1
|
Guo Y, Luo T, Xie G, Zhang X. Bile acid receptors and renal regulation of water homeostasis. Front Physiol 2023; 14:1322288. [PMID: 38033333 PMCID: PMC10684672 DOI: 10.3389/fphys.2023.1322288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The kidney is the key organ responsible for maintaining the body's water and electrolyte homeostasis. About 99% of the primary urine filtered from the Bowman's capsule is reabsorbed along various renal tubules every day, with only 1-2 L of urine excreted. Aquaporins (AQPs) play a vital role in water reabsorption in the kidney. Currently, a variety of molecules are found to be involved in the process of urine concentration by regulating the expression or activity of AQPs, such as antidiuretic hormone, renin-angiotensin-aldosterone system (RAAS), prostaglandin, and several nuclear receptors. As the main bile acid receptors, farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor 1 (TGR5) play important roles in bile acid, glucose, lipid, and energy metabolism. In the kidney, FXR and TGR5 exhibit broad expression across all segments of renal tubules, and their activation holds significant therapeutic potential for numerous acute and chronic kidney diseases through alleviating renal lipid accumulation, inflammation, oxidative stress, and fibrosis. Emerging evidence has demonstrated that the genetic deletion of FXR or TGR5 exhibits increased basal urine output, suggesting that bile acid receptors play a critical role in urine concentration. Here, we briefly summarize the function of bile acid receptors in renal water reabsorption and urine concentration.
Collapse
Affiliation(s)
- Yanlin Guo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Taotao Luo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Guixiang Xie
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Xiaoyan Zhang
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Bretin A, Zou J, San Yeoh B, Ngo VL, Winer S, Winer DA, Reddivari L, Pellizzon M, Walters WA, Patterson AD, Ley R, Chassaing B, Vijay-Kumar M, Gewirtz AT. Psyllium Fiber Protects Against Colitis Via Activation of Bile Acid Sensor Farnesoid X Receptor. Cell Mol Gastroenterol Hepatol 2023; 15:1421-1442. [PMID: 36828279 PMCID: PMC10148163 DOI: 10.1016/j.jcmgh.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND & AIMS Fiber-rich foods promote health, but mechanisms by which they do so remain poorly defined. Screening fiber types, in mice, revealed psyllium had unique ability to ameliorate 2 chronic inflammatory states, namely, metabolic syndrome and colitis. We sought to determine the mechanism of action of the latter. METHODS Mice were fed grain-based chow, which is naturally rich in fiber or compositionally defined diets enriched with semi-purified fibers. Mice were studied basally and in models of chemical-induced and T-cell transfer colitis. RESULTS Relative to all diets tested, mice consuming psyllium-enriched compositionally defined diets were markedly protected against both dextran sulfate sodium- and T-cell transfer-induced colitis, as revealed by clinical-type, histopathologic, morphologic, and immunologic parameters. Such protection associated with stark basal changes in the gut microbiome but was independent of fermentation and, moreover, maintained in mice harboring a minimal microbiota (ie, Altered Schaedler Flora). Transcriptomic analysis revealed psyllium induced expression of genes mediating bile acids (BA) secretion, suggesting that psyllium's known ability to bind BA might contribute to its ability to prevent colitis. As expected, psyllium resulted in elevated level of fecal BA, reflecting their removal from enterohepatic circulation but, in stark contrast to the BA sequestrant cholestyramine, increased serum BA levels. Moreover, the use of BA mimetics that activate the farnesoid X receptor (FXR), as well as the use of FXR-knockout mice, suggested that activation of FXR plays a central role in psyllium's protection against colitis. CONCLUSIONS Psyllium protects against colitis via altering BA metabolism resulting in activation of FXR, which suppresses pro-inflammatory signaling.
Collapse
Affiliation(s)
- Alexis Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Beng San Yeoh
- University of Toledo Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel A Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Buck Institute for Research on Aging, Novato, California
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | | | - William A Walters
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Ruth Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Benoit Chassaing
- INSERM U1016, Team "Mucosal Microbiota in Chronic Inflammatory Diseases," CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Matam Vijay-Kumar
- University of Toledo Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
3
|
Guo Y, Xie G, Zhang X. Role of FXR in Renal Physiology and Kidney Diseases. Int J Mol Sci 2023; 24:2408. [PMID: 36768731 PMCID: PMC9916923 DOI: 10.3390/ijms24032408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Farnesoid X receptor, also known as the bile acid receptor, belongs to the nuclear receptor (NR) superfamily of ligand-regulated transcription factors, which performs its functions by regulating the transcription of target genes. FXR is highly expressed in the liver, small intestine, kidney and adrenal gland, maintaining homeostasis of bile acid, glucose and lipids by regulating a diverse array of target genes. It also participates in several pathophysiological processes, such as inflammation, immune responses and fibrosis. The kidney is a key organ that manages water and solute homeostasis for the whole body, and kidney injury or dysfunction is associated with high morbidity and mortality. In the kidney, FXR plays an important role in renal water reabsorption and is thought to perform protective functions in acute kidney disease and chronic kidney disease, especially diabetic kidney disease. In this review, we summarize the recent advances in the understanding of the physiological and pathophysiological function of FXR in the kidney.
Collapse
Affiliation(s)
| | | | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice. Antioxidants (Basel) 2022; 11:antiox11050880. [PMID: 35624743 PMCID: PMC9137993 DOI: 10.3390/antiox11050880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced hepatic DDAH1 activity/expression. The purpose of this study was to investigate the involvement of DDAH1 in APAP-mediated hepatotoxicity using Ddah1-/- and DDAH1 transgenic mice. After APAP challenge, Ddah1-/- mice developed more severe liver injury than wild type (WT) mice, which was associated with a greater induction of fibrosis, oxidative stress, inflammation, cell apoptosis and phosphorylation of JNK. In contrast, overexpression of DDAH1 attenuated APAP-induced liver injury. RNA-seq analysis showed that DDAH1 affects xenobiotic metabolism and glutathione metabolism pathways in APAP-treated livers. Furthermore, we found that DDAH1 knockdown aggravated APAP-induced cell death, oxidative stress, phosphorylation of JNK and p65, upregulation of CYP2E1 and downregulation of GSTA1 in HepG2 cells. Collectively, our data suggested that DDAH1 has a marked protective effect against APAP-induced liver oxidative stress, inflammation and injury. Strategies to increase hepatic DDAH1 expression/activity may be novel approaches for drug-induced acute liver injury therapy.
Collapse
|
5
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
6
|
Liu X, Guo GL, Kong B, Hilburn DB, Hubchak SC, Park S, LeCuyer B, Hsieh A, Wang L, Fang D, Green RM. Farnesoid X receptor signaling activates the hepatic X-box binding protein 1 pathway in vitro and in mice. Hepatology 2018; 68:304-316. [PMID: 29377207 PMCID: PMC6033648 DOI: 10.1002/hep.29815] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile acids are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR), and pharmacological FXR modulators are under development for the treatment of several liver disorders. The inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the unfolded protein response (UPR) is a protective cellular signaling pathway activated in response to endoplasmic reticulum (ER) stress. We investigated the role of FXR signaling in activation of the hepatic XBP1 pathway. Mice were treated with deoxycholic acid (DCA), cholestyramine, GW4064, or underwent bile duct ligation (BDL), and hepatic UPR activation was measured. Huh7-Ntcp and HepG2 cells were treated with FXR agonists, inhibitor, small interfering RNA (siRNA), or small heterodimer partner (SHP) siRNA to determine the mechanisms of IRE1α/XBP1 pathway activation. DCA feeding and BDL increased and cholestyramine decreased expression of hepatic XBP1 spliced (XBP1s). XBP1 pathway activation increased in Huh7-Ntcp and HepG2 cells treated with bile acids, 6α-ethyl-chenodeoxycholic acid (6-ECDCA) or GW4064. This effect decreased with FXR knockdown and treatment with the FXR inhibitor guggulsterone. FXR agonists increased XBP1 splicing and phosphorylated IRE1α (p-IRE1α) expression. Overexpression of SHP similarly increased XBP1 splicing, XBP1s, and p-IRE1α protein expression. SHP knockdown attenuated FXR agonist-induced XBP1s and p-IRE1α protein expression. Co-immunoprecipitation (Co-IP) assays demonstrate a physical interaction between overexpressed green fluorescent protein (GFP)-SHP and FLAG-IRE1α in HEK293T cells. Mice treated with GW4064 had increased, and FXR and SHP null mice had decreased, basal Xbp1s gene expression. CONCLUSION FXR signaling activates the IRE1α/XBP1 pathway in vivo and in vitro. FXR pathway activation increases XBP1 splicing and enhances p-IRE1α expression. These effects are mediated, at least in part, by SHP. IRE1α/XBP1 pathway activation by bile acids and pharmacological FXR agonists may be protective during liver injury and may have therapeutic implications for liver diseases. (Hepatology 2018;68:304-316).
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Bo Kong
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - David B. Hilburn
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Susan C. Hubchak
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Seong Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Brian LeCuyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Antony Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT,Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| |
Collapse
|
7
|
Ferrigno A, Di Pasqua LG, Berardo C, Siciliano V, Rizzo V, Adorini L, Richelmi P, Vairetti M. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE-1 during hepatic ischemia/reperfusion injury. PLoS One 2018; 13:e0191430. [PMID: 29346429 PMCID: PMC5773219 DOI: 10.1371/journal.pone.0191430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background We previously showed that increased asymmetric dimethylarginine (ADMA) biliary excretion occurs during hepatic ischemia/reperfusion (I/R), prompting us to study the effects of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) on bile, serum and tissue levels of ADMA after I/R. Material and methods Male Wistar rats were orally administered 10mg/kg/day of OCA or vehicle for 5 days and were subjected to 60 min partial hepatic ischemia or sham-operated. After a 60 min reperfusion, serum, tissue and bile ADMA levels, liver mRNA and protein expression of ADMA transporters (CAT-1, CAT-2A, CAT-2B, OCT-1, MATE-1), and enzymes involved in ADMA synthesis (protein-arginine-N-methyltransferase-1, PRMT-1) and metabolism (dimethylarginine-dimethylaminohydrolase-1, DDAH-1) were measured. Results OCA administration induced a further increase in biliary ADMA levels both in sham and I/R groups, with no significant changes in hepatic ADMA content. A reduction in CAT-1, CAT-2A or CAT-2B transcripts was found in OCA-treated sham-operated rats compared with vehicle. Conversely, OCA administration did not change CAT-1, CAT-2A or CAT-2B expression, already reduced by I/R. However, a marked decrease in OCT-1 and increase in MATE-1 expression was observed. A similar trend occurred with protein expression. Conclusion The reduced mRNA expression of hepatic CAT transporters suggests that the increase in serum ADMA levels is probably due to decreased liver uptake of ADMA from the systemic circulation. Conversely, the mechanism involved in further increasing biliary ADMA levels in sham and I/R groups treated with OCA appears to be MATE-1-dependent.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Veronica Siciliano
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vittoria Rizzo
- Department of Molecular Medicine, IRCCS San Matteo, University of Pavia, Pavia, Italy
| | - Luciano Adorini
- Intercept Pharmaceuticals, San Diego, California, United States of America
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
8
|
Ceulemans LJ, Verbeke L, Decuypere JP, Farré R, De Hertogh G, Lenaerts K, Jochmans I, Monbaliu D, Nevens F, Tack J, Laleman W, Pirenne J. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats. PLoS One 2017; 12:e0169331. [PMID: 28060943 PMCID: PMC5218501 DOI: 10.1371/journal.pone.0169331] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI) is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA) could attenuate intestinal ischemia reperfusion injury. MATERIAL AND METHODS In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping), 3 conditions were tested (n = 16/group): laparotomy only (sham group); ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group); ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group). Vehicle or OCA (INT-747, 2*30mg/kg) was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP); histology (morphologic injury to villi/crypts and villus length); intestinal permeability (Ussing chamber); endotoxin translocation (Lipopolysaccharide assay); cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13); apoptosis (cleaved caspase-3); and autophagy (LC3, p62). RESULTS It was found that intestinal IRI was associated with high mortality (90%); loss of intestinal integrity (structurally and functionally); increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition. CONCLUSION Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn FXR into a promising target for various conditions associated with intestinal ischemia.
Collapse
Affiliation(s)
- Laurens J Ceulemans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Len Verbeke
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jean-Paul Decuypere
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Ricard Farré
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, University Hospitals Leuven, & Department of Imaging and Pathology, KU Leuven, Belgium
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands
| | - Ina Jochmans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Diethard Monbaliu
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Frederik Nevens
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jan Tack
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Wim Laleman
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| |
Collapse
|
9
|
Asymmetric Dimethylarginine and Hepatic Encephalopathy: Cause, Effect or Association? Neurochem Res 2016; 42:750-761. [PMID: 27885576 PMCID: PMC5357500 DOI: 10.1007/s11064-016-2111-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The methylated derivative of l-arginine, asymmetric dimethylarginine (ADMA) is synthesized in different mammalian tissues including the brain. ADMA acts as an endogenous, nonselective, competitive inhibitor of all three isoforms of nitric oxide synthase (NOS) and may limit l-arginine supply from the plasma to the enzyme via reducing its transport by cationic amino acid transporters. Hepatic encephalopathy (HE) is a relatively frequently diagnosed complex neuropsychiatric syndrome associated with acute or chronic liver failure, characterized by symptoms linked with impaired brain function leading to neurological disabilities. The l-arginine—nitric oxide (NO) pathway is crucially involved in the pathomechanism of HE via modulating important cerebral processes that are thought to contribute to the major HE symptoms. Specifically, activation of this pathway in acute HE leads to an increase in NO production and free radical formation, thus, contributing to astrocytic swelling and cerebral edema. Moreover, the NO-cGMP pathway seems to be involved in cerebral blood flow (CBF) regulation, altered in HE. For this reason, depressed NO-cGMP signaling accompanying chronic HE and ensuing cGMP deficit contributes to the cognitive and motor failure. However, it should be remembered that ADMA, a relatively little known element limiting NO synthesis in HE, may also influence the NO-cGMP pathway regulation. In this review, we will discuss the contribution of ADMA to the regulation of the NO-cGMP pathway in the brain, correlation of ADMA level with CBF and cognitive alterations observed during HE progression in patients and/or animal models of HE.
Collapse
|
10
|
Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R. Emerging Liver-Kidney Interactions in Nonalcoholic Fatty Liver Disease. Trends Mol Med 2016; 21:645-662. [PMID: 26432021 DOI: 10.1016/j.molmed.2015.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/07/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence connects non-alcoholic fatty liver disease (NAFLD) to chronic kidney disease (CKD). We review emerging mechanistic links between NAFLD and CKD, including altered activation of angiotensin converting enzyme (ACE)-2, nutrient/energy sensors sirtuin-1 and AMP-activated kinase, as well as impaired antioxidant defense mediated by nuclear factor erythroid 2-related factor-2 (Nrf2). Dietary fructose excess may also contribute to NAFLD and CKD. NAFLD affects renal injury through lipoprotein dysmetabolism and altered secretion of the hepatokines fibroblast growth factor-21, fetuin-A, insulin-like growth factor-1, and syndecan-1. CKD may mutually aggravate NAFLD and associated metabolic disturbances through altered intestinal barrier function and microbiota composition, the accumulation of uremic toxic metabolites, and alterations in pre-receptor glucocorticoid metabolism. We conclude by discussing the implications of these findings for the treatment of NAFLD and CKD.
Collapse
Affiliation(s)
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Solomon Cohney
- Department of Nephrology, Royal Melbourne and Western Hospital, Victoria, University of Melbourne, Melbourne, Australia
| | - Silvia Pinach
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Francesca Saba
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
12
|
Ittermann T, Bahls M, Atzler D, Friedrich N, Schwedhelm E, Böger RH, Felix SB, Völzke H, Dörr M. L-Arginine Derivatives Are Associated with the Hyperthyroid State in the General Population. Thyroid 2016; 26:212-8. [PMID: 26650143 DOI: 10.1089/thy.2015.0385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Arginine (ARG) derivatives and thyroid function independently influence atherosclerotic processes. Since thyroid hormones may mediate the association between ARG derivatives and atherosclerosis, this study investigated whether asymmetric and symmetric dimethylarginines (ADMA and SDMA, respectively) as well as homoarginine (hARG) are associated with parameters of thyroid function in the general population. METHODS Cross-sectional data from 3689 individuals aged 20-81 years from the population-based Study of Health in Pomerania (SHIP-0) were analyzed. Thyroid function was defined according to serum concentrations of thyrotropin (TSH), free triiodothyronine (fT3), and free thyroxine (fT4). Low and high serum TSH were defined by the cutoffs 0.3 mIU/L and 3 mIU/L, respectively. Serum concentrations of ARG, ADMA, SDMA, and hARG were measured using liquid chromatography-tandem mass spectrometry. ARG, ADMA, SDMA, and hARG were associated with serum concentrations of TSH, fT3, and fT4 by median regression and with categorized TSH values by multinomial logistic regression adjusted for age, sex, smoking status, physical activity, body mass index, and estimated glomerular filtration rate. RESULTS Levels of ADMA (relative risk [RR] = 5.40 [confidence interval (CI) 1.96-14.86]) and SDMA (RR = 3.55 [CI 1.01-12.70]) were associated with low TSH. In addition, ADMA (β = 0.38 [CI 0.23-0.45]) was positively associated with fT3, while both ADMA (β = 0.98 [CI 0.43-1.54]) and SDMA (β = 1.19 [CI 0.50-1.88]) were positively associated with fT4. No consistent associations of ARG and hARG with thyroid function were detected. CONCLUSIONS The positive associations of ADMA and SDMA with low TSH, fT3, and fT4 argue for a relationship of arginine derivatives with increased thyroid function. This suggests that the atherogenic properties of ADMA and SDMA may be partially mediated by thyroid function.
Collapse
Affiliation(s)
- Till Ittermann
- 1 Institute for Community Medicine, University Medicine Greifswald , Germany
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
| | - Martin Bahls
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
- 3 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , United Kingdom
| | - Dorothee Atzler
- 4 Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald , Germany
- 5 DZHK (German Center for Cardiovascular Research) , partner site Greifswald, Germany
- 6 Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf , Germany
| | - Nele Friedrich
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
- 7 DZHK (German Center for Cardiovascular Research) , partner site Hamburg/Kiel/Lübeck, Germany
| | - Edzard Schwedhelm
- 5 DZHK (German Center for Cardiovascular Research) , partner site Greifswald, Germany
- 6 Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf , Germany
| | - Rainer H Böger
- 5 DZHK (German Center for Cardiovascular Research) , partner site Greifswald, Germany
- 6 Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf , Germany
| | - Stephan B Felix
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
- 3 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , United Kingdom
| | - Henry Völzke
- 1 Institute for Community Medicine, University Medicine Greifswald , Germany
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
| | - Marcus Dörr
- 2 Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine, and Infectious Diseases, University Medicine Greifswald , Germany
- 3 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , United Kingdom
| |
Collapse
|
13
|
Lai L, Ghebremariam YT. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers. J Diabetes Res 2015; 2016:1982096. [PMID: 26770984 PMCID: PMC4684877 DOI: 10.1155/2016/1982096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022] Open
Abstract
Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers.
Collapse
Affiliation(s)
- Li Lai
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yohannes T. Ghebremariam
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
14
|
Shihabudeen MS, Roy D, James J, Thirumurugan K. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Mol Cell Endocrinol 2015; 414:19-28. [PMID: 26188168 DOI: 10.1016/j.mce.2015.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/05/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022]
Abstract
Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines.
Collapse
Affiliation(s)
- Mohamed Sham Shihabudeen
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Debasish Roy
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Joel James
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
15
|
Endogenous Asymmetric Dimethylarginine Pathway in High Altitude Adapted Yaks. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196904. [PMID: 26380264 PMCID: PMC4563057 DOI: 10.1155/2015/196904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023]
Abstract
Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS), dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks.
Collapse
|
16
|
Abstract
Nonalcoholic fatty liver disease is a common cause of liver related morbidity and mortality. It is closely linked to underlying insulin resistance. It has recently been shown that bile acids modulate insulin signaling and can improve insulin resistance in cell based and animal studies. These effects are mediated in part by activation of farnesoid x receptors by bile acids. In human studies, FXR agonists improve insulin resistance and have recently been shown to improve NAFLD. The basis for the use of FXR agonists for the treatment of NAFLD and early human experience with such agents is reviewed in this paper.
Collapse
Affiliation(s)
- Arun J Sanyal
- Virgnia Commonwealth University School of Medicine, Richmond, Va., USA
| |
Collapse
|
17
|
Mookerjee RP, Mehta G, Balasubramaniyan V, Mohamed F, Davies N, Sharma V, Iwakiri Y, Jalan R. Hepatic dimethylarginine-dimethylaminohydrolase1 is reduced in cirrhosis and is a target for therapy in portal hypertension. J Hepatol 2015; 62:325-31. [PMID: 25152204 PMCID: PMC4530584 DOI: 10.1016/j.jhep.2014.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Portal hypertension is characterized by reduced hepatic eNOS activity. Asymmetric-dimethylarginine (ADMA), an eNOS inhibitor, is elevated in cirrhosis and correlates with the severity of portal hypertension. Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the key enzyme metabolizing hepatic ADMA. This study characterized DDAH-1 in cirrhosis, and explored hepatic DDAH-1 reconstitution through farnesoid X receptor (FXR) agonism and DDAH-1 gene therapy. METHODS DDAH-1 immunohistochemistry was conducted on human cirrhosis and healthy liver tissue. Subsequently, sham-operated or bile-duct-ligated (BDL) cirrhosis rats were treated with the FXR agonist obeticholic acid (OA, 5 mg/kg) or vehicle for 5 days. Further, animals underwent hydrodynamic injection with DDAH-1-expressing plasmid or saline control, which resulted in the following groups: sham+saline, BDL+saline, BDL+DDAH-1-plasmid. Portal pressure (PP) measurements were performed. Plasma ALT was measured by COBAS INTEGRA, DDAH-1 expression by qPCR and Western blot, eNOS activity by radiometric assay. RESULTS Immunohistochemistry and Western-blotting confirmed hepatic DDAH-1 was restricted to hepatocytes, and expression decreased significantly in cirrhosis. In BDL rats, reduced DDAH-1 expression was associated with elevated hepatic ADMA, reduced eNOS activity and high PP. OA treatment significantly increased DDAH-1 expression, reduced hepatic tissue ADMA, and increased liver NO generation. PP was significantly reduced in BDL+OA vs. BDL+vehicle (8±1 vs. 13.5±0.6 mmHg; p<0.01) with no change in the mean arterial pressure (MAP). Similarly, DDAH-1 hydrodynamic injection significantly increased hepatic DDAH-1 gene and protein expression, and significantly reduced PP in BDL+DDAH-1 vs. BDL+saline (p<0.01). CONCLUSIONS This study demonstrates DDAH-1 is a specific molecular target for portal pressure reduction, through actions on ADMA-mediated regulation of eNOS activity. Our data support translational studies, targeting DDAH-1 in cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Rajeshwar P Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Relationship between dimethylarginine dimethylaminohydrolase gene variants and asymmetric dimethylarginine in patients with rheumatoid arthritis. Atherosclerosis 2014; 237:38-44. [PMID: 25194333 DOI: 10.1016/j.atherosclerosis.2014.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/06/2014] [Accepted: 07/29/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of our study was to determine whether Dimethylarginine Dimethylaminohydrolase (DDAH) 1 and 2 gene polymorphisms - the main enzyme involved in ADMA degradation - are associated with high Asymmetric Dimethylarginine (ADMA) levels in Rheumatoid Arthritis (RA). METHODS Serum ADMA levels were measured in 201 individuals with RA [155 females median age 67 (59-73)]. Four tag SNPs in DDAH1 gene and 2 in the DDAH2 gene were genotyped by using the LightCycler™ System. ADMA was initially compared across the genetic variables using one-way ANOVA and then multivariate analysis examined each of the genes after adjustment for parameters of systemic inflammation and insulin resistance, namely erythrocyte sedimentation rate (ESR) and homeostatic model assessment (HOMA), which we have previously shown affect ADMA levels in RA. RESULTS No significant relationship between DDAH genetic variables and ADMA levels was established in ANOVA analysis. Multivariate model adjusted for age, HOMA and ESR did not demonstrate any significant association between DDAH variants and ADMA. CONCLUSION The results of our study give no evidence to suggest that increased ADMA levels in RA relate to DDAH genetic polymorphisms. Better understanding of disease-related factors and their interactions with traditional CV risk factors may represent mechanisms responsible for ADMA accumulation in this population.
Collapse
|
19
|
Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Elst IV, Windmolders P, Vanuytsel T, Nevens F, Laleman W. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59:2286-98. [PMID: 24259407 DOI: 10.1002/hep.26939] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/15/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED The farnesoid X receptor (FXR) is a nuclear bile acid receptor involved in bile acid homeostasis, hepatic and intestinal inflammation, liver fibrosis, and cardiovascular disease. We studied the effect of short-term treatment with obeticholic acid (INT-747), a potent selective FXR agonist, on intrahepatic hemodynamic dysfunction and signaling pathways in different rat models of cirrhotic portal hypertension (PHT). For this, thioacetamide (TAA)-intoxicated and bile-duct-ligated (BDL) rats were used as models. After gavage of two doses of 30 mg/kg of INT-747 or vehicle within 24 hours, in vivo hemodynamics were assessed. Additionally, we evaluated the direct effect of INT-747 on total intrahepatic vascular resistance (IHVR) and intrahepatic vascular tone (endothelial dysfunction and hyperresponsiveness to methoxamine) by means of an in situ liver perfusion system and on hepatic stellate cell contraction in vitro. FXR expression and involved intrahepatic vasoactive pathways (e.g., endothelial nitric oxide synthase [eNOS], Rho-kinase, and dimethylarginine dimethylaminohydrolase [DDAH]) were analyzed by immunohistochemistry, reverse-transcriptase polymerase chain reaction, or western blotting. In both cirrhotic models, FXR expression was decreased. Treatment with INT-747 in TAA and BDL reactivated the FXR downstream signaling pathway and decreased portal pressure by lowering total IHVR without deleterious systemic hypotension. In the perfused TAA and BDL cirrhotic liver, INT-747 improved endothelial vasorelaxation capacity, but not hyperresponsiveness. In both groups, this was associated with an increased eNOS activity, which, in TAA, related to down-regulation of Rho-kinase and in BDL to up-regulation of DDAH-2. CONCLUSION FXR agonist INT-747 improves PHT in two different rat models of cirrhosis by decreasing IHVR. This hemodynamic effect relates to increased intrahepatic eNOS activity by pathways that differ depending on the etiology of cirrhosis.
Collapse
Affiliation(s)
- Len Verbeke
- Department of Liver and Biliopancreatic Disorders, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N. Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014; 2014:751859. [PMID: 24872814 PMCID: PMC4020365 DOI: 10.1155/2014/751859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is the most prevalent metabolic disease, and many people are suffering from its complications driven by hyperglycaemia and dyslipidaemia. Nuclear receptors (NRs) are ligand-inducible transcription factors that mediate changes to metabolic pathways within the body. As metabolic regulators, the farnesoid X receptor (FXR) and the liver X receptor (LXR) play key roles in the pathogenesis of T2D, which remains to be clarified in detail. Here we review the recent progress concerning the physiological and pathophysiological roles of FXRs and LXRs in the regulation of bile acid, lipid and glucose metabolism and the implications in T2D, taking into account that these two nuclear receptors are potential pharmaceutical targets for the treatment of T2D and its complications.
Collapse
Affiliation(s)
- Lin Ding
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Shuguang Pang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- *Shuguang Pang:
| | - Yongmei Sun
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yuling Tian
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Li Yu
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Ningning Dang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
21
|
Franceschelli S, Ferrone A, Pesce M, Riccioni G, Speranza L. Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 2013; 14:24412-21. [PMID: 24351825 PMCID: PMC3876119 DOI: 10.3390/ijms141224412] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022] Open
Abstract
There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Graziano Riccioni
- Intensive Cardiology Care Unit, San Camillo de Lellis Hospital, San Severo (FG) 71016, Italy; E-Mail:
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-871-355-4550; Fax: +39-871-355-4551
| |
Collapse
|