1
|
Predheepan D, Salian SR, Uppangala S, Lakshmi R V, Kalthur G, Kovačič B, Adiga SK. Embryos from Prepubertal Hyperglycemic Female Mice Respond Differentially to Oxygen Tension In Vitro. Cells 2024; 13:954. [PMID: 38891086 PMCID: PMC11171876 DOI: 10.3390/cells13110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Reduced oxygen during embryo culture in human ART prevents embryo oxidative stress. Oxidative stress is also the major mechanism by which maternal diabetes impairs embryonic development. This study employed induced hyperglycemia prepubertal mice to mimic childhood diabetes to understand the effects of varying oxygen tension during in vitro embryonic development. The oocytes were fertilized and cultured at low (≈5%) oxygen (LOT) or atmospheric (≈20%) oxygen tension (HOT) for up to 96 h. Embryo development, apoptosis in blastocysts, inner cell mass (ICM) outgrowth proliferation, and Hif1α expression were assessed. Though the oocyte quality and meiotic spindle were not affected, the fertilization rate (94.86 ± 1.18 vs. 85.17 ± 2.81), blastocyst rate (80.92 ± 2.92 vs. 69.32 ± 2.54), and ICM proliferation ability (51.04 ± 9.22 vs. 17.08 ± 3.05) of the hyperglycemic embryos were significantly higher in the LOT compared to the HOT group. On the other hand, blastocysts from the hyperglycemic group, cultured at HOT, had a 1.5-fold increase in apoptotic cells compared to the control and lower Hif1α transcripts in ICM outgrowths compared to the LOT. Increased susceptibility of embryos from hyperglycemic mice to higher oxygen tension warrants the need to individualize the conditions for embryo culture systems in ART clinics, particularly when an endogenous maternal pathology affects the ovarian environment.
Collapse
Affiliation(s)
- Dhakshanya Predheepan
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (D.P.)
| | - Sujith Raj Salian
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (D.P.)
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Vani Lakshmi R
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Borut Kovačič
- Laboratory of Reproductive Biology, Department of Reproductive Medicine and Gynaecological Endocrinology, University Medical Centre, 2000 Maribor, Slovenia;
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (D.P.)
| |
Collapse
|
2
|
Liu P, Fu L, Li B, Man M, Ji Y, Kang Q, Sun X, Shen D, Chen L. Dissolved oxygen gradient on three dimensionally printed microfluidic platform for studying its effect on fish at three levels: cell, embryo, and larva. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21978-21989. [PMID: 36282391 DOI: 10.1007/s11356-022-23688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A simple and low-cost dissolved oxygen gradient platform of three dimensionally (3D) printed microfluidic chip was developed for cultivating cells, embryos, and larvae of fish. "Christmas tree" structure channel networks generated a dissolved oxygen gradient out of two fluids fed to the device. Polydimethylsiloxane (PDMS) membrane with high biocompatibility was used as the substrate for cell culture in the 3D-printed microfluidic chip, which made the cell analysis easy. The embryos and larvae of fish could be cultured directly in the chip, and their development can be observed in real time with a microscope. Using zebrafish as a model, we assessed the effect of different dissolved oxygen on its cells, embryos, and larvae. Hypoxia induced production of reactive oxygen species (ROS) in zebrafish cells, embryos, and larvae, eventually leading to cell apoptosis and developmental impairment. Hypoxia also increased nitric oxide content in zebrafish cells, which might be a defensive strategy to overcome the adverse effect of hypoxia in fish cells. This is the first platform that could comprehensively investigate the effects of different dissolved oxygen on fish at the cell, embryo, and larva levels, which has great potential in studying the responses of aquatic organisms under different oxygen concentrations.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
3
|
Shamsi S, Abdul Ghafor AAH, Norjoshukrudin NH, Ng IMJ, Abdullah SNS, Sarchio SNE, Md Yasin F, Abd Gani S, Mohd Desa MN. Stability, Toxicity, and Antibacterial Potential of Gallic Acid-Loaded Graphene Oxide (GAGO) Against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. Int J Nanomedicine 2022; 17:5781-5807. [PMCID: PMC9719714 DOI: 10.2147/ijn.s369373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Background The impetuous usage of antibiotics has led to the perpetual rise of methicillin-resistant Staphylococcus aureus (MRSA), which has garnered the interest of potential drug alternatives, including nanomaterials. Purpose The present study investigates the stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (GAGO) on several MRSA strains. Methods The stability of a synthesized and characterized GAGO was monitored in different physiological media. The toxicity profile of GAGO was evaluated in 3T3 murine fibroblast cells and the embryonic zebrafish model. The antibacterial activity of GAGO against MRSA, methicillin-susceptible S. aureus (MSSA), and community-acquired MRSA; with or without Panton-valentine leucocidin gene (MRSA-pvl+ and MRSA-pvl-) was investigated through disk diffusion, CFU counting method, time-kill experiment, and high-resolution transmission electron microscopy (HRTEM) observation. Results A stable GAGO nanocomposite has shown an improved toxicity profile in 3T3 murine fibroblast cells and zebrafish embryos, besides exhibiting normal ROS levels than graphene oxide (GO) and GA (gallic acid). The nanocomposite inhibited the growth of all bacterial strains employed. The effectiveness of the GAGO nanocomposite was comparable to cefoxitin (CFX), at ≥150 µg/mL in MRSA and MSSA. GAGO exhibited a significantly delayed response towards MRSA-pvl+ and MRSA-pvl-, with increased inhibition following 8 to 24 h of exposure, while comparable activity to native GA was only achieved at 24 h. Meanwhile, for MRSA and MSSA, GAGO had a comparable activity with native GA and GO as early as 2 h of exposure. HRTEM observation further reveals that GAGO-exposed cells were membrane compromised. Conclusion In summary, the present study indicates the antibacterial potential of GAGO against MRSA strains, but further study is warranted to understand the mechanism of action of GAGO and its resistance in MRSA strains.
Collapse
Affiliation(s)
- Suhaili Shamsi
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia,Correspondence: Suhaili Shamsi, Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia, Tel +603-9769 7964, Fax +603-9769 7590, Email
| | - Ahmad Ashraful Hadi Abdul Ghafor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nur Hazwani Norjoshukrudin
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Ida May Jen Ng
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Siti Nur Sharmila Abdullah
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Seri Narti Edayu Sarchio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia,Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Shafinaz Abd Gani
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
4
|
Saha S, Bose R, Chakraborty S, Ain R. Tipping the balance toward stemness in trophoblast: Metabolic programming by Cox6B2. FASEB J 2022; 36:e22600. [PMID: 36250984 DOI: 10.1096/fj.202200703rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Metabolic effector(s) driving cell fate is an emerging concept in stem cell biology. Here we showed that Cytochrome C Oxidase Subunit 6B2 (Cox6B2) is essential to maintain the stemness of trophoblast stem (TS) cells. RNA interference of Cox6b2 resulted in decreased mitochondrial Complex IV activity, ATP production, and oxygen consumption rate in TS cells. Furthermore, depletion of Cox6b2 in TS cells led to decreased self-renewal capacity indicated by compromised BrdU incorporation, Ki67 staining, and decreased expression of TS cell genetic markers. As expected, the consequence of Cox6b2 knockdown was the induction of differentiation. TS cell stemness factor CDX2 transactivates Cox6b2 promoter in TS cells. In differentiated cells, Cox6b2 is post-transcriptionally regulated by two microRNAs, miR-322-5p and miR-503-5p, leading to its downregulation as demonstrated by the gain-in or loss of function of these miRNAs. Cox6b2 transcripts gradually rise in placental trophoblast gestation progresses in both mice and rats with predominant expression in labyrinthine trophoblast. Cox6b2 expression is compromised in the growth-restricted placenta of rats with reciprocal up-regulation of miR-322-5p and miR-503-5p. These data highlight the importance of Cox6B2 in the regulation of TS cell state and uncompromised placental growth.
Collapse
Affiliation(s)
- Sarbani Saha
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Caillaud A, Lévêque A, Thédrez A, Girardeau A, Canac R, Bray L, Baudic M, Barc J, Gaborit N, Lamirault G, Gardie B, Idriss S, Rimbert A, Le May C, Cariou B, Si-Tayeb K. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. STAR Protoc 2022; 3:101680. [PMID: 36115027 PMCID: PMC9490201 DOI: 10.1016/j.xpro.2022.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).
Collapse
Affiliation(s)
- Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Corresponding author
| | - Antoine Lévêque
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Aurélie Thédrez
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Aurore Girardeau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Robin Canac
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Lise Bray
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Nathalie Gaborit
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Guillaume Lamirault
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Betty Gardie
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Ecole Pratique des Hautes Etudes, EPHE, Université Paris Sciences et Lettres, Paris, France
| | - Salam Idriss
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France,Corresponding author
| | - Karim Si-Tayeb
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
6
|
Malkowska A, Penfold C, Bergmann S, Boroviak TE. A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nat Commun 2022; 13:3407. [PMID: 35710749 PMCID: PMC9203550 DOI: 10.1038/s41467-022-30194-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.
Collapse
Affiliation(s)
- Anna Malkowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
7
|
Liu W, Chen G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol Life Sci 2021; 78:8097-8108. [PMID: 34773132 PMCID: PMC11071932 DOI: 10.1007/s00018-021-04016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
All living organisms need energy to carry out their essential functions. The importance of energy metabolism is increasingly recognized in human pluripotent stem cells. Energy production is not only essential for cell survival and proliferation, but also critical for pluripotency and cell fate determination. Thus, energy metabolism is an important target in cellular regulation and stem cell applications. In this review, we will discuss key factors that influence energy metabolism and their association with stem cell functions.
Collapse
Affiliation(s)
- Weiwei Liu
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
8
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Wörsdörfer P, Ergün S. The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxid Redox Signal 2021; 35:217-233. [PMID: 33334234 DOI: 10.1089/ars.2020.8195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: An optimal supply with oxygen is of high importance during embryogenesis and a prerequisite for proper organ development. Different tissues require varying amounts of oxygen, and even within single organs, different phases of development go alongside with either physiological hypoxia or the need for sufficient oxygen supply. Recent Advances: Human induced pluripotent stem cell-derived organoid models are state of the art cell culture platforms for the investigation of developmental processes, disease modeling, and drug testing. Organoids modeling the development of multiple tissues were developed within the past years. Critical Issues: Until now, optimization of oxygen supply and its role during organoid growth, differentiation, and maturation have only rarely been addressed. Recent publications indicate that hypoxia-induced processes play an important role in three-dimensional tissue cultures, triggering multilineage communication between mesenchymal cells, the endothelium, as well as organotypic cells. Later in culture, a sufficient supply with oxygen is of high importance to allow larger organoid sizes. Moreover, cellular stress is reduced and tissue maturation is improved. Therefore, a functional blood vessel network is required. Future Directions: In this review, we will briefly summarize aspects of the role of oxygen during embryonic development and organogenesis, present an update on novel organoid models with a special focus on organoid vascularization, and discuss the importance of complex organoids involving parenchymal cells, mesenchymal cells, inflammatory cells, and functional blood vessels for the generation of mature and fully functional tissues in vitro. Antioxid. Redox Signal. 35, 217-233.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Bharti S, Sengupta A, Chugh P, Narad P. PluriMetNet: A dynamic electronic model decrypting the metabolic variations in human embryonic stem cells (hESCs) at fluctuating oxygen concentrations. J Biomol Struct Dyn 2020; 40:4570-4578. [PMID: 33353496 DOI: 10.1080/07391102.2020.1860822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Stem cells are an excellent resource in translational medicine however much is known only in terms of transcriptional and epigenetic regulation of human embryonic stem cells (hESCs). Metabolic regulation of hESCs is still unexplored in many ways, particularly the role of energy metabolism, which is intrinsic to the maintenance of cell viability, however, is very little explored in the past years. Also, there exists no hESC specific core metabolic model of pluripotency as per our knowledge. Through our work, we establish such a metabolic model of hESC using combinatorial in-silico approach of genome scale model reduction and literature curation. Further, through perturbations taking oxygen as a parameter we propose that under lower levels of oxygen concentration there is a significant dynamic change in the energy metabolism of the hESC. We further investigated energy subsystem pathways and their respective reactions in order to locate the direction of energy production along with the dynamic of nutrient metabolites like glucose and glutamine. The output shows a steep increment/decrement at a certain oxygen range. These sharp increments/decrements under hypoxic conditions are termed here as a critical range for hESC metabolic pathway. The data also resonates with the previous experimental studies on hESC energy metabolism confirming the robustness of our model. The model helps to extract range for different pathways in the energy subsystem, making us a little closer in understanding the metabolism of hESC. We also demonstrated the possible range of pathway changes in hESC's energy metabolism that can serve as the crucial preliminary data for further prospective studies. The model also offers a promise in the prediction of the flux behaviour of various metabolites in hESC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samuel Bharti
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Parul Chugh
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| |
Collapse
|
11
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
12
|
Stem cell plasticity and regenerative potential regulation through Ca 2+-mediated mitochondrial nuclear crosstalk. Mitochondrion 2020; 56:1-14. [PMID: 33059088 DOI: 10.1016/j.mito.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The multi-lineage differentiation potential is one of the prominent mechanisms through which stem cells can repair damaged tissues. The regenerative potential of stem cells is the manifestation of several changes at the structural and molecular levels in stem cells that are regulated through intricate mitochondrial-nuclear interactions maintained by Ca2+ ion signaling. Despite the exhilarating evidences strengthening the versatile and indispensible role of Ca2+ in regulating mitochondrial-nuclear interactions, the extensive details of signaling mechanisms remains largely unexplored. In this review we have discussed the effect of Ca2+ ion mediated mitochondrial-nuclear interactions participating in stem plasticity and its regenerative potential.
Collapse
|
13
|
Chettiar DH, Arthur SA, Parry KL, Houghton FD. Role of apoptosis in the hypoxic regulation of human embryonic stem cells. Clin Med (Lond) 2020; 20:s103-s104. [PMID: 32409409 DOI: 10.7861/clinmed.20-2-s103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- D H Chettiar
- Centre for Human Development, Stem Cells and Regeneration, Southampton, UK
| | - S A Arthur
- Centre for Human Development, Stem Cells and Regeneration, Southampton, UK
| | - K L Parry
- Centre for Human Development, Stem Cells and Regeneration, Southampton, UK
| | - F D Houghton
- Centre for Human Development, Stem Cells and Regeneration, Southampton, UK
| |
Collapse
|
14
|
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:87. [PMID: 32181250 PMCID: PMC7059177 DOI: 10.3389/fcell.2020.00087] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: “naïve” and “primed” PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.
Collapse
Affiliation(s)
- Enkhtuul Tsogtbaatar
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chelsea Landin
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Minter-Dykhouse
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Clifford D L Folmes
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
15
|
Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep 2020; 10:3156. [PMID: 32081957 PMCID: PMC7035265 DOI: 10.1038/s41598-020-60145-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer demonstrates intra-tumour heterogeneity formed by a hierarchical structure comprised of cancer stem cells (CSCs) and their differentiated progenies. The mechanism by which CSCs are maintained and differentiated needs to be further elucidated, and there is evidence that the tumour microenvironment governs cancer stemness. Using PLR123, a colon cancer cell line with CSC properties, we determined the culture conditions necessary to establish a pair of three-dimensional (3D) culture models grown in Matrigel, designated stemCO and diffCO. The conditions were determined by comparing the phenotypes in the models with PLR123 mouse xenografts colonising lung and liver. StemCO resembled LGR5-positive undifferentiated tumours in the lung, and diffCO had lumen structures composed of polarised cells that were similar to the ductal structures found in differentiated tumours in the liver. In a case using the models for biomedical research, treatment with JAG-1 peptide or a γ-secretase inhibitor modified the Notch signaling and induced changes indicating that the signal participates in lumen formation in the models. Our results demonstrate that culture conditions affect the stemness of 3D culture models generated from CSCs and show that comparing models with different phenotypes is useful for studying how the tumour environment regulates cancer.
Collapse
|
16
|
Zhao DC, Li YM, Ma JL, Yi N, Yao ZY, Li YP, Quan Y, Li XN, Xu CL, Qiu Y, Wu LQ. Single-cell RNA sequencing reveals distinct gene expression patterns in glucose metabolism of human preimplantation embryos. Reprod Fertil Dev 2019; 31:237-247. [PMID: 30017025 DOI: 10.1071/rd18178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
Precise regulation of glucose metabolism-related genes is essential for early embryonic development. Although previous research has yielded detailed information on the biochemical processes, little is yet known of the dynamic gene expression profiles in glucose metabolism of preimplantation embryos at a single-cell resolution. In the present study, we performed integrated analysis of single-cell RNA sequencing (scRNA-seq) data of human preimplantation embryos that had been cultured in sequential medium. Different cells in the same embryo have similar gene expression patterns in glucose metabolism. During the switch from the cleavage to morula stage, the expression of glycolysis-related genes, such as glucose transporter genes (solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) and solute carrier family 2 (facilitated glucose transporter), member 3 (SLC2A3) and genes encoding hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase, is increased. The genes involved in the pentose phosphate pathway are highly expressed at the cleavage stage, generating the reducing power to balance oxidative stress derived from biosynthesis. Expression of the genes involved in the biosynthesis of glycerophospholipids is increased after the morula stage. Nevertheless, the expression of tricarboxylic acid-related genes remains relatively unchanged during the preimplantation stages. In conclusion, we discovered that the gene expression profiles are dynamic according to glucose utilisation in the embryos at different stages, which contributes to our understanding of regulatory mechanisms of glucose metabolism-related genes in human preimplantation embryos.
Collapse
Affiliation(s)
- Di-Cheng Zhao
- The State Key Laboratory of Medical Genetics of China, Central South University, 72 Xiangya Road, Changsha, 410008, China
| | - Yu-Mei Li
- The Reproductive Medical Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jie-Liang Ma
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200065, China
| | - Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200065, China
| | - Zhong-Yuan Yao
- The State Key Laboratory of Medical Genetics of China, Central South University, 72 Xiangya Road, Changsha, 410008, China
| | - Yan-Ping Li
- The Reproductive Medical Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yi Quan
- The State Key Laboratory of Medical Genetics of China, Central South University, 72 Xiangya Road, Changsha, 410008, China
| | - Xin-Ning Li
- The State Key Laboratory of Medical Genetics of China, Central South University, 72 Xiangya Road, Changsha, 410008, China
| | - Chang-Long Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Guangxi Medical University, 13 Dancun Road, Nanning, 530031, China
| | - Ying Qiu
- The Reproductive Medical Center of Nanning Second People's Hospital, Guangxi Medical University, 13 Dancun Road, Nanning, 530031, China
| | - Ling-Qian Wu
- The State Key Laboratory of Medical Genetics of China, Central South University, 72 Xiangya Road, Changsha, 410008, China
| |
Collapse
|
17
|
Parrotta EI, Scalise S, Taverna D, De Angelis MT, Sarro G, Gaspari M, Santamaria G, Cuda G. Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells. J Cell Mol Med 2019; 23:5440-5453. [PMID: 31237115 PMCID: PMC6653499 DOI: 10.1111/jcmm.14426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Although the concepts of somatic cell reprogramming and human‐induced pluripotent stem cells (hiPSCs) generation have undergone several analyses to validate the usefulness of these cells in research and clinic, it remains still controversial whether the hiPSCs are equivalent to human embryonic stem cells (hESCs), pointing to the need of further characterization for a more comprehensive understanding of pluripotency. Most of the experimental evidence comes from the transcriptome analysis, while a little is available on protein data, and even less is known about the post‐translational modifications. Here, we report a combined strategy of mass spectrometry and gene expression profiling for proteogenomic analysis of reprogrammed and embryonic stem cells. The data obtained through this integrated, multi‐“omics” approach indicate that a small, but still significant, number of distinct pathways is enriched in reprogrammed versus embryonic stem cells, supporting the view that pluripotency is an extremely complex, multifaceted phenomenon, with peculiarities that are characteristic of each cell type.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Teresa De Angelis
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianmarco Sarro
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
18
|
Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux. Stem Cells Int 2019; 2019:8195614. [PMID: 31236115 PMCID: PMC6545818 DOI: 10.1155/2019/8195614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolism has been shown to alter cell fate in human pluripotent stem cells (hPSC). However, current understanding is almost exclusively based on work performed at 20% oxygen (air), with very few studies reporting on hPSC at physiological oxygen (5%). In this study, we integrated metabolic, transcriptomic, and epigenetic data to elucidate the impact of oxygen on hPSC. Using 13C-glucose labeling, we show that 5% oxygen increased the intracellular levels of glycolytic intermediates, glycogen, and the antioxidant response in hPSC. In contrast, 20% oxygen increased metabolite flux through the TCA cycle, activity of mitochondria, and ATP production. Acetylation of H3K9 and H3K27 was elevated at 5% oxygen while H3K27 trimethylation was decreased, conforming to a more open chromatin structure. RNA-seq analysis of 5% oxygen hPSC also indicated increases in glycolysis, lysine demethylases, and glucose-derived carbon metabolism, while increased methyltransferase and cell cycle activity was indicated at 20% oxygen. Our findings show that oxygen drives metabolite flux and specifies carbon fate in hPSC and, although the mechanism remains to be elucidated, oxygen was shown to alter methyltransferase and demethylase activity and the global epigenetic landscape.
Collapse
|
19
|
Arthur SA, Blaydes JP, Houghton FD. Glycolysis Regulates Human Embryonic Stem Cell Self-Renewal under Hypoxia through HIF-2α and the Glycolytic Sensors CTBPs. Stem Cell Reports 2019; 12:728-742. [PMID: 30880076 PMCID: PMC6450050 DOI: 10.1016/j.stemcr.2019.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Glycolysis and hypoxia are key regulators of human embryonic stem cell (hESC) self-renewal, but how changes in metabolism affect gene expression is poorly understood. C-terminal binding proteins (CTBPs) are glycolytic sensors that through NADH binding link the metabolic state of the cell to its gene expression, by acting as transcriptional corepressors, or coactivators. However, the role of CTBPs in hESCs has not previously been investigated. A direct interaction between hypoxia-inducible factor 2α (HIF-2α) and the CTBP proximal promoters in hESCs cultured only under hypoxia was demonstrated. Decreasing the rate of flux through glycolysis in hESCs maintained under hypoxia resulted in a reduction of CTBPs, OCT4, SOX2, and NANOG, but also in the expression of HIF-2α. Silencing CTBP expression resulted in the loss of pluripotency marker expression demonstrating that CTBPs are involved in hESC maintenance. These data suggest that under hypoxia, glycolysis regulates self-renewal through HIF-2α and the induction of the metabolic sensors CTBPs.
Collapse
Affiliation(s)
- Sophie A Arthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
20
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
21
|
Vono R, Jover Garcia E, Spinetti G, Madeddu P. Oxidative Stress in Mesenchymal Stem Cell Senescence: Regulation by Coding and Noncoding RNAs. Antioxid Redox Signal 2018; 29:864-879. [PMID: 28762752 PMCID: PMC6080119 DOI: 10.1089/ars.2017.7294] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Mesenchymal stem cells (MSCs), adult stem cells with the potential of differentiation into mesodermal lineages, play an important role in tissue homeostasis and regeneration. In different organs, a subpopulation of MSCs is located near the vasculature and possibly represents the original source of lineage-committed mesenchymal progenitors. Recent Advances: The plasticity and immune characteristics of MSCs render them a preferential tool for regenerative cell therapy. CRITICAL ISSUES The culture expansion needed before MSC transplantation is associated with cellular senescence. Moreover, accelerated senescence of the total and perivascular MSC pool has been observed in humans and mouse models of premature aging disorders. MSC dysfunction is acknowledged as a culprit for the aging-associated degeneration of mesodermal tissues, but the underlying epigenetic pathways remain elusive. This article reviews current understanding of mechanisms impinging on MSC health, including oxidative stress, Nrf2-antioxidant responsive element activity, sirtuins, noncoding RNAs, and PKCs. FUTURE DIRECTIONS We provide evidence that epigenetic profiling of MSCs is utilitarian to the prediction of therapeutic outcomes. In addition, strategies that target oxidative stress-associated mechanisms represent promising approaches to counteract the detrimental effect of age and senescence in MSCs.-Antioxid. Redox Signal. 29, 864-879.
Collapse
Affiliation(s)
- Rosa Vono
- 1 Laboratory of Cardiovascular Research , IRCCS MultiMedica, Milan, Italy
| | - Eva Jover Garcia
- 2 School of Clinical Sciences, Bristol Heart Institute, University of Bristol , United Kingdom
| | - Gaia Spinetti
- 1 Laboratory of Cardiovascular Research , IRCCS MultiMedica, Milan, Italy
| | - Paolo Madeddu
- 2 School of Clinical Sciences, Bristol Heart Institute, University of Bristol , United Kingdom
| |
Collapse
|
22
|
Lisowski P, Kannan P, Mlody B, Prigione A. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 2018; 19:embr.201745432. [PMID: 29661859 DOI: 10.15252/embr.201745432] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell-based medical applications.
Collapse
Affiliation(s)
- Pawel Lisowski
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Centre for Preclinical Research and Technology (CePT), Warsaw Medical University, Warsaw, Poland
| | - Preethi Kannan
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | | |
Collapse
|
23
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. Hypoxia upregulates the expression of the pluripotency markers in the stem cells from human deciduous teeth. Clin Oral Investig 2018; 23:199-207. [DOI: 10.1007/s00784-018-2427-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
|
24
|
An SY, Heo JS. Low oxygen tension modulates the osteogenic differentiation of mouse embryonic stem cells. Tissue Cell 2018; 52:9-16. [PMID: 29857833 DOI: 10.1016/j.tice.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
This study examined the effects of low oxygen tension on the osteogenic differentiation of embryonic stem cells (ESCs) in a three-dimensional culture system. The high expression levels of hypoxia-related proteins hypoxia-inducible factor-1α and vascular endothelial growth factor were first validated in ESCs subjected to hypoxic conditions compared with normoxic controls. The osteogenic differentiation of hypoxic ESCs with either osteogenic or osteogenic factor-free media was subsequently evaluated by measuring alkaline phosphatase activity, intracellular calcium levels, matrix mineralization, and the protein levels of osteogenic markers Runt-related transcription factor 2 and osterix. We confirmed that hypoxia significantly stimulated ESC osteogenic activity; the strongest stimulation of ESC osteogenesis was exerted when cells were grown in osteogenic media. To identify differentially expressed genes associated with hypoxia-induced ESC differentiation, we performed microarray analysis of ESCs cultured in osteogenic media under normoxic and hypoxic conditions. This study demonstrated that differences in oxygen tension induced the differential expression of genes known to play roles in such processes as skeletal system development and signaling pathways for bone morphogenetic protein, Wnt, Notch, mitogen-activated protein kinase, and integrin. These findings reveal the effects of low oxygen tension on osteogenic progression in ESCs and provide insight into the molecular pathways that regulate ESC differentiation following exposure to hypoxia.
Collapse
Affiliation(s)
- Seong Yeong An
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, South Korea.
| |
Collapse
|
25
|
Harvey AJ, O’Brien C, Lambshead J, Sheedy JR, Rathjen J, Laslett AL, Gardner DK. Physiological oxygen culture reveals retention of metabolic memory in human induced pluripotent stem cells. PLoS One 2018; 13:e0193949. [PMID: 29543848 PMCID: PMC5854358 DOI: 10.1371/journal.pone.0193949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Reprogramming somatic cells to a pluripotent cell state (induced Pluripotent Stem (iPS) cells) requires reprogramming of metabolism to support cell proliferation and pluripotency, most notably changes in carbohydrate turnover that reflect a shift from oxidative to glycolytic metabolism. Some aspects of iPS cell metabolism differ from embryonic stem (ES) cells, which may reflect a parental cell memory, or be a consequence of the reprogramming process. In this study, we compared the metabolism of 3 human iPS cell lines to assess the fidelity of metabolic reprogramming. When challenged with reduced oxygen concentration, ES cells have been shown to modulate carbohydrate use in a predictably way. In the same model, 2 of 3 iPS cell lines failed to regulate carbohydrate metabolism. Oxygen is a well-characterized regulator of cell function and embryo viability, and an inability of iPS cells to modulate metabolism in response to oxygen may indicate poor metabolic fidelity. As metabolism is linked to the regulation of the epigenome, assessment of metabolic responses of iPS cells to physiological stimuli during characterization is warranted to ensure complete cell reprogramming and as a measure of cell quality.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
| | - Carmel O’Brien
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
- CSIRO Manufacturing, and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jack Lambshead
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
- CSIRO Manufacturing, and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - John R. Sheedy
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joy Rathjen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew L. Laslett
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
- CSIRO Manufacturing, and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- ARC Special Research Initiative, Stem Cells Australia, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
26
|
Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP. Stem Cells Int 2017; 2017:2874283. [PMID: 28804500 PMCID: PMC5540363 DOI: 10.1155/2017/2874283] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022] Open
Abstract
Metabolism is central to embryonic stem cell (ESC) pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.
Collapse
|
27
|
Mas-Bargues C, Viña-Almunia J, Inglés M, Sanz-Ros J, Gambini J, Ibáñez-Cabellos JS, García-Giménez JL, Viña J, Borrás C. Role of p16 INK4a and BMI-1 in oxidative stress-induced premature senescence in human dental pulp stem cells. Redox Biol 2017; 12:690-698. [PMID: 28410532 PMCID: PMC5390672 DOI: 10.1016/j.redox.2017.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are a source for cell therapy. Before implantation, an in vitro expansion step is necessary, with the inconvenience that hDPSCs undergo senescence following a certain number of passages, loosing their stemness properties. Long-term in vitro culture of hDPSCs at 21% (ambient oxygen tension) compared with 3-6% oxygen tension (physiological oxygen tension) caused an oxidative stress-related premature senescence, as evidenced by increased β-galactosidase activity and increased lysil oxidase expression, which is mediated by p16INK4a pathway. Furthermore, hDPSCs cultured at 21% oxygen tension underwent a downregulation of OCT4, SOX2, KLF4 and c-MYC factors, which was recued by BMI-1 silencing. Thus, p16INK4a and BMI-1 might play a role in the oxidative stress-associated premature senescence. We show that it is important for clinical applications to culture cells at physiological pO2 to retain their stemness characteristics and to delay senescence.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| | - José Viña-Almunia
- Department of Stomatology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marta Inglés
- Department of Physiotherapy. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| | - Jorge Sanz-Ros
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| | - Juan Gambini
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| | - José Santiago Ibáñez-Cabellos
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER-ISCIII, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER-ISCIII, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain
| | - José Viña
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain
| | - Consuelo Borrás
- Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain.
| |
Collapse
|
28
|
Bhute VJ, Bao X, Palecek SP. Advances in Applications of Metabolomics in Pluripotent Stem Cell Research. Curr Opin Chem Eng 2017; 15:36-43. [PMID: 28729963 PMCID: PMC5513531 DOI: 10.1016/j.coche.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells undergo extensive metabolic rewiring during reprogramming, proliferation and differentiation, and numerous studies have demonstrated a significant role of metabolism in controlling stem cell fates. Recent applications of metabolomics, the study of concentrations and fluxes of small molecules in cells, have advanced efforts to characterize and maturate stem cell fates, assess drug toxicity in stem cell tissue models, identify biomarkers, and study the effects of environment on metabolic pathways in stem cells and their progeny. Looking to the future, combining metabolomics with other -omics approaches will provide a deeper understanding of the complex regulatory mechanisms of stem cells.
Collapse
Affiliation(s)
- Vijesh J Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI-53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI-53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI-53706, USA
| |
Collapse
|
29
|
Sato Y, Mabuchi Y, Miyamoto K, Araki D, Niibe K, Houlihan DD, Morikawa S, Nakagawa T, Nakajima T, Akazawa C, Hori S, Okano H, Matsuzaki Y. Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression. PLoS One 2016; 11:e0165946. [PMID: 27855169 PMCID: PMC5113929 DOI: 10.1371/journal.pone.0165946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/20/2016] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) reside in the bone marrow and maintain their stemness under hypoxic conditions. However, the mechanism underlying the effects of hypoxia on MSCs remains to be elucidated. This study attempted to uncover the signaling pathway of MSC proliferation. Under low-oxygen culture conditions, MSCs maintained their proliferation and differentiation abilities for a long term. The Notch2 receptor was up-regulated in MSCs under hypoxic conditions. Notch2-knockdown (Notch2-KD) MSCs lost their cellular proliferation ability and showed reduced gene expression of hypoxia-inducible transcription factor (HIF)-1α, HIF-2α, and c-Myc. Overexpression of the c-Myc gene in Notch2-KD MSCs allowed the cells to regain their proliferation capacity. These results suggested that Notch2 signaling is linked to c-Myc expression and plays a key role in the regulation of MSC proliferation. Our findings provide important knowledge for elucidating the self-replication competence of MSCs in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yukio Sato
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tokyo Medical and Dental University, Graduate School of Health Care Sciences, Department of Biochemistry and Biophysics, Tokyo 113-8510, Japan
| | - Kenichi Miyamoto
- Shimane University Faculty of Medicine, Department of Life Science, Shimane 693-8501, Japan
| | - Daisuke Araki
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kunimichi Niibe
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Miyagi 980-8575, Japan
| | - Diarmaid D. Houlihan
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chihiro Akazawa
- Tokyo Medical and Dental University, Graduate School of Health Care Sciences, Department of Biochemistry and Biophysics, Tokyo 113-8510, Japan
| | - Shingo Hori
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
- Shimane University Faculty of Medicine, Department of Life Science, Shimane 693-8501, Japan
- * E-mail:
| |
Collapse
|
30
|
Reappraisal of putative glyoxalase 1-deficient mouse and dicarbonyl stress on embryonic stem cells in vitro. Biochem J 2016; 473:4255-4270. [PMID: 27671893 DOI: 10.1042/bcj20160691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/01/2023]
Abstract
Glyoxalase 1 (Glo1) is a cytoplasmic enzyme with a cytoprotective function linked to metabolism of the cytotoxic side product of glycolysis, methylglyoxal (MG). It prevents dicarbonyl stress - the abnormal accumulation of reactive dicarbonyl metabolites, increasing protein and DNA damage. Increased Glo1 expression delays ageing and suppresses carcinogenesis, insulin resistance, cardiovascular disease and vascular complications of diabetes and renal failure. Surprisingly, gene trapping by the International Mouse Knockout Consortium (IMKC) to generate putative Glo1 knockout mice produced a mouse line with the phenotype characterised as normal and healthy. Here, we show that gene trapping mutation was successful, but the presence of Glo1 gene duplication, probably in the embryonic stem cells (ESCs) before gene trapping, maintained wild-type levels of Glo1 expression and activity and sustained the healthy phenotype. In further investigation of the consequences of dicarbonyl stress in ESCs, we found that prolonged exposure of mouse ESCs in culture to high concentrations of MG and/or hypoxia led to low-level increase in Glo1 copy number. In clinical translation, we found a high prevalence of low-level GLO1 copy number increase in renal failure where there is severe dicarbonyl stress. In conclusion, the IMKC Glo1 mutant mouse is not deficient in Glo1 expression through duplication of the Glo1 wild-type allele. Dicarbonyl stress and/or hypoxia induces low-level copy number alternation in ESCs. Similar processes may drive rare GLO1 duplication in health and disease.
Collapse
|
31
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
32
|
The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem Biol Interact 2016; 244:204-14. [DOI: 10.1016/j.cbi.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 01/16/2023]
|
33
|
Harvey AJ, Rathjen J, Yu LJ, Gardner DK. Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal. Reprod Fertil Dev 2016; 28:446-58. [DOI: 10.1071/rd14013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022] Open
Abstract
Human embryonic stem (ES) cells are routinely cultured under atmospheric oxygen (~20%), a concentration that is known to impair embryo development in vitro and is likely to be suboptimal for maintaining human ES cells compared with physiological (~5%) oxygen conditions. Conflicting reports exist on the effect of oxygen during human ES cell culture and studies have been largely limited to characterisation of typical stem cell markers or analysis of global expression changes. This study aimed to identify physiological markers that could be used to evaluate the metabolic impact of oxygen on the MEL-2 human ES cell line after adaptation to either 5% or 20% oxygen in extended culture. ES cells cultured under atmospheric oxygen displayed decreased glucose consumption and lactate production when compared with those cultured under 5% oxygen, indicating an overall higher flux of glucose through glycolysis under physiological conditions. Higher glucose utilisation at 5% oxygen was accompanied by significantly increased expression of all glycolytic genes analysed. Analysis of amino acid turnover highlighted differences in the consumption of glutamine and threonine and in the production of proline. The expression of pluripotency and differentiation markers was, however, unaltered by oxygen and no observable difference in proliferation between cells cultured in 5% and 20% oxygen was seen. Apoptosis was elevated under 5% oxygen conditions. Collectively these data suggest that culture conditions, including oxygen concentration, can significantly alter human ES cell physiology with coordinated changes in gene expression, in the absence of detectable alterations in undifferentiated marker expression.
Collapse
|
34
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
35
|
Lages YM, Nascimento JM, Lemos GA, Galina A, Castilho LR, Rehen SK. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells. PeerJ 2015; 3:e1486. [PMID: 26713239 PMCID: PMC4690376 DOI: 10.7717/peerj.1486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs) derived from pluripotent stem cells grown in 3% oxygen (v/v) were compared with NPCs cultured in 21% (v/v) oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS). NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.
Collapse
Affiliation(s)
- Yury M Lages
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | | | - Gabriela A Lemos
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Leda R Castilho
- COPPE, Chemical Engineering Program, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Stevens K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil ; IDOR, D'Or Institute for Research and Education , Rio de Janeiro, RJ , Brazil
| |
Collapse
|
36
|
Christensen DR, Calder PC, Houghton FD. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells. Sci Rep 2015; 5:17500. [PMID: 26639784 PMCID: PMC4671001 DOI: 10.1038/srep17500] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.
Collapse
Affiliation(s)
- David R. Christensen
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
37
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
38
|
Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 2015. [PMID: 26207016 DOI: 10.1093/humupd/dmv034] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although laboratory procedures, along with culture media formulations, have improved over the past two decades, the issue remains that human IVF is performed in vitro (literally 'in glass'). METHODS Using PubMed, electronic searches were performed using keywords from a list of chemical and physical factors with no limits placed on time. Examples of keywords include oxygen, ammonium, volatile organics, temperature, pH, oil overlays and incubation volume/embryo density. Available clinical and scientific evidence surrounding physical and chemical factors have been assessed and presented here. RESULTS AND CONCLUSIONS Development of the embryo outside the body means that it is constantly exposed to stresses that it would not experience in vivo. Sources of stress on the human embryo include identified factors such as pH and temperature shifts, exposure to atmospheric (20%) oxygen and the build-up of toxins in the media due to the static nature of culture. However, there are other sources of stress not typically considered, such as the act of pipetting itself, or the release of organic compounds from the very tissue culture ware upon which the embryo develops. Further, when more than one stress is present in the laboratory, there is evidence that negative synergies can result, culminating in significant trauma to the developing embryo. It is evident that embryos are sensitive to both chemical and physical signals within their microenvironment, and that these factors play a significant role in influencing development and events post transfer. From the viewpoint of assisted human reproduction, a major concern with chemical and physical factors lies in their adverse effects on the viability of embryos, and their long-term effects on the fetus, even as a result of a relatively brief exposure. This review presents data on the adverse effects of chemical and physical factors on mammalian embryos and the importance of identifying, and thereby minimizing, them in the practice of human IVF. Hence, optimizing the in vitro environment involves far more than improving culture media formulations.
Collapse
Affiliation(s)
- Petra L Wale
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia Melbourne IVF, Melbourne, Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Lees JG, Rathjen J, Sheedy JR, Gardner DK, Harvey AJ. Distinct profiles of human embryonic stem cell metabolism and mitochondria identified by oxygen. Reproduction 2015; 150:367-82. [PMID: 26159831 DOI: 10.1530/rep-14-0633] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
Oxygen is a powerful regulator of cell function and embryonic development. It has previously been determined that oxygen regulates human embryonic stem (hES) cell glycolytic and amino acid metabolism, but the effects on mitochondria are as yet unknown. Two hES cell lines (MEL1, MEL2) were analyzed to determine the role of 5% (physiological) and 20% (atmospheric) oxygen in regulating mitochondrial activity. In response to extended physiological oxygen culture, MEL2 hES cells displayed reduced mtDNA content, mitochondrial mass and expression of metabolic genes TFAM, NRF1, PPARa and MT-ND4. Furthermore, MEL2 hES cell glucose consumption, lactate production and amino acid turnover were elevated under physiological oxygen. In stark contrast, MEL1 hES cell amino acid and carbohydrate use and mitochondrial function were relatively unaltered in response to oxygen. Furthermore, differentiation kinetics were delayed in the MEL1 hES cell line following BMP4 treatment. Here we report the first incidence of metabolic dysfunction in a hES cell population, defined as a failure to respond to oxygen concentration through the modulation of metabolism, demonstrating that hES cells can be perturbed during culture despite exhibiting the defining characteristics of pluripotent cells. Collectively, these data reveal a central role for oxygen in the regulation of hES cell metabolism and mitochondrial function, whereby physiological oxygen promotes glucose flux and suppresses mitochondrial biogenesis and gene expression.
Collapse
Affiliation(s)
- Jarmon G Lees
- School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia
| | - Joy Rathjen
- School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia
| | - John R Sheedy
- School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia
| | - David K Gardner
- School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia
| | - Alexandra J Harvey
- School of BiosciencesUniversity of Melbourne, Parkville 3010, Victoria, AustraliaMenzies Institute of Medical ResearchUniversity of Tasmania, Hobart 7000, Tasmania, Australia
| |
Collapse
|
40
|
Abstract
The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.
Collapse
|
41
|
Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 2015; 192:61-9. [PMID: 26000464 DOI: 10.1016/j.ijcard.2015.05.020] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferation in ischemic tissues. However, the therapeutic application of iPS cells is limited by their tumorigenic potential. We hypothesized that iPS cells can transmit cytoprotective signals to cardiomyocytes via exosomes/microvesicles. METHODS Exosomes/microvesicles secreted from mouse cardiac fibroblast (CF)-derived iPS cells (iPS-exo) were purified from conditioned medium and confirmed by electron micrograph, size distribution and zeta potential by particle tracking analyzer and protein expression of the exosome markers CD63 and Tsg101. RESULTS We observed that exosomes are at low zeta potential, and easily aggregate. Temperature affects zeta potential (-14 to -15 mV at 23 °C vs -24 mV at 37 °C). The uptake of iPS-exo protects H9C2 cells against H2O2-induced oxidative stress by inhibiting caspase 3/7 activation (P < 0.05, n = 6). Importantly, iPS-exo treatment can protect against myocardial ischemia/reperfusion (MIR) injury via intramyocardial injection into mouse ischemic myocardium before reperfusion. Furthermore, iPS-exo deliver cardioprotective miRNAs, including nanog-regulated miR-21 and HIF-1α-regulated miR-210, to H9C2 cardiomyocytes in vitro. CONCLUSIONS Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR. iPS-exo thus represents novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity and can potentially serve as an "off-the-shelf" therapy to rescue ischemic cardiomyocytes in conditions such as MIR.
Collapse
Affiliation(s)
- Yingjie Wang
- Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China; Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaolong Wang
- Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei Guo
- Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Sheng-hu He
- Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Arthur Zimmerman
- Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Yutao Liu
- Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Il-man Kim
- Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Neal L Weintraub
- Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Yaoliang Tang
- Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, United States.
| |
Collapse
|
42
|
Hypoxia inducible factor (HIF)-2α accelerates disease progression in mouse models of leukemia and lymphoma but is not a poor prognosis factor in human AML. Leukemia 2015; 29:2075-85. [DOI: 10.1038/leu.2015.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 12/15/2022]
|
43
|
Chen Y, Hu X, Sun J, Zhou Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology 2015; 10:42-52. [PMID: 25704117 DOI: 10.3109/17435390.2015.1005032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Graphene oxide (GO) has shown great potential for biological, medical, energy and electronic applications. As a consequence of these diverse applications, GO release into the ecosystem is inevitable; however, the corresponding risks are largely unknown, particularly with respect to the critical period of embryogenesis. This study revealed that GO adhered to and enveloped the chorion of zebrafish embryos mainly via hydroxyl group interactions, blocked the pore canals of the chorionic membrane, and caused marked hypoxia and hatching delay. Furthermore, GO spontaneously penetrated the chorion, entered the embryo via endocytosis, damaged the mitochondria and primarily translocated to the eye, heart and yolk sac regions, which are involved in the circulatory system of zebrafish. In these organs, GO induced excessive generation of reactive oxygen species and increased oxidative stress, DNA damage and apoptosis. Graphene oxide also induced developmental malformation of the eye, cardiac/yolk sac edema, tail flexure and heart rate reduction. In contrast to the common dose-effect relationships of nanoparticles, the adverse effects of GO on heart rate and tail/spinal cord flexure increased and then decreased as the GO concentration increased. These findings emphasize the specific adverse effects of GO on embryogenesis and highlight the potential ecological and health risks of GO.
Collapse
Affiliation(s)
- Yuming Chen
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) , Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Xiangang Hu
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) , Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Jing Sun
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) , Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Qixing Zhou
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) , Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| |
Collapse
|
44
|
Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev 2015; 27:638-54. [DOI: 10.1071/rd14421] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
The mammalian blastocyst exhibits an idiosyncratic metabolism, reflecting its unique physiology and its ability to undergo implantation. Glucose is the primary nutrient of the blastocyst, and is metabolised both oxidatively and through aerobic glycolysis. The production of significant quantities of lactate by the blastocyst reflects specific metabolic requirements and mitochondrial regulation; it is further proposed that lactate production serves to facilitate several key functions during implantation, including biosynthesis, endometrial tissue breakdown, the promotion of new blood vessel formation and induction of local immune-modulation of the uterine environment. Nutrient availability, oxygen concentration and the redox state of the blastocyst tightly regulate the relative activities of specific metabolic pathways. Notably, a loss of metabolic normality is associated with a reduction in implantation potential and subsequent fetal development. Even a transient metabolic stress at the blastocyst stage culminates in low fetal weights after transfer. Further, it is evident that there are differences between male and female embryos, with female embryos being characterised by higher glucose consumption and differences in their amino acid turnover, reflecting the presence of two active X-chromosomes before implantation, which results in differences in the proteomes between the sexes. In addition to the role of Hypoxia-Inducible Factors, the signalling pathways involved in regulating blastocyst metabolism are currently under intense analysis, with the roles of sirtuins, mTOR, AMP-activated protein kinase and specific amino acids being scrutinised. It is evident that blastocyst metabolism regulates more than the production of ATP; rather, it is apparent that metabolites and cofactors are important regulators of the epigenome, putting metabolism at centre stage when considering the interactions of the blastocyst with its environment.
Collapse
|
45
|
Farrell MJ, Shin JI, Smith LJ, Mauck RL. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthritis Cartilage 2015; 23:134-42. [PMID: 25241241 PMCID: PMC4275365 DOI: 10.1016/j.joca.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissue engineering approaches for cartilage repair have focused on the use of mesenchymal stem cells (MSCs). For clinical success, MSCs must survive and produce extracellular matrix in the physiological context of the synovial joint, where low nutrient conditions engendered by avascularity, nutrient utilization, and waste production prevail. This study sought to delineate the role of microenvironmental stressors on MSC viability and functional capacity in three dimensional (3D) culture. DESIGN We evaluated the impact of glucose and oxygen deprivation on the functional maturation of 3D MSC-laden agarose constructs. Since MSC isolation procedures result in a heterogeneous cell population, we also utilized micro-pellet culture to investigate whether clonal subpopulations respond to these microenvironmental stressors in a distinct fashion. RESULTS MSC health and the functional maturation of 3D constructs were compromised by both glucose and oxygen deprivation. Importantly, glucose deprivation severely limited viability, and so compromised the functional maturation of 3D constructs to the greatest extent. The observation that not all cells died suggested there exists heterogeneity in the response of MSC populations to metabolic stressors. Population heterogeneity was confirmed through a series of studies utilizing clonally derived subpopulations, with a spectrum of matrix production and cell survival observed under conditions of metabolic stress. CONCLUSIONS Our findings show that glucose deprivation has a significant impact on functional maturation, and that some MSC subpopulations are more resilient to metabolic challenge than others. These findings suggest that pre-selection of subpopulations that are resilient to metabolic challenge may improve in vivo outcomes.
Collapse
Affiliation(s)
- M J Farrell
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA
| | - J I Shin
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R L Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Peter Y, Weingarten M, Akhavan N, Hanau J. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Bowers DT, Tanes ML, Das A, Lin Y, Keane NA, Neal RA, Ogle ME, Brayman KL, Fraser CL, Botchwey EA. Spatiotemporal oxygen sensing using dual emissive boron dye-polylactide nanofibers. ACS NANO 2014; 8:12080-91. [PMID: 25426706 PMCID: PMC4278692 DOI: 10.1021/nn504332j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye-polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing.
Collapse
Affiliation(s)
- Daniel T. Bowers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Michael L. Tanes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Anusuya Das
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Yong Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Nicole A. Keane
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Rebekah A. Neal
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Kenneth L. Brayman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Cassandra L. Fraser
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Edward A. Botchwey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Address correspondence to
| |
Collapse
|
48
|
Pimton P, Lecht S, Stabler CT, Johannes G, Schulman ES, Lelkes PI. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells. Stem Cells Dev 2014; 24:663-76. [PMID: 25226206 DOI: 10.1089/scd.2014.0343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6 days under hypoxia further increased the expression of DE marker genes Sox17, Foxa2, and Cxcr4 by 501-, 1,483-, and 126-fold above maintenance cultures, respectively. Transient exposure to hypoxia, as short as 24 h, was sufficient to enhance AA-induced endoderm formation. The involvement of hypoxia-inducible factor (HIF)-1α and reactive oxygen species (ROS) in the AA-induced endoderm enrichment was assessed using HIF-1α(-/-) mESCs and the ROS scavenger N-acetylcysteine (NAC). Under SP conditions, HIF-1α(-/-) mESCs failed to increase the expression of endodermal marker genes but rather shifted toward ectoderm. Hypoxia induced only a marginal potentiation of AA-induced endoderm differentiation in HIF-1α(-/-) mESCs. Treatment of mESCs with AA and NAC led to a dose-dependent decrease in Sox17 and Foxa2 expression. In addition, the duration of exposure to hypoxia in the course of a recently reported lung differentiation protocol resulted in differentially enhanced expression of distal lung epithelial cell marker genes aquaporin 5 (Aqp5), surfactant protein C (Sftpc), and secretoglobin 1a1 (Scgb1a1) for alveolar epithelium type I, type II, and club cells, respectively. Our study is the first to show the effects of in vitro hypoxia on efficient formation of DE and lung lineages. We suggest that the extent of hypoxia and careful timing may be important components of in vitro differentiation bioprocesses for the differential generation of distal lung epithelial cells from pluripotent progenitors.
Collapse
Affiliation(s)
- Pimchanok Pimton
- 1 Department of Biology, School of Science, Walailak University , Nakhon Si Thammarat, Thailand
| | | | | | | | | | | |
Collapse
|
49
|
Petruzzelli R, Christensen DR, Parry KL, Sanchez-Elsner T, Houghton FD. HIF-2α regulates NANOG expression in human embryonic stem cells following hypoxia and reoxygenation through the interaction with an Oct-Sox cis regulatory element. PLoS One 2014; 9:e108309. [PMID: 25271810 PMCID: PMC4182711 DOI: 10.1371/journal.pone.0108309] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023] Open
Abstract
Low O2 tension is beneficial for human embryonic stem cell (hESC) maintenance but the mechanism of regulation is unknown. HIF-2α was found to bind directly to predicted hypoxic response elements (HREs) in the proximal promoter of OCT4, NANOG and SOX2 only in hESCs cultured under hypoxia (5% O2). This binding induced an array of histone modifications associated with gene transcription while a heterochromatic state existed at atmospheric O2. Interestingly, an enhanced euchromatic state was found when hESCs were exposed to hypoxia followed by 72 hours reoxygenation. This was sustained by HIF-2α which enhanced stemness by binding to an oct-sox cis-regulatory element in the NANOG promoter. Thus, these data have uncovered a novel role of HIF-2α as a direct regulator of key transcription factors controlling self-renewal in hESCs but also in the induction of epigenetic modifications ensuring a euchromatic conformation which enhances the regenerative potential of these cells.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David R. Christensen
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kate L. Parry
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Fynes K, Tostoes R, Ruban L, Weil B, Mason C, Veraitch FS. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells. Stem Cells Dev 2014; 23:1910-22. [PMID: 24734982 DOI: 10.1089/scd.2013.0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.
Collapse
Affiliation(s)
- Kate Fynes
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|