1
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
2
|
De Jesús-Olmo LA, Rodríguez N, Francia M, Alemán-Rios J, Pacheco-Agosto CJ, Ortega-Torres J, Nieves R, Fuenzalida-Uribe N, Ghezzi A, Agosto JL. Pumilio Regulates Sleep Homeostasis in Response to Chronic Sleep Deprivation in Drosophila melanogaster. Front Neurosci 2020; 14:319. [PMID: 32362810 PMCID: PMC7182066 DOI: 10.3389/fnins.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies have identified the Drosophila brain circuits involved in the sleep/wake switch and have pointed to the modulation of neuronal excitability as one of the underlying mechanisms triggering sleep need. In this study we aimed to explore the link between the homeostatic regulation of neuronal excitability and sleep behavior in the circadian circuit. For this purpose, we selected Pumilio (Pum), whose main function is to repress protein translation and has been linked to modulation of neuronal excitability during chronic patterns of altered neuronal activity. Here we explore the effects of Pum on sleep homeostasis in Drosophila melanogaster, which shares most of the major features of mammalian sleep homeostasis. Our evidence indicates that Pum is necessary for sleep rebound and that its effect is more pronounced during chronic sleep deprivation (84 h) than acute deprivation (12 h). Knockdown of pum, results in a reduction of sleep rebound during acute sleep deprivation and the complete abolishment of sleep rebound during chronic sleep deprivation. Based on these findings, we propose that Pum is a critical regulator of sleep homeostasis through neural adaptations triggered during sleep deprivation.
Collapse
Affiliation(s)
| | - Norma Rodríguez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Marcelo Francia
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | | | | | - Richard Nieves
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - José L Agosto
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| |
Collapse
|
3
|
Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl Psychiatry 2019; 9:343. [PMID: 31852885 PMCID: PMC6920477 DOI: 10.1038/s41398-019-0671-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large proportion of major mood disorder patients suffering from a depressive episode, but underlying biological factors remain poorly understood. Research suggests that these patients may have altered circadian molecular genetic 'clocks' and that SD functions through 'resetting' dysregulated genes; additional factors may be involved, warranting further investigation. Leveraging advances in microarray technology enabling the transcriptome-wide assessment of gene expression, this study aimed to examine gene expression changes accompanying SD and recovery sleep in patients suffering from an episode of depression. Patients (N = 78) and controls (N = 15) underwent SD, with blood taken at the same time of day before SD, after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was used, with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and longitudinal gene set analyses including the time point after recovery sleep, were conducted. Circadian genes were significantly affected by SD, with patterns suggesting that molecular clocks of responders and non-responders, as well as patients and controls respond differently to chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on pathways involved in immune function and inflammatory response, such as those involved in cytokine and especially in interleukin signalling. Longitudinal gene set analyses showed that in responders these pathways were upregulated after SD; in non-responders, little response was observed. Our findings emphasize the close relationship between circadian, immune and sleep systems and their link to etiology of depression at the transcriptomic level.
Collapse
|
4
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
5
|
Fuentes S, Caetano G, Léger D. Les marqueurs physiologiques et biologiques de la privation de sommeil dans le contexte du travail posté de nuit. ARCH MAL PROF ENVIRO 2018. [DOI: 10.1016/j.admp.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
7
|
Nystrand M, Cassidy EJ, Dowling DK. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies. BMC Evol Biol 2016; 16:171. [PMID: 27567640 PMCID: PMC5002108 DOI: 10.1186/s12862-016-0737-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. RESULTS We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. CONCLUSIONS The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - E. J. Cassidy
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
8
|
Vienne J, Spann R, Guo F, Rosbash M. Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila. Sleep 2016; 39:1613-24. [PMID: 27306274 DOI: 10.5665/sleep.6032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/05/2016] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVES Physiological studies show that aging affects both sleep quality and quantity in humans, and sleep complaints increase with age. Along with knowledge about the negative effects of poor sleep on health, understanding the enigmatic relationship between sleep and aging is important. Because human sleep is similar to Drosophila (fruit fly) sleep in many ways, we addressed the effects of aging on sleep in this model organism. METHODS Baseline sleep was recorded in five different Drosophila genotypes raised at either 21°C or 25°C. The amount of sleep recovered was then investigated after a nighttime of sleep deprivation (12 h) and after chronic sleep deprivation (3 h every night for multiple nights). Finally, the effects of aging on arousal, namely, sensitivity to neuronal and mechanical stimuli, were studied. RESULTS We show that fly sleep is affected by age in a manner similar to that of humans and other mammals. Not only do older flies of several genotypes have more fragmented sleep and reduced total sleep time compared to young flies, but older flies also fail to recover as much sleep after sleep deprivation. This suggests either lower sleep homeostasis and/or a failure to properly recover sleep. Older flies also show a decreased arousal threshold, i.e., an increased response to neuronal and mechanical wake-promoting stimuli. The reduced threshold may either reflect or cause the reduced recovery sleep of older flies compared to young flies after sleep deprivation. CONCLUSIONS Further studies are certainly needed, but we suggest that the lower homeostatic sleep drive of older flies causes their decreased arousal threshold.
Collapse
Affiliation(s)
- Julie Vienne
- Department of Biology, Brandeis University, Waltham, MA
| | - Ryanne Spann
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, MA
| | - Fang Guo
- Department of Biology, Brandeis University, Waltham, MA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, MA
| |
Collapse
|
9
|
Mullington JM, Abbott SM, Carroll JE, Davis CJ, Dijk DJ, Dinges DF, Gehrman PR, Ginsburg GS, Gozal D, Haack M, Lim DC, Macrea M, Pack AI, Plante DT, Teske JA, Zee PC. Developing Biomarker Arrays Predicting Sleep and Circadian-Coupled Risks to Health. Sleep 2016; 39:727-36. [PMID: 26951388 DOI: 10.5665/sleep.5616] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA
| | - Christopher J Davis
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - David F Dinges
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Philip R Gehrman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC
| | | | - Monika Haack
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA
| | - Diane C Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Madalina Macrea
- Salem VAMC, Salem, VA.,University of Virginia, Charlottesville, VA
| | - Allan I Pack
- Department of Medicine, Center for Sleep and Circadian Neurobiology Translational Research Laboratories, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
10
|
Dissel S, Seugnet L, Thimgan MS, Silverman N, Angadi V, Thacher PV, Burnham MM, Shaw PJ. Differential activation of immune factors in neurons and glia contribute to individual differences in resilience/vulnerability to sleep disruption. Brain Behav Immun 2015; 47:75-85. [PMID: 25451614 PMCID: PMC4416079 DOI: 10.1016/j.bbi.2014.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/26/2022] Open
Abstract
Individuals frequently find themselves confronted with a variety of challenges that threaten their wellbeing. While some individuals face these challenges efficiently and thrive (resilient) others are unable to cope and may suffer persistent consequences (vulnerable). Resilience/vulnerability to sleep disruption may contribute to the vulnerability of individuals exposed to challenging conditions. With that in mind we exploited individual differences in a fly's ability to form short-term memory (STM) following 3 different types of sleep disruption to identify the underlying genes. Our analysis showed that in each category of flies examined, there are individuals that form STM in the face of sleep loss (resilient) while other individuals show dramatic declines in cognitive behavior (vulnerable). Molecular genetic studies revealed that Antimicrobial Peptides, factors important for innate immunity, were candidates for conferring resilience/vulnerability to sleep deprivation. Specifically, Metchnikowin (Mtk), drosocin (dro) and Attacin (Att) transcript levels seemed to be differentially increased by sleep deprivation in glia (Mtk), neurons (dro) or primarily in the head fat body (Att). Follow-up genetic studies confirmed that expressing Mtk in glia but not neurons, and expressing dro in neurons but not glia, disrupted memory while modulating sleep in opposite directions. These data indicate that various factors within glia or neurons can contribute to individual differences in resilience/vulnerability to sleep deprivation.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Laurent Seugnet
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Matthew S. Thimgan
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Neal Silverman
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Veena Angadi
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Pamela V. Thacher
- Department of Psychology, St Lawrence University, 23 Romoda Drive, Canton, NY 13617
| | | | - Paul J. Shaw
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Lucey BP, Leahy A, Rosas R, Shaw PJ. A new model to study sleep deprivation-induced seizure. Sleep 2015; 38:777-85. [PMID: 25515102 DOI: 10.5665/sleep.4674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/07/2014] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND STUDY OBJECTIVES A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. DESIGN Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB(9ed4)), and in an adult temperature sensitive seizure mutant seizure (sei(ts1)) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB(9ed4) flies was also assessed. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. INTERVENTIONS Sleep deprivation. MEASUREMENTS AND RESULTS Sleep deprivation increased seizure susceptibility in adult sesB(9ed4)/+ and sei(ts1) mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB(9ed4)/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB(9ed4)/+ became adults. CONCLUSIONS These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity.
Collapse
Affiliation(s)
- Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Averi Leahy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| | - Regine Rosas
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
12
|
Dissel S, Angadi V, Kirszenblat L, Suzuki Y, Donlea J, Klose M, Koch Z, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 2015; 25:1270-81. [PMID: 25913403 DOI: 10.1016/j.cub.2015.03.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/18/2015] [Accepted: 03/18/2015] [Indexed: 12/01/2022]
Abstract
Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer's disease. Together, these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggest that increasing sleep may benefit patients with certain neurological disorders.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Veena Angadi
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yasuko Suzuki
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeff Donlea
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford 1 3SR, UK
| | - Markus Klose
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Zachary Koch
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Denis English
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey 2 7XH, UK
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Excessive daytime sleepiness is associated with changes in salivary inflammatory genes transcripts. Mediators Inflamm 2015; 2015:539627. [PMID: 25873764 PMCID: PMC4385694 DOI: 10.1155/2015/539627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/17/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is a ubiquitous problem that affects public health and safety. A test that can reliably identify individuals that suffer from EDS is needed. In contrast to other methods, salivary biomarkers are an objective, inexpensive, and noninvasive method to identify individuals with inadequate sleep. Although we have previously shown that inflammatory genes are elevated in saliva samples taken from sleep deprived individuals, it is unclear if inflammatory genes will be elevated in clinical populations with EDS. In this study, salivary samples from individuals with sleep apnea were evaluated using the Taqman low density inflammation array. Transcript levels for 3 genes, including prostaglandin-endoperoxide synthase 2 (PTGS2), were elevated in patients with sleep apnea. Interestingly, PTGS2 was also elevated in patients with EDS but who did not have sleep apnea. These data demonstrate the feasibility of using salivary transcript levels to identify individuals that self-report excessive daytime sleepiness.
Collapse
|
14
|
Faraut B, Nakib S, Drogou C, Elbaz M, Sauvet F, De Bandt JP, Léger D. Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction. J Clin Endocrinol Metab 2015; 100:E416-26. [PMID: 25668196 DOI: 10.1210/jc.2014-2566] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Neuroendocrine and immune stresses imposed by chronic sleep restriction are known to be involved in the harmful cardiovascular effects associated with poor sleep. OBJECTIVES Despite a well-known beneficial effect of napping on alertness, its effects on neuroendocrine stress and immune responses after sleep restriction are largely unknown. DESIGN This study was a strictly controlled (sleep-wake status, light environment, caloric intake), crossover, randomized design in continuously polysomnography-monitored subjects. SETTING The study was conducted in a laboratory-based study. PARTICIPANTS The subjects were 11 healthy young men. INTERVENTION We investigated the effects on neuroendocrine and immune biomarkers of a night of sleep restricted to 2 h followed by a day without naps or with 30 minute morning and afternoon naps, both conditions followed by an ad libitum recovery night starting at 20:00. MAIN OUTCOME MEASURES Salivary interleukin-6 and urinary catecholamines were assessed throughout the daytime study periods. RESULTS The increase in norepinephrine values seen at the end of the afternoon after the sleep-restricted night was not present when the subjects had the opportunity to take naps. Interleukin-6 changes observed after sleep deprivation were also normalized after napping. During the recovery day in the no-nap condition, there were increased levels of afternoon epinephrine and dopamine, which was not the case in the nap condition. A recovery night after napping was associated with a reduced amount of slow-wave sleep compared to after the no-nap condition. CONCLUSIONS Our data suggest that napping has stress-releasing and immune effects. Napping could be easily applied in real settings as a countermeasure to the detrimental health consequences of sleep debt.
Collapse
Affiliation(s)
- Brice Faraut
- Université Paris Descartes-Sorbonne Paris Cité, APHP, Hôtel Dieu de Paris, Centre du Sommeil et de la Vigilance (B.F., C.D., M.E., F.S., D.L.), EA 7330 VIFASOM, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, APHP, Hôtel Dieu de Paris, Laboratoire de Chimie Clinique et Laboratoire de Biologie de la Nutrition (S.N., J-P.D.), EA 4466, Centre de Recherche Pharmaceutique de Paris, France; IRBA (Institut de Recherche Biomédicale des Armées) (C.D., F.S.), Unité Fatique Vigilance, Paris, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep 2014; 37:1589-600. [PMID: 25197809 DOI: 10.5665/sleep.4064] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/25/2014] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. DESIGN Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. SETTING Sleep laboratory. PARTICIPANTS Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. INTERVENTION Thirty-eight hours of continuous wakefulness. MEASUREMENTS AND RESULTS We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. CONCLUSION Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity.
Collapse
Affiliation(s)
- Erna S Arnardottir
- Center for Sleep and Circadian Neurobiology and Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA and Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital, Iceland and Faculty of Medicine, University of Iceland, Iceland
| | - Elena V Nikonova
- Department of Exploratory and Translational Sciences, Merck Research Laboratories, West Point, PA
| | - Keith R Shockley
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Alexei A Podtelezhnikov
- Department of Exploratory and Translational Sciences, Merck Research Laboratories, West Point, PA
| | - Ron C Anafi
- Faculty of Medicine, University of Iceland, Iceland
| | - Keith Q Tanis
- Department of Exploratory and Translational Sciences, Merck Research Laboratories, West Point, PA
| | - Greg Maislin
- Center for Sleep and Circadian Neurobiology and Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA and
| | - David J Stone
- Department of Exploratory and Translational Sciences, Merck Research Laboratories, West Point, PA
| | - John J Renger
- Neuroscience Department, Merck Research Laboratories, West Point, PA
| | | | - Allan I Pack
- Center for Sleep and Circadian Neurobiology and Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
16
|
Donlea JM, Ramanan N, Silverman N, Shaw PJ. Genetic rescue of functional senescence in synaptic and behavioral plasticity. Sleep 2014; 37:1427-37. [PMID: 25142573 DOI: 10.5665/sleep.3988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. Here, we examine plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments. PATIENTS OR PARTICIPANTS Wild-type and transgenic Drosophila melanogaster. DESIGN AND INTERVENTIONS Young (5-day old) or aged (20-day old) adult female Drosophila were housed in socially enriched (n = 35-40) or isolated environments, then assayed for changes in sleep and for structural markers of synaptic terminal growth in the ventral lateral neurons (LNVs) of the circadian clock. MEASUREMENTS AND RESULTS When young flies are housed in a socially enriched environment, they exhibit synaptic elaboration within a component of the circadian circuitry, the LNVs, which is followed by increased sleep. Aged flies, however, no longer exhibit either of these plastic changes. Because of the tight correlation between neural plasticity and ensuing increases in sleep, we use sleep after enrichment as a high-throughput marker for neural plasticity to identify interventions that prolong youthful plasticity in aged flies. To validate this strategy, we find three independent genetic manipulations that delay age-related losses in plasticity: (1) elevation of dopaminergic signaling, (2) over-expression of the transcription factor blistered (bs) in the LNVs, and (3) reduction of the Imd immune signaling pathway. These findings provide proof-of-principle evidence that measuring changes in sleep in flies after social enrichment may provide a highly scalable assay for the study of age-related deficits in synaptic plasticity. CONCLUSIONS These studies demonstrate that Drosophila provides a promising model for the study of age-related loss of neural plasticity and begin to identify genes that might be manipulated to delay the onset of functional senescence.
Collapse
|
17
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|
18
|
Zhang H, Li Y, Li X, Liu G, Wang B, Li C. Effect of sodium valproate on the sleep structures of epileptic patients. Exp Ther Med 2014; 7:1227-1232. [PMID: 24940416 PMCID: PMC3991515 DOI: 10.3892/etm.2014.1593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/04/2014] [Indexed: 12/16/2022] Open
Abstract
The aims of the present study were to investigate the effect of sodium valproate (VPA) on the sleep structures of epileptic patients and the correlation of these effects with patient weight gain. A total of 60 epileptic patients were divided into three groups: E-AED I (VPA administration for a duration of <3 months), E-AED II (VPA administration for a duration of >3 months) and ECO (without VPA) groups, for polysomnography monitoring. When the E-AED II group was compared with the E-AED I and ECO groups, non-rapid eye movement sleep phase 1 was significantly prolonged (92.10±48.24, 29.50±10.61 and 23.94±13.27 min, respectively; P<0.01), rapid eye movement sleep was significantly shortened (70.82±17.69, 116.99±12.90 and 126.19±35.01 min, respectively; P<0.01), sleep efficiency was significantly reduced (89.39±2.55, 91.98±2.53 and 91.96±3.14%, respectively; P<0.01), the number of times of that the patients awoke was significantly increased (7.25±2.86, 2.55±1.42 and 2.40±1.39, respectively; P<0.01) and the number of REM phases throughout the night was significantly reduced (P<0.01). There were no significant differences for the various sleep parameters between the E-AED I and ECO groups. Therefore, VPA is capable of inducing sleep structure disorders in epileptic patients. In addition, these disorders begin 3 months following the administration of VPA, which indicates that these disorders may be associated with VPA-induced weight gain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Yuechun Li
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Xiue Li
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Guorong Liu
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Chunhua Li
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| |
Collapse
|