads and Filtlong filtered and Canu-corrected ONT reads, produced the assembly of highest quality. This approach was then applied to six clinical multidrug-resistant B. fragilis isolates and, with minimal manual finishing of chromosomal assemblies of three isolates, complete, circular assemblies of all isolates were produced. Eleven circular, putative plasmids were identified in the six assemblies, of which only three corresponded to a known cultured Bacteroides plasmid. Complete IS elements could be identified upstream of AMR genes; however, there was not complete correlation between the absence of IS elements and antimicrobial susceptibility. As our knowledge on factors that increase expression of resistance genes in the absence of IS elements is limited, further research is needed prior to implementing AMR prediction for B. fragilis from whole-genome sequencing.
Collapse
Affiliation(s)
- Thomas V. Sydenham
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | | | - Henrik Hasman
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hannah Wexler
- GLAVA Health Care System and David Geffen School of Medicine, UCLA (University of California, Los Angeles), Los Angeles, CA, USA
| | - Michael Kemp
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Ulrik S. Justesen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Complementary Antibacterial Effects of Bacteriocins and Organic Acids as Revealed by Comparative Analysis of Carnobacterium spp. from Meat. Appl Environ Microbiol 2019; 85:AEM.01227-19. [PMID: 31399404 DOI: 10.1128/aem.01227-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Carnobacterium maltaromaticum and Carnobacterium divergens are often predominant in the microbiota of vacuum-packaged (VP) meats after prolonged storage at chiller temperatures, and more so in recent studies. We investigated the antibacterial activities of C. maltaromaticum and C. divergens (n = 31) from VP meats by phenotypic characterization and genomic analysis. Five strains showed antibacterial activities against Gram-positive bacteria in a spot-lawn assay, with C. maltaromaticum strains having an intergeneric and C. divergens strains an intrageneric inhibition spectrum. This inhibitory activity is correlated with the production of predicted bacteriocins, including carnobacteriocin B2 and carnolysin for C. maltaromaticum and divergicin A for C. divergens The supernatants of both species cultured in meat juice medium under anaerobic conditions retarded the growth of most Gram-positive and Gram-negative bacteria in broth assay in a strain-dependent manner. C. maltaromaticum and C. divergens produced formate and acetate but not lactate under VP meat-relevant conditions. The relative inhibitory activity by Carnobacterium strains was significantly correlated (P < 0.05) to the production of both acids. Genomic analysis revealed the presence of genes required for respiration in both species. In addition, two clusters of C. divergens have an average nucleotide identity below the cutoff value for species delineation and thus should be considered to be two subspecies. In conclusion, both bacteriocins and organic acids are factors contributing significantly to the antibacterial activity of C. maltaromaticum and C. divergens under VP meat-relevant conditions. A few Carnobacterium strains can be explored as protective cultures to extend the shelf life and improve the safety of VP meats.IMPORTANCE The results of this study demonstrated that both bacteriocins and organic acids are important factors contributing to the antibacterial activities of Carnobacterium from vacuum-packaged (VP) meats. This study demonstrated that formate and acetate are the key organic acids produced by Carnobacterium and demonstrated their association with the inhibitory activity of carnobacteria under VP meat-relevant storage conditions. The role of lactate, on the other hand, may not be as important as previously believed in the antimicrobial activities of Carnobacterium spp. on chilled VP meats. These findings advance our understanding of the physiology of Carnobacterium spp. to better explore their biopreservative properties for chilled VP meats.
Collapse
|
32
|
Zhong Q, Yang S, Sun X, Wang L, Li Y. The complete chloroplast genome of the Jerusalem artichoke ( Helianthus tuberosus L.) and an adaptive evolutionary analysis of the ycf2 gene. PeerJ 2019; 7:e7596. [PMID: 31531272 PMCID: PMC6718157 DOI: 10.7717/peerj.7596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) is widely cultivated in Northwest China, and it has become an emerging economic crop that is rapidly developing. Because of its elevated inulin content and high resistance, it is widely used in functional food, inulin processing, feed, and ecological management. In this study, Illumina sequencing technology was utilized to assemble and annotate the complete chloroplast genome sequences of Jerusalem artichoke. The total length was 151,431 bp, including four conserved regions: A pair of reverse repeat regions (IRa 24,568 bp and IRb 24,603 bp), a large single-copy region (83,981 bp), and a small single-copy region (18,279 bp). The genome had a total of 115 genes, with 19 present in the reverse direction in the IR region. A total of 36 simple sequence repeats (SSRs) were identified in the coding and non-coding regions, most of which were biased toward A/T bases. A total of 32 SSRs were distributed in the non-coding regions. A comparative analysis of the chloroplast genome sequence of the Jerusalem artichoke and other species of the composite family revealed that the chloroplast genome sequences of plants of the composite family were highly conserved. Differences were observed in 24 gene loci in the coding region, with the degree of differentiation of the ycf2 gene being the most obvious. A phylogenetic analysis showed that H. petiolaris subsp. fallax had the closest relationship with Jerusalem artichoke, both members of the Helianthus genus. Selective locus detection of the ycf2 gene in eight species of the composite family was performed to explore adaptive evolution traits of the ycf2 gene in Jerusalem artichoke. The results show that there are significant and extremely significant positive selection sites at the 1239N and 1518R loci, respectively, indicating that the ycf2 gene has been subject to adaptive evolution. Insights from our assessment of the complete chloroplast genome sequences of Jerusalem artichoke will aid in the in-depth study of the evolutionary relationship of the composite family and provide significant sequencing information for the genetic improvement of Jerusalem artichoke.
Collapse
Affiliation(s)
- Qiwen Zhong
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, Qinghai, China.,Agriculture and Forestry Sciences of Qinghai University, Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, Qinghai, China.,Qinghai University, The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai, China
| | - Shipeng Yang
- Agriculture and Forestry Sciences of Qinghai University, Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, Qinghai, China.,Qinghai University, The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai, China
| | - Xuemei Sun
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, Qinghai, China.,Agriculture and Forestry Sciences of Qinghai University, Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, Qinghai, China.,Qinghai University, The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai, China
| | - Lihui Wang
- Agriculture and Forestry Sciences of Qinghai University, Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, Qinghai, China.,Qinghai University, The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai, China
| | - Yi Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, Qinghai, China
| |
Collapse
|
33
|
Waters NR, Abram F, Brennan F, Holmes A, Pritchard L. riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. Nucleic Acids Res 2019; 46:e68. [PMID: 29608703 PMCID: PMC6009695 DOI: 10.1093/nar/gky212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/12/2018] [Indexed: 11/12/2022] Open
Abstract
The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because of the inherent difficulty of resolving repeated regions with short reads alone, only ∼10% of sequencing projects have resulted in a closed genome. The most common repeated regions are those coding for ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times, and are typically used as sequence markers to classify and identify bacteria. Here, we exploit the genomic context in which rDNAs occur across taxa to improve assembly of these regions relative to de novo sequencing by using the conserved nature of rDNAs across taxa and the uniqueness of their flanking regions within a genome. We describe a method to construct targeted pseudocontigs generated by iteratively assembling reads that map to a reference genome’s rDNAs. These pseudocontigs are then used to more accurately assemble the newly sequenced chromosome. We show that this method, implemented as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in conjunction with other genome polishing tools, can assist in closure of a genome.
Collapse
Affiliation(s)
- Nicholas R Waters
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland.,Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Florence Abram
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Fiona Brennan
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland.,Soil and Environmental Microbiology, Environmental Research Centre, Teagasc, Johnstown Castle, Wexford, Y35 TC97, Ireland
| | - Ashleigh Holmes
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
34
|
Comparative genomic analysis of monosporidial and monoteliosporic cultures for unraveling the complexity of molecular pathogenesis of Tilletia indica pathogen of wheat. Sci Rep 2019; 9:8185. [PMID: 31160715 PMCID: PMC6547692 DOI: 10.1038/s41598-019-44464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/01/2019] [Indexed: 11/09/2022] Open
Abstract
Tilletia indica (Ti) - a quarantined fungal pathogen of wheat and its pathogenesis is chiefly governed by pathogen effectors secreted inside the host plant. The de novo genome sequencing of several field isolates and stages available could be used for understanding the molecular pathogenesis. The presence of gaps and low coverage of assembled genomes poses a problem in accurate functional annotation of such functions. In the present study attempts were made to improve the Ti draft genome through reconciliation of globally available datasets of three highly virulent monoteliospore cultures of Ti field isolates. It has sequence depth of 107x and N50 scaffold size of 80,772 (more than 26 times as large as achieved in the draft assembly) with highest sequence contiguity, more accurate and nearly complete. Functional annotation revealed that Ti genome contains 9209 genes evolved with many expanded gene families and arranged mostly in a cluster. About 79% of Ti genes were orthologous to other basidiomycetes fungi, Around 7.93% proteins were having secretary signals and 6.66% were identified as highly virulent pathogenicity genes. Using improved Ti genome as a reference, the genomic variation was assessed with respect to repeats, SNPs/InDel, gene families and correct set of virulence associated genes during its life cycle. The comparative intra-species, inter-stage and inter-species genomic variation will have broader implications to understand the gene regulatory networks involved in growth, mating and virulence behaviour of Tilletia f. spp. and also for better appreciation of fungal biology and disease management.
Collapse
|
35
|
Tian S, Yan H, Klee EW, Kalmbach M, Slager SL. Comparative analysis of de novo assemblers for variation discovery in personal genomes. Brief Bioinform 2019; 19:893-904. [PMID: 28407084 PMCID: PMC6169673 DOI: 10.1093/bib/bbx037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Abstract
Current variant discovery approaches often rely on an initial read mapping to the reference sequence. Their effectiveness is limited by the presence of gaps, potential misassemblies, regions of duplicates with a high-sequence similarity and regions of high-sequence divergence in the reference. Also, mapping-based approaches are less sensitive to large INDELs and complex variations and provide little phase information in personal genomes. A few de novo assemblers have been developed to identify variants through direct variant calling from the assembly graph, micro-assembly and whole-genome assembly, but mainly for whole-genome sequencing (WGS) data. We developed SGVar, a de novo assembly workflow for haplotype-based variant discovery from whole-exome sequencing (WES) data. Using simulated human exome data, we compared SGVar with five variation-aware de novo assemblers and with BWA-MEM together with three haplotype- or local de novo assembly-based callers. SGVar outperforms the other assemblers in sensitivity and tolerance of sequencing errors. We recapitulated the findings on whole-genome and exome data from a Utah residents with Northern and Western European ancestry (CEU) trio, showing that SGVar had high sensitivity both in the highly divergent human leukocyte antigen (HLA) region and in non-HLA regions of chromosome 6. In particular, SGVar is robust to sequencing error, k-mer selection, divergence level and coverage depth. Unlike mapping-based approaches, SGVar is capable of resolving long-range phase and identifying large INDELs from WES, more prominently from WGS. We conclude that SGVar represents an ideal platform for WES-based variant discovery in highly divergent regions and across the whole genome.
Collapse
Affiliation(s)
- Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine Bioinformatics Program, Mayo Clinic, USA
| | - Michael Kalmbach
- Division of Information Management and Analytics, Department of Information Technology, Mayo Clinic, USA
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Bogaerts B, Winand R, Fu Q, Van Braekel J, Ceyssens PJ, Mattheus W, Bertrand S, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept. Front Microbiol 2019; 10:362. [PMID: 30894839 PMCID: PMC6414443 DOI: 10.3389/fmicb.2019.00362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Despite being a well-established research method, the use of whole-genome sequencing (WGS) for routine molecular typing and pathogen characterization remains a substantial challenge due to the required bioinformatics resources and/or expertise. Moreover, many national reference laboratories and centers, as well as other laboratories working under a quality system, require extensive validation to demonstrate that employed methods are "fit-for-purpose" and provide high-quality results. A harmonized framework with guidelines for the validation of WGS workflows does currently, however, not exist yet, despite several recent case studies highlighting the urgent need thereof. We present a validation strategy focusing specifically on the exhaustive characterization of the bioinformatics analysis of a WGS workflow designed to replace conventionally employed molecular typing methods for microbial isolates in a representative small-scale laboratory, using the pathogen Neisseria meningitidis as a proof-of-concept. We adapted several classically employed performance metrics specifically toward three different bioinformatics assays: resistance gene characterization (based on the ARG-ANNOT, ResFinder, CARD, and NDARO databases), several commonly employed typing schemas (including, among others, core genome multilocus sequence typing), and serogroup determination. We analyzed a core validation dataset of 67 well-characterized samples typed by means of classical genotypic and/or phenotypic methods that were sequenced in-house, allowing to evaluate repeatability, reproducibility, accuracy, precision, sensitivity, and specificity of the different bioinformatics assays. We also analyzed an extended validation dataset composed of publicly available WGS data for 64 samples by comparing results of the different bioinformatics assays against results obtained from commonly used bioinformatics tools. We demonstrate high performance, with values for all performance metrics >87%, >97%, and >90% for the resistance gene characterization, sequence typing, and serogroup determination assays, respectively, for both validation datasets. Our WGS workflow has been made publicly available as a "push-button" pipeline for Illumina data at https://galaxy.sciensano.be to showcase its implementation for non-profit and/or academic usage. Our validation strategy can be adapted to other WGS workflows for other pathogens of interest and demonstrates the added value and feasibility of employing WGS with the aim of being integrated into routine use in an applied public health setting.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
37
|
Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 2018; 8:15936. [PMID: 30374192 PMCID: PMC6205999 DOI: 10.1038/s41598-018-33809-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.
Collapse
Affiliation(s)
- Anne M Estes
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA.
| | - David J Hearn
- Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A & M University, College Station, TX, 77843, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
38
|
Liu F, Ma R, Tay CYA, Octavia S, Lan R, Chung HKL, Riordan SM, Grimm MC, Leong RW, Tanaka MM, Connor S, Zhang L. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerg Microbes Infect 2018; 7:64. [PMID: 29636463 PMCID: PMC5893538 DOI: 10.1038/s41426-018-0065-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC). C. concisus consists of two genomospecies (GS) and diverse strains. This study aimed to identify molecular markers to differentiate commensal and IBD-associated C. concisus strains. The genomes of 63 oral C. concisus strains isolated from patients with IBD and healthy controls were examined, of which 38 genomes were sequenced in this study. We identified a novel secreted enterotoxin B homologue, Csep1. The csep1 gene was found in 56% of GS2 C. concisus strains, presented in the plasmid pICON or the chromosome. A six-nucleotide insertion at the position 654–659 bp in csep1 (csep1-6bpi) was found. The presence of csep1-6bpi in oral C. concisus strains isolated from patients with active CD (47%, 7/15) was significantly higher than that in strains from healthy controls (0/29, P = 0.0002), and the prevalence of csep1-6bpi positive C. concisus strains was significantly higher in patients with active CD (67%, 4/6) as compared to healthy controls (0/23, P = 0.0006). Proteomics analysis detected the Csep1 protein. A csep1 gene hot spot in the chromosome of different C. concisus strains was found. The pICON plasmid was only found in GS2 strains isolated from the two relapsed CD patients with small bowel complications. This study reports a C. concisus molecular marker (csep1-6bpi) that is associated with active CD.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chin Yen Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Michael C Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Rupert W Leong
- Concord Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Susan Connor
- Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
39
|
Nguyen TH, Pham TD, Higa N, Iwashita H, Takemura T, Ohnishi M, Morita K, Yamashiro T. Analysis of Vibrio seventh pandemic island II and novel genomic islands in relation to attachment sequences among a wide variety of Vibrio cholerae strains. Microbiol Immunol 2018; 62:150-157. [PMID: 29315809 PMCID: PMC5900727 DOI: 10.1111/1348-0421.12570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Vibrio cholerae O1 El Tor, the pathogen responsible for the current cholera pandemic, became pathogenic by acquiring virulent factors including Vibrio seventh pandemic islands (VSP)‐I and −II. Diversity of VSP‐II is well recognized; however, studies addressing attachment sequence left (attL) sequences of VSP‐II are few. In this report, a wide variety of V. cholerae strains were analyzed for the structure and distribution of VSP‐II in relation to their attachment sequences. Of 188 V. cholerae strains analyzed, 81% (153/188) strains carried VSP‐II; of these, typical VSP‐II, and a short variant was found in 36% (55/153), and 63% (96/153), respectively. A novel VSP‐II was found in two V. cholerae non‐O1/non‐O139 strains. In addition to the typical 14‐bp attL, six new attL‐like sequences were identified. The 14‐bp attL was associated with VSP‐II in 91% (139/153), whereas the remaining six types were found in 9.2% (14/153) of V. cholerae strains. Of note, six distinct types of the attL‐like sequence were found in the seventh pandemic wave 1 strains; however, only one or two types were found in the wave 2 or 3 strains. Interestingly, 86% (24/28) of V. cholerae seventh pandemic strains harboring a 13‐bp attL‐like sequence were devoid of VSP‐II. Six novel genomic islands using two unique insertion sites to those of VSP‐II were identified in 11 V. cholerae strains in this study. Four of those shared similar gene clusters with VSP‐II, except integrase gene.
Collapse
Affiliation(s)
- Tuan Hai Nguyen
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Tho Duc Pham
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hanako Iwashita
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taichiro Takemura
- Department of Tropical Microbiology, Nagasaki University Institute of Tropical Medicine, Nagasaki, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Morita
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
40
|
Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O, Amselem J, Bouri L, Bocs S, Klopp C, Gibrat JF, Vlasova A, Leskosek BL, Soler L, Binzer-Panchal M, Lantz H. Ten steps to get started in Genome Assembly and Annotation. F1000Res 2018; 7. [PMID: 29568489 PMCID: PMC5850084 DOI: 10.12688/f1000research.13598.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).
Collapse
Affiliation(s)
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, Ghent University - VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Salvadors Capella-Gutierrez
- Spanish National Bioinformatics Institute (INB), Barcelona, Spain.,Barcelona Supercomputing Center (BSC), Centro Nacional de Supercomputación, Barcelona, Spain
| | - Cederic Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, NGI/SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-752 37 , Sweden
| | - Joelle Amselem
- URGI, INRA, Université Paris-Saclay, Versailles, 78026, France
| | - Laurent Bouri
- Institut Français de Bioinformatique, UMS3601-CNRS, Université Paris-Saclay, Orsay, 91403, France
| | - Stephanie Bocs
- CIRAD, UMR AGAP, Montpellier, 34398, France.,AGAP, Cirad, INRA, Montpellier SupAgro, Universite Montpellier, Montpellier, France.,South Green Bioinformatics Platform, Montpellier, France
| | | | - Jean-Francois Gibrat
- Institut Français de Bioinformatique, UMS3601-CNRS, Université Paris-Saclay, Orsay, 91403, France.,Unité de recherche , INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anna Vlasova
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Brane L Leskosek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Lucile Soler
- IMBIM/NBIS/SciLifeLab, Uppsala University, Uppsala, Sweden
| | | | - Henrik Lantz
- IMBIM/NBIS/SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W, Wertheim HFL. Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev 2017; 30:1015-1063. [PMID: 28855266 PMCID: PMC5608882 DOI: 10.1128/cmr.00016-17] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Outbreaks of multidrug-resistant bacteria present a frequent threat to vulnerable patient populations in hospitals around the world. Intensive care unit (ICU) patients are particularly susceptible to nosocomial infections due to indwelling devices such as intravascular catheters, drains, and intratracheal tubes for mechanical ventilation. The increased vulnerability of infected ICU patients demonstrates the importance of effective outbreak management protocols to be in place. Understanding the transmission of pathogens via genotyping methods is an important tool for outbreak management. Recently, whole-genome sequencing (WGS) of pathogens has become more accessible and affordable as a tool for genotyping. Analysis of the entire pathogen genome via WGS could provide unprecedented resolution in discriminating even highly related lineages of bacteria and revolutionize outbreak analysis in hospitals. Nevertheless, clinicians have long been hesitant to implement WGS in outbreak analyses due to the expensive and cumbersome nature of early sequencing platforms. Recent improvements in sequencing technologies and analysis tools have rapidly increased the output and analysis speed as well as reduced the overall costs of WGS. In this review, we assess the feasibility of WGS technologies and bioinformatics analysis tools for nosocomial outbreak analyses and provide a comparison to conventional outbreak analysis workflows. Moreover, we review advantages and limitations of sequencing technologies and analysis tools and present a real-world example of the implementation of WGS for antimicrobial resistance analysis. We aimed to provide health care professionals with a guide to WGS outbreak analysis that highlights its benefits for hospitals and assists in the transition from conventional to WGS-based outbreak analysis.
Collapse
Affiliation(s)
- Scott Quainoo
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Jordy P M Coolen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Heiman F L Wertheim
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Bocsanczy AM, Huguet-Tapia JC, Norman DJ. Comparative Genomics of Ralstonia solanacearum Identifies Candidate Genes Associated with Cool Virulence. FRONTIERS IN PLANT SCIENCE 2017; 8:1565. [PMID: 28955357 PMCID: PMC5601409 DOI: 10.3389/fpls.2017.01565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/28/2017] [Indexed: 06/01/2023]
Abstract
Strains of the Ralstonia solanacearum species complex in the phylotype IIB group are capable of causing Bacterial Wilt disease in potato and tomato at temperatures lower than 24°C. The capability of these strains to survive and to incite infection at temperatures colder than their normally tropical boundaries represents a threat to United States agriculture in temperate regions. In this work, we used a comparative genomics approach to identify orthologous genes linked to the lower temperature virulence phenotype. Six R. solanacearum cool virulent (CV) strains were compared to six strains non-pathogenic at low temperature (NPLT). CV strains can cause Bacterial Wilt symptoms at temperatures below 24°C, while NPLT cannot. Four R. solanacearum strains were sequenced for this work in order to complete the comparison. An orthologous genes comparison identified 44 genes present only in CV strains and 19 genes present only in NPLT strains. Gene annotation revealed a high percentage of genes compared with whole genomes in the transcriptional regulator and transport categories. A single nucleotide polymorphism (SNP) analysis identified 265 genes containing conserved non-synonymous SNPs in CV strains. Ten genes in the pathogenicity category were identified in this group. Comparisons of type 3 secretion system, type 6 secretion system (T6SS) clusters, and associated effectors did not indicate a correlation with the CV phenotype except for one T6SS VGR effector potentially associated with the CV phenotype. This is the first R. solanacearum genomic comparative analysis of multiple strains with different temperature related virulence. The candidate genes identified by this comparison are potential factors involved in virulence at low temperatures that need to be investigated. The high percentage of transcriptional regulators among the genes present only in CV strains supports the hypothesis that temperature dependent regulation of virulence genes explains the differential virulence phenotype at low temperatures. This comparison contributes to find new possible connections of temperature dependent virulence to the previously described complex regulatory system involving quorum-sensing, phenotype conversion (phcA), acyl-HSL production and responses to SA. It also added novel candidate T6SS effectors and useful detailed information about the T6SS in R. solanacearum.
Collapse
Affiliation(s)
- Ana M. Bocsanczy
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, ApopkaFL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, GainesvilleFL, United States
| | - David J. Norman
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, ApopkaFL, United States
| |
Collapse
|
43
|
Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Sci Rep 2016; 6:38442. [PMID: 27910936 PMCID: PMC5133609 DOI: 10.1038/srep38442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease. C. concisus has two major genomospecies, which appear to have different enteric pathogenic potential. Currently, no studies have compared the genomes of C. concisus strains from different genomospecies. In this study, a comparative genome analysis of 36 C. concisus strains was conducted including 27 C. concisus strains sequenced in this study and nine publically available C. concisus genomes. The C. concisus core-genome was defined and genomospecies-specific genes were identified. The C. concisus core-genome, housekeeping genes and 23S rRNA gene consistently divided the 36 strains into two genomospecies. Two novel genomic islands, CON_PiiA and CON_PiiB, were identified. CON_PiiA and CON_PiiB islands contained proteins homologous to the type IV secretion system, LepB-like and CagA-like effector proteins. CON_PiiA islands were found in 37.5% of enteric C. concisus strains (3/8) isolated from patients with enteric diseases and none of the oral strains (0/27), which was statistically significant. This study reports the findings of C. concisus genomospecies-specific genes, novel genomic islands that contain type IV secretion system and putative effector proteins, and other new genomic features. These data provide novel insights into understanding of the pathogenicity of this emerging opportunistic pathogen.
Collapse
|
44
|
Complete genome sequence of bacteriophage P2559Y, a marine phage that infects Croceibacter atlanticus HTCC2559. Mar Genomics 2016; 29:35-38. [DOI: 10.1016/j.margen.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022]
|
45
|
Zolfo M, Tett A, Jousson O, Donati C, Segata N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res 2016; 45:e7. [PMID: 27651451 PMCID: PMC5314789 DOI: 10.1093/nar/gkw837] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 12/14/2022] Open
Abstract
Metagenomic characterization of microbial communities has the potential to become a tool to identify pathogens in human samples. However, software tools able to extract strain-level typing information from metagenomic data are needed. Low-throughput molecular typing schema such as Multilocus Sequence Typing (MLST) are still widely used and provide a wealth of strain-level information that is currently not exploited by metagenomic methods. We introduce MetaMLST, a software tool that reconstructs the MLST loci of microorganisms present in microbial communities from metagenomic data. Tested on synthetic and spiked-in real metagenomes, the pipeline was able to reconstruct the MLST sequences with >98.5% accuracy at coverages as low as 1×. On real samples, the pipeline showed higher sensitivity than assembly-based approaches and it proved successful in identifying strains in epidemic outbreaks as well as in intestinal, skin and gastrointestinal microbiome samples.
Collapse
Affiliation(s)
- Moreno Zolfo
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Adrian Tett
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Claudio Donati
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, San Michele all'Adige 38010, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| |
Collapse
|
46
|
Huptas C, Scherer S, Wenning M. Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016; 9:269. [PMID: 27176120 PMCID: PMC4864918 DOI: 10.1186/s13104-016-2072-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/02/2016] [Indexed: 01/09/2023] Open
Abstract
Background Next-generation sequencing (NGS) technology has paved the way for rapid and cost-efficient de novo sequencing of bacterial genomes. In particular, the introduction of PCR-free library preparation procedures (LPPs) lead to major improvements as PCR bias is largely reduced. However, in order to facilitate the assembly of Illumina paired-end sequence data and to enhance assembly performance, an increase of insert sizes to facilitate the repeat bridging and resolution capabilities of current state of the art assembly tools is needed. In addition, information concerning the relationships between genomic GC content, library insert size and sequencing quality as well as the influence of library insert size, read length and sequencing depth on assembly performance would be helpful to specifically target sequencing projects. Results Optimized DNA fragmentation settings and fine-tuned resuspension buffer to bead buffer ratios during fragment size selection were integrated in the Illumina TruSeq® DNA PCR-free LPP in order to produce sequencing libraries varying in average insert size for bacterial genomes within a range of 35.4–73.0 % GC content. The modified protocol consumes only half of the reagents per sample, thus doubling the number of preparations possible with a kit. Examination of different libraries revealed that sequencing quality decreases with increased genomic GC content and with larger insert sizes. The estimation of assembly performance using assembly metrics like corrected NG50 and NGA50 showed that libraries with larger insert sizes can result in substantial assembly improvements as long as appropriate assembly tools are chosen. However, such improvements seem to be limited to genomes with a low to medium GC content. A positive trend between read length and assembly performance was observed while sequencing depth is less important, provided a minimum coverage is reached. Conclusions Based on the optimized protocol developed, sequencing libraries with flexible insert sizes and lower reagent costs can be generated. Furthermore, increased knowledge about the interplay of sequencing quality, insert size, genomic GC content, read length, sequencing depth and the assembler used will help molecular biologists to set up an optimal experimental and analytical framework with respect to Illumina next-generation sequencing of bacterial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2072-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Huptas
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Mareike Wenning
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
47
|
Fang CH, Chang YJ, Chung WC, Hsieh PH, Lin CY, Ho JM. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework. BMC Genomics 2015; 16 Suppl 12:S9. [PMID: 26678408 PMCID: PMC4682372 DOI: 10.1186/1471-2164-16-s12-s9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent progress in next-generation sequencing technology has afforded several improvements such as ultra-high throughput at low cost, very high read quality, and substantially increased sequencing depth. State-of-the-art high-throughput sequencers, such as the Illumina MiSeq system, can generate ~15 Gbp sequencing data per run, with >80% bases above Q30 and a sequencing depth of up to several 1000x for small genomes. Illumina HiSeq 2500 is capable of generating up to 1 Tbp per run, with >80% bases above Q30 and often >100x sequencing depth for large genomes. To speed up otherwise time-consuming genome assembly and/or to obtain a skeleton of the assembly quickly for scaffolding or progressive assembly, methods for noise removal and reduction of redundancy in the original data, with almost equal or better assembly results, are worth studying. RESULTS We developed two subset selection methods for single-end reads and a method for paired-end reads based on base quality scores and other read analytic tools using the MapReduce framework. We proposed two strategies to select reads: MinimalQ and ProductQ. MinimalQ selects reads with minimal base-quality above a threshold. ProductQ selects reads with probability of no incorrect base above a threshold. In the single-end experiments, we used Escherichia coli and Bacillus cereus datasets of MiSeq, Velvet assembler for genome assembly, and GAGE benchmark tools for result evaluation. In the paired-end experiments, we used the giant grouper (Epinephelus lanceolatus) dataset of HiSeq, ALLPATHS-LG genome assembler, and QUAST quality assessment tool for comparing genome assemblies of the original set and the subset. The results show that subset selection not only can speed up the genome assembly but also can produce substantially longer scaffolds. AVAILABILITY The software is freely available at https://github.com/moneycat/QReadSelector.
Collapse
|
48
|
Abstract
We introduce a new divide and conquer approach to deal with the problem of de novo genome assembly in the presence of ultra-deep sequencing data (i.e. coverage of 1000x or higher). Our proposed meta-assembler Slicembler partitions the input data into optimal-sized ‘slices’ and uses a standard assembly tool (e.g. Velvet, SPAdes, IDBA_UD and Ray) to assemble each slice individually. Slicembler uses majority voting among the individual assemblies to identify long contigs that can be merged to the consensus assembly. To improve its efficiency, Slicembler uses a generalized suffix tree to identify these frequent contigs (or fraction thereof). Extensive experimental results on real ultra-deep sequencing data (8000x coverage) and simulated data show that Slicembler significantly improves the quality of the assembly compared with the performance of the base assembler. In fact, most of the times, Slicembler generates error-free assemblies. We also show that Slicembler is much more resistant against high sequencing error rate than the base assembler. Availability and implementation: Slicembler can be accessed at http://slicembler.cs.ucr.edu/. Contact:hamid.mirebrahim@email.ucr.edu
Collapse
Affiliation(s)
- Hamid Mirebrahim
- Department of Computer Science and Engineering and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Timothy J Close
- Department of Computer Science and Engineering and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
49
|
Utility of Whole-Genome Sequencing of Escherichia coli O157 for Outbreak Detection and Epidemiological Surveillance. J Clin Microbiol 2015; 53:3565-73. [PMID: 26354815 PMCID: PMC4609728 DOI: 10.1128/jcm.01066-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/30/2015] [Indexed: 12/30/2022] Open
Abstract
Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical” E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of insilico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions.
Collapse
|
50
|
Chen TW, Gan RC, Chang YF, Liao WC, Wu TH, Lee CC, Huang PJ, Lee CY, Chen YYM, Chiu CH, Tang P. Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing. BMC Genomics 2015; 16:648. [PMID: 26315384 PMCID: PMC4552406 DOI: 10.1186/s12864-015-1859-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/18/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Whole genome sequence construction is becoming increasingly feasible because of advances in next generation sequencing (NGS), including increasing throughput and read length. By simply overlapping paired-end reads, we can obtain longer reads with higher accuracy, which can facilitate the assembly process. However, the influences of different library sizes and assembly methods on paired-end sequencing-based de novo assembly remain poorly understood. RESULTS We used 250 bp Illumina Miseq paired-end reads of different library sizes generated from genomic DNA from Escherichia coli DH1 and Streptococcus parasanguinis FW213 to compare the assembly results of different library sizes and assembly approaches. Our data indicate that overlapping paired-end reads can increase read accuracy but sometimes cause insertion or deletions. Regarding genome assembly, merged reads only outcompete original paired-end reads when coverage depth is low, and larger libraries tend to yield better assembly results. These results imply that distance information is the most critical factor during assembly. Our results also indicate that when depth is sufficiently high, assembly from subsets can sometimes produce better results. CONCLUSIONS In summary, this study provides systematic evaluations of de novo assembly from paired end sequencing data. Among the assembly strategies, we find that overlapping paired-end reads is not always beneficial for bacteria genome assembly and should be avoided or used with caution especially for genomes containing high fraction of repetitive sequences. Because increasing numbers of projects aim at bacteria genome sequencing, our study provides valuable suggestions for the field of genomic sequence construction.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Ruei-Chi Gan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Feng Chang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Wei-Chao Liao
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | | | - Chi-Ching Lee
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Po-Jung Huang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Cheng-Yang Lee
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Petrus Tang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|