1
|
Zhou L, Yu CW. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol Res 2024; 204:107205. [PMID: 38719195 DOI: 10.1016/j.phrs.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen receptors, progesterone receptors and lacks HER2 overexpression. This absence of critical molecular targets poses significant challenges for conventional therapies. Immunotherapy, remarkably immune checkpoint blockade, offers promise for TNBC treatment, but its efficacy remains limited. Epigenetic dysregulation, including altered DNA methylation, histone modifications, and imbalances in regulators such as BET proteins, plays a crucial role in TNBC development and resistance to treatment. Hypermethylation of tumor suppressor gene promoters and the imbalance of histone methyltransferases such as EZH2 and histone deacetylases (HDACs) profoundly influence tumor cell proliferation, survival, and metastasis. In addition, epigenetic alterations critically shape the tumor microenvironment (TME), including immune cell composition, cytokine signaling, and immune checkpoint expression, ultimately contributing to immune evasion. Targeting these epigenetic mechanisms with specific inhibitors such as EZH2 and HDAC inhibitors in combination with immunotherapy represents a compelling strategy to remodel the TME, potentially overcoming immune evasion and enhancing therapeutic outcomes in TNBC. This review aims to comprehensively elucidate the current understanding of epigenetic modulation in TNBC, its influence on the TME, and the potential of combining epigenetic therapies with immunotherapy to overcome the challenges posed by this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Linlin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chen-Wei Yu
- Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Hwang JH, Ryu JS, Yu JO, Choo YK, Kang J, Kim JY. Ganglioside GD3 Regulates Inflammation and Epithelial-to-Mesenchymal Transition in Human Nasal Epithelial Cells. Int J Mol Sci 2024; 25:4054. [PMID: 38612859 PMCID: PMC11012505 DOI: 10.3390/ijms25074054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic sinusitis with nasal polyps (CRSwNP) is one of the most common chronic inflammatory diseases, and involves tissue remodeling. One of the key mechanisms of tissue remodeling is the epithelial-mesenchymal transition (EMT), which also represents one of the pathophysiological processes of CRS observed in CRSwNP tissues. To date, many transcription factors and forms of extracellular stimulation have been found to regulate the EMT process. However, it is not known whether gangliosides, which are the central molecules of plasma membranes, involved in regulating signal transmission pathways, are involved in the EMT process. Therefore, we aimed to determine the role of gangliosides in the EMT process. First, we confirmed that N-cadherin, which is a known mesenchymal marker, and ganglioside GD3 were specifically expressed in CRSwNP_NP tissues. Subsequently, we investigated whether the administration of TNF-α to human nasal epithelial cells (hNECs) resulted in the upregulation of ganglioside GD3 and its synthesizing enzyme, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 1 (ST8Sia1), and the consequently promoted inflammatory processes. Additionally, the expression of N-cadherin, Zinc finger protein SNAI2 (SLUG), and matrix metallopeptidase 9 (MMP-9) were elevated, but that of E-cadherin, which is known to be epithelial, was reduced. Moreover, the inhibition of ganglioside GD3 expression by the siRNA or exogenous treatment of neuraminidase 3 (NEU 3) led to the suppression of inflammation and EMT. These results suggest that gangliosides may play an important role in prevention and therapy for inflammation and EMT.
Collapse
Affiliation(s)
- Ji Hyeon Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University Hospital, Daejeon 35365, Republic of Korea; (J.H.H.); (J.-S.R.)
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University Hospital, Daejeon 35365, Republic of Korea; (J.H.H.); (J.-S.R.)
| | - Jin Ok Yu
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.O.Y.); (Y.-K.C.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Republic of Korea; (J.O.Y.); (Y.-K.C.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University Hospital, Daejeon 35365, Republic of Korea; (J.H.H.); (J.-S.R.)
| |
Collapse
|
3
|
An SY, Lee JW, Kim HD, Kim KS, Cho JH, Kim CH, Lee YC. Regulatory mechanism for the human glioblastoma cell-specific expression of the human GD1c/GT1a/GQ1b synthase (hST8Sia V) gene. Glycoconj J 2023; 40:621-630. [PMID: 37921922 DOI: 10.1007/s10719-023-10136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Ji-Won Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, 16419, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Jong-Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, 16419, South Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea.
| |
Collapse
|
4
|
An SY, Yoon HK, Kim KS, Kim HD, Cho JH, Kim HJ, Kim CH, Lee YC. Upregulation of human GD3 synthase (hST8Sia I) gene expression during serum starvation-induced osteoblastic differentiation of MG-63 cells. PLoS One 2023; 18:e0293321. [PMID: 37917776 PMCID: PMC10621931 DOI: 10.1371/journal.pone.0293321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we have firstly elucidated that serum starvation augmented the levels of human GD3 synthase (hST8Sia I) gene and ganglioside GD3 expression as well as bone morphogenic protein-2 and osteocalcin expression during MG-63 cell differentiation using RT-PCR, qPCR, Western blot and immunofluorescence microscopy. To evaluate upregulation of hST8Sia I gene during MG-63 cell differentiation by serum starvation, promoter area of the hST8Sia I gene was functionally analyzed. Promoter analysis using luciferase reporter assay system harboring various constructs of the hST8Sia I gene proved that the cis-acting region at -1146/-646, which includes binding sites of the known transcription factors AP-1, CREB, c-Ets-1 and NF-κB, displays the highest level of promoter activity in response to serum starvation in MG-63 cells. The -731/-722 region, which contains the NF-κB binding site, was proved to be essential for expression of the hST8Sia I gene by serum starvation in MG-63 cells by site-directed mutagenesis, NF-κB inhibition, and chromatin immunoprecipitation (ChIP) assay. Knockdown of hST8Sia I using shRNA suggested that expressions of hST8Sia I and GD3 have no apparent effect on differentiation of MG-63 cells. Moreover, the transcriptional activation of hST8Sia I gene by serum starvation was strongly hindered by SB203580, a p38MAPK inhibitor in MG-63 cells. From these results, it has been suggested that transcription activity of hST8Sia I gene by serum starvation in human osteosarcoma MG-63 cells is regulated by p38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hyun-Kyoung Yoon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Jong-Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hyeon-Jun Kim
- Department of Orthopaedic Surgery, College of Medicine, Dong-A University, Busan, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| |
Collapse
|
5
|
Nejatie A, Yee SS, Jeter A, Saragovi HU. The cancer glycocode as a family of diagnostic biomarkers, exemplified by tumor-associated gangliosides. Front Oncol 2023; 13:1261090. [PMID: 37954075 PMCID: PMC10637394 DOI: 10.3389/fonc.2023.1261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
Collapse
Affiliation(s)
- Ali Nejatie
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Samantha S. Yee
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | | | - Horacio Uri Saragovi
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Ophthalmology and Vision Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Kasprowicz A, Sophie GD, Lagadec C, Delannoy P. Role of GD3 Synthase ST8Sia I in Cancers. Cancers (Basel) 2022; 14:cancers14051299. [PMID: 35267607 PMCID: PMC8909605 DOI: 10.3390/cancers14051299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The carbohydrate moiety of cell surface glycolipids is modified in cancers of neuro–ectoderm origin, leading to the expression of more complex structures with two or more sialic acid residues. These alterations result from the upregulation of the ST8SIA1 gene that encodes GD3 synthase, the enzyme controlling the biosynthesis of complex gangliosides, and are usually associated with a more aggressive phenotype and a poor outcome for patients, making GD3 synthase an interesting target for cancer therapy. This review reports our general knowledge of GD3 synthase gene expression and regulation, its role in both epithelial–mesenchymal transition (EMT) and cancer progression, and the different approaches targeting GD3S expression in cancers. Abstract GD3 synthase controls the biosynthesis of complex gangliosides, bearing two or more sialic acid residues. Disialylated gangliosides GD3 and GD2 are tumor-associated carbohydrate antigens (TACA) in neuro–ectoderm-derived cancers, and are directly involved in cell malignant properties, i.e., migration, invasion, stemness, and epithelial–mesenchymal transition. Since GD3 and GD2 levels are directly linked to GD3 synthase expression and activity, targeting GD3 synthase appears to be a promising strategy through which to interfere with ganglioside-associated malignant properties. We review here the current knowledge on GD3 synthase expression and regulation in cancers, and the consequences of complex ganglioside expression on cancer cell signaling and properties, highlighting the relationships between GD3 synthase expression and epithelial–mesenchymal transition and stemness. Different strategies were used to modulate GD3 synthase expression in cancer cells in vitro and in animal models, such as inhibitors or siRNA/lncRNA, which efficiently reduced cancer cell malignant properties and the proportion of GD2 positive cancer stem cells, which are associated with high metastatic properties, resistance to therapy, and cancer relapse. These data show the relevance of targeting GD3 synthase in association with conventional therapies, to decrease the number of cancer stem cells in tumors.
Collapse
Affiliation(s)
- Angelina Kasprowicz
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
| | - Groux-Degroote Sophie
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| | - Chann Lagadec
- University of Lille, CNRS, Inserm, CHU Lille UMR9020-U1277-CANTHER Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| |
Collapse
|
7
|
Groux-Degroote S, Foulquier F, Cavdarli S, Delannoy P. [Reticular and Golgi glycosylation: Advances and associated diseases]. Med Sci (Paris) 2021; 37:609-617. [PMID: 34180820 DOI: 10.1051/medsci/2021082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycosylation is one of the essential modifications of proteins and lipids. It is carried out mainly in the endoplasmic reticulum and Golgi apparatus, and requires a specific molecular machinery associating several hundreds of glycosyltransferases, glycosidases, transporters and regulating proteins. Modifications of glycosylation are found in numerous diseases, notably in cancers. All types of glycosylation can be affected and this leads to dysfunctions of cellular metabolism. In this review, we present the current knowledge on the regulation of glycosylation mechanisms and illustrate how the alteration of these regulatory mechanisms can lead to abnormal protein and lipid glycosylation, and take part in the development of cancers.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - Sumeyye Cavdarli
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - Philippe Delannoy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| |
Collapse
|
8
|
Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22116145. [PMID: 34200284 PMCID: PMC8201009 DOI: 10.3390/ijms22116145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Collapse
|
9
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Wan H, Li Z, Wang H, Cai F, Wang L. ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR. Clin Transl Oncol 2020; 23:902-910. [PMID: 32939659 DOI: 10.1007/s12094-020-02484-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chemoresistance is the major cause of therapeutic failure in triple negative breast cancer (TNBC). In this work, we investigated the molecular mechanism for the development of TNBC chemoresistance. METHODS mRNA and protein levels of ST8SIA1 were analyzed in chemosensitive and chemoresistant TNBC cells and tissues. Proliferation and survival assays were performed to determine the role of ST8SIA1 in TNBC chemoresistance. RESULTS We found that ST8SIA1 mRNA and protein levels were increased in multiple TNBC cell lines after prolonged exposure to chemotherapeutic drugs. Consistently, retrospective study demonstrated that the majority of TNBC patients who developed chemoresistance displayed upregulation of ST8SIA1. We further found that chemoresistant TNBC cells were more sensitive than chemosensitive cells to ST8SIA1 inhibition in decreasing growth and viability. Consistently, ST8SIA1 inhibition augmented the efficacy of chemotherapy in TNBC cells. Mechanism studies demonstrated that ST8SIA1 inhibition led to suppression of FAK/Akt/mTOR and Wnt/β-catenin signalling pathways. CONCLUSIONS These findings provide an explanation for the heterogeneity of chemotherapy responses across TNBC individuals and reveal the supportive roles of ST8SIA1in TNBC chemoresistance.
Collapse
Affiliation(s)
- H Wan
- Department of Oncology, Sanya People's Hospital, Sanya, 572000, China
| | - Z Li
- Department of Oncology, Sanya People's Hospital, Sanya, 572000, China
| | - H Wang
- Department of Pathology, Sanya People's Hospital, Sanya, 572000, China
| | - F Cai
- Department of Pharmacy, Sanya People's Hospital, Sanya, 572000, China
| | - L Wang
- Department of Oncology, Hainan General Hospital, No.19, Xinhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
11
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Karri K, Waxman DJ. Widespread Dysregulation of Long Noncoding Genes Associated With Fatty Acid Metabolism, Cell Division, and Immune Response Gene Networks in Xenobiotic-exposed Rat Liver. Toxicol Sci 2020; 174:291-310. [PMID: 31926019 PMCID: PMC7098378 DOI: 10.1093/toxsci/kfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic exposure dysregulates hundreds of protein-coding genes in mammalian liver, impacting many physiological processes and inducing diverse toxicological responses. Little is known about xenobiotic effects on long noncoding RNAs (lncRNAs), many of which have important regulatory functions. Here, we present a computational framework to discover liver-expressed, xenobiotic-responsive lncRNAs (xeno-lncs) with strong functional, gene regulatory potential and elucidate the impact of xenobiotic exposure on their gene regulatory networks. We assembled the long noncoding transcriptome of xenobiotic-exposed rat liver using RNA-seq datasets from male rats treated with 27 individual chemicals, representing 7 mechanisms of action (MOAs). Ortholog analysis was combined with coexpression data and causal inference methods to infer lncRNA function and deduce gene regulatory networks, including causal effects of lncRNAs on protein-coding gene expression and biological pathways. We discovered > 1400 liver-expressed xeno-lncs, many with human and/or mouse orthologs. Xenobiotics representing different MOAs often regulated common xeno-lnc targets: 123 xeno-lncs were dysregulated by ≥ 10 chemicals, and 5 xeno-lncs responded to ≥ 20 of the 27 chemicals investigated; 81 other xeno-lncs served as MOA-selective markers of xenobiotic exposure. Xeno-lnc-protein-coding gene coexpression regulatory network analysis identified xeno-lncs closely associated with exposure-induced perturbations of hepatic fatty acid metabolism, cell division, or immune response pathways, and with apoptosis or cirrhosis. We also identified hub and bottleneck lncRNAs, which are expected to be key regulators of gene expression. This work elucidates extensive networks of xeno-lnc-protein-coding gene interactions and provides a framework for understanding the widespread transcriptome-altering actions of foreign chemicals in a key-responsive mammalian tissue.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
13
|
Cavdarli S, Delannoy P, Groux-Degroote S. O-acetylated Gangliosides as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030741. [PMID: 32192217 PMCID: PMC7140702 DOI: 10.3390/cells9030741] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
O-acetylation of sialic acid residues is one of the main modifications of gangliosides, and modulates ganglioside functions. O-acetylation of gangliosides is dependent on sialyl-O-acetyltransferases and sialyl-O-acetyl-esterase activities. CAS1 Domain-Containing Protein 1 (CASD1) is the only human sialyl-O-acetyltransferases (SOAT) described until now. O-acetylated ganglioside species are mainly expressed during embryonic development and in the central nervous system in healthy adults, but are re-expressed during cancer development and are considered as markers of cancers of neuroectodermal origin. However, the specific biological roles of O-acetylated gangliosides in developing and malignant tissues have not been extensively studied, mostly because of the requirement of specific approaches and tools for sample preparation and analysis. In this review, we summarize our current knowledge of ganglioside biosynthesis and expression in normal and pathological conditions, of ganglioside O-acetylation analysis and expression in cancers, and of the possible use of O-acetylated gangliosides as targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- OGD2 Pharma, Institut de Recherche en Santé de l’Université de Nantes, 44007 Nantes, France
| | - Philippe Delannoy
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Institut pour la Recherche sur le Cancer de Lille – IRCL – Place de Verdun, F-59000 Lille, France
| | - Sophie Groux-Degroote
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Correspondence:
| |
Collapse
|
14
|
Identification of 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) as main O-acetylated sialic acid species of GD2 in breast cancer cells. Glycoconj J 2019; 36:79-90. [DOI: 10.1007/s10719-018-09856-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
|
15
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
16
|
Liu J, Zheng X, Pang X, Li L, Wang J, Yang C, Du G. Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharm Sin B 2018; 8:713-720. [PMID: 30245960 PMCID: PMC6147802 DOI: 10.1016/j.apsb.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three glycosyl groups (GD3) and disialoganglioside with two glycosyl groups (GD2) are markedly increased in pathological conditions such as cancers and neurodegenerative diseases. GD3 and GD2 were found to play important roles in cancers by mediating cell proliferation, migration, invasion, adhesion, angiogenesis and in preventing immunosuppression of tumors. GD3 synthase (GD3S) is the regulatory enzyme of GD3 and GD2 synthesis, and is important in tumorigenesis and the development of cancers. The study of GD3S as a drug target may be of great significance for the discovery of new drugs for cancer treatment. This review will describe the gangliosides and their roles in physiological and pathological conditions; the roles of GD3 and GD2 in cancers; the expression, functions and mechanisms of GD3S, and its potential as a drug target in cancers.
Collapse
Affiliation(s)
- Jinyi Liu
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Dewald JH, Cavdarli S, Steenackers A, Delannoy CP, Mortuaire M, Spriet C, Noël M, Groux-Degroote S, Delannoy P. TNF differentially regulates ganglioside biosynthesis and expression in breast cancer cell lines. PLoS One 2018; 13:e0196369. [PMID: 29698439 PMCID: PMC5919650 DOI: 10.1371/journal.pone.0196369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Gangliosides are glycosphingolipids concentrated in glycolipid-enriched membrane microdomains. Mainly restricted to the nervous system in healthy adult, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. GD3 synthase (GD3S), the key enzyme that controls the biosynthesis of complex gangliosides, was shown to be over-expressed in Estrogen Receptor (ER)-negative breast cancer tumors, and associated with a decreased overall survival of patients. We previously demonstrated that GD3S expression in ER-negative breast cancer cells induced a proliferative phenotype and an increased tumor growth. In addition, our results clearly indicate that Tumor Necrosis Factor (TNF) induced GD3S over-expression in breast cancer cells via NFκB pathway. In this study, we analyzed the effect of TNF on ganglioside biosynthesis and expression in breast cancer cells from different molecular subtypes. We showed that TNF up-regulated the expression of GD3S in MCF-7 and Hs578T cells, whereas no change was observed for MDA-MB-231. We also showed that TNF induced an increased expression of complex gangliosides at the cell surface of a small proportion of MCF-7 cells. These results demonstrate that TNF differentially regulates gangliosides expression in breast cancer cell lines and establish a possible link between inflammation at the tumor site environment, expression of complex gangliosides and tumor development.
Collapse
Affiliation(s)
- Justine H. Dewald
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sumeyye Cavdarli
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Agata Steenackers
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Clément P. Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Marlène Mortuaire
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Corentin Spriet
- University of Lille, Bio Imaging Center Lille, Lille, France
| | - Maxence Noël
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sophie Groux-Degroote
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Philippe Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
- * E-mail:
| |
Collapse
|
18
|
Battula VL, Nguyen K, Sun J, Pitner MK, Yuan B, Bartholomeusz C, Hail N, Andreeff M. IKK inhibition by BMS-345541 suppresses breast tumorigenesis and metastases by targeting GD2+ cancer stem cells. Oncotarget 2018; 8:36936-36949. [PMID: 28415808 PMCID: PMC5514883 DOI: 10.18632/oncotarget.16294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
We have identified that the ganglioside GD2 is a marker for breast cancer stem cells (BCSCs), and that targeting the enzyme GD3 synthase (GD3S, which regulates GD2 biosynthesis) reduces breast tumorigenesis. The pathways regulating GD2 expression, and their anomalous functions in BCSC, are unclear. Proteomic analysis of GD2+ and GD2- cells from breast cancer cell lines revealed the activation of NFκB signaling in GD2+ cells. Dose- and time-dependent suppression of NFκB signaling by the small molecule inhibitor BMS-345541 reduced GD2+ cells by > 90%. Likewise, BMS-345541 inhibited BCSC GD3S expression, mammosphere formation, and cell migration/invasion in vitro. Breast tumor-bearing mice treated with BMS-345541 showed a statistically significant decrease in tumor volume and exhibited prolonged survival compared to control mice, with a median survival of 78 d for the BMS-345541-treated group vs. 58 d for the controls. Moreover, in an experimental metastases model, treatment with BMS-345541 reduced the lung metastases by > 5-fold. These data suggest that GD2 expression and function, and NFκB signaling, are related, and they control BCSCs tumorigenic characteristics. Thus, the suppression of NFκB signaling by BMS-345541 is a potentially important advance in controlling breast cancer growth and metastases.
Collapse
Affiliation(s)
- Venkata Lokesh Battula
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khoa Nguyen
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeff Sun
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Kathryn Pitner
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chandra Bartholomeusz
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Numsen Hail
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
21
|
Park HJ, Kim JH, Yoon JS, Choi YJ, Choi YH, Kook KH, Choi JH. Identification and Functional Characterization of ST3GAL5 and ST8SIA1 Variants in Patients with Thyroid-Associated Ophthalmopathy. Yonsei Med J 2017; 58:1160-1169. [PMID: 29047240 PMCID: PMC5653481 DOI: 10.3349/ymj.2017.58.6.1160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/09/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
PURPOSE This study was conducted to identify and to functionally characterize genetic variants in ST3GAL5 and ST8SIA1 in Korean patients with thyroid-associated ophthalmopathy (TAO). MATERIALS AND METHODS Genetic analyses were conducted using DNA samples from TAO patients (n=50) and healthy subjects (n=48) to identify TAO-specific genetic variants of ST3GAL5 or ST8SIA1. The effect of each genetic variant on the transcription or expression of these genes was examined. Additionally, correlations between functional haplotypes of ST3GAL5 or ST8SIA1 and clinical characteristics of the patients were investigated. RESULTS Six promoter variants and one nonsynonymous variant of ST3GAL5 were identified, and four major promoter haplotypes were assembled. Additionally, three promoter variants and two major haplotypes of ST8SIA1 were identified. All ST3GAL5 and ST8SIA1 variants identified in TAO patients were also found in healthy controls. Promoter activity was significantly decreased in three promoter haplotypes of ST3GAL5 and increased in one promoter haplotype of ST8SIA1. Transcription factors activating protein-1, NKX3.1, and specificity protein 1 were revealed as having roles in transcriptional regulation of these haplotypes. The nonsynonymous variant of ST3GAL5, H104R, did not alter the expression of ST3GAL5. While no differences in clinical characteristics were detected in patients possessing the functional promoter haplotypes of ST3GAL5, exophthalmic values were significantly lower in patients with the ST8SIA1 haplotype, which showed a significant increase in promoter activity. CONCLUSION These results from genotype-phenotype analysis might suggest a possible link between the ST8SIA1 functional promoter haplotype and the clinical severity of TAO. However, further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Korea
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Ju Hee Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Korea
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Yang Ji Choi
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Korea
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Yoon Hee Choi
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Koung Hoon Kook
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, Korea.
| | - Ji Ha Choi
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Korea
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
22
|
Shan Y, Liu Y, Zhao L, Liu B, Li Y, Jia L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 2017; 90:48-58. [PMID: 28751193 DOI: 10.1016/j.biocel.2017.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/12/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality worldwide. Aberrant sialylation is crucially involved in the progression of various types of cancer. MicroRNAs (miRNAs) have been broadly studied in cancer. MicroRNA-33a (miR-33a) and Has-let-7e (let-7e) are non-coding RNA that can reduce cell motility and viability in cancer. In this study, miR-33a and let-7e levels were confirmed to be significantly down-regulated in CRC samples (n=32) and drug resistant cell line (HCT-8/5-FU) compared with those in the matched adjacent tissues and drug sensitivity cell line (HCT-8). ST8SIA1 was highly expressed in CRC tissues and HCT-8/5-FU cells, which was negatively correlated with miR-33a/let-7e expression. Luciferase reporter assays confirmed that both miR-33a and let-7e bound to the 3'-untranslated (3'-UTR) region of ST8SIA1. Inhibiting miR-33a/let-7e expression in CRC cells increased endogenous ST8SIA1 mRNA and protein levels. MiR-33a/let-7e knockdown promoted chemoresistance, proliferation, invasion, angiogenesis in vitro, and tumor growth in vivo. Whereas, ectopic expression of miR-33a/let-7e suppressed chemoresistance, proliferation, invasion and angiogenesis in CRC cell lines. ST8SIA1 knockdown mimicked the tumor suppressive effect of miR-33a/let-7e on CRC cells, while restoration of ST8SIA1 abolished the tumor suppressive effect of miR-33a/let-7e on CRC cells. Taken together, altered expression of miR-33a/let-7e was correlated with ST8SIA1 level, which might contribute to CRC progression. The miR-33a/let-7e-ST8SIA1 axis could be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuejian Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
23
|
Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem 2017; 18:1146-1154. [PMID: 28295942 DOI: 10.1002/cbic.201600705] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Gangliosides are acidic glycosphingolipids containing one or more sialic acid residues. They are essential compounds at the outer leaflet of the plasma membrane, where they interact with phospholipids, cholesterol, and transmembrane proteins, forming lipid rafts. They are involved in cell adhesion, proliferation, and recognition processes, as well as in the modulation of signal transduction pathways. These functions are mainly governed by the glycan moiety, and changes in the structures of gangliosides occur under pathological conditions, particularly in neuro-ectoderm-derived cancers. With the progress in mass spectrometry analysis of gangliosides, their role in cancer progression can be now investigated in more detail. In this review we summarize the current knowledge on the biosynthesis of gangliosides and their role in cancers, together with the recent development of cancer immunotherapy targeting gangliosides.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
24
|
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. BIOLOGY 2017; 6:biology6010016. [PMID: 28241499 PMCID: PMC5372009 DOI: 10.3390/biology6010016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
Collapse
|
25
|
Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 2016; 5:cells5040043. [PMID: 27916834 PMCID: PMC5187527 DOI: 10.3390/cells5040043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.
Collapse
|
26
|
Kannan Y, Perez-Lloret J, Li Y, Entwistle LJ, Khoury H, Papoutsopoulou S, Mahmood R, Mansour NR, Ching-Cheng Huang S, Pearce EJ, Pedro S. de Carvalho L, Ley SC, Wilson MS. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology. PLoS Pathog 2016; 12:e1005783. [PMID: 27487182 PMCID: PMC4972396 DOI: 10.1371/journal.ppat.1005783] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. Chronic helminth infections can cause significant morbidity and organ damage in their definitive mammalian hosts. Managing this collateral damage can reduce morbidity and preserve vital tissues for normal organ function. One particular consequence of some chronic helminth infections is the deposition of fibrotic scar tissue, following immune responses directed towards helminth material. In this study we tested the role of a particular signalling kinase, TPL-2, and identified that it critically regulated the magnitude of fibrotic scarring following infection. Using several murine models with genetic deletions of TPL-2 in either all cells or specific deletion in subsets of immune cells (Map3k8–/–Map3k8fl/fl) we identified that expression of TPL-2 in myeloid cells was essential to prevent severe immune-mediated pathology. Using genome-wide analyses and metabolic assays, we discovered that TPL-2 was required for normal lipid metabolism and appropriate activation of myeloid cells / macrophages to limit fibrosis. These results revealed a previously unappreciated role for TPL-2 in preventing severe pathology following infection. Thus, activating this pathway may limit immune mediated pathology following chronic helminth infection. More broadly, this pathway is being targeted to treat inflammatory diseases and cancer [1, 2]. This study would suggest that caution should be taken to prevent untoward co-morbidities and fibrosis-related pathologies in patients when targeting TPL-2.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jimena Perez-Lloret
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yanda Li
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lewis J. Entwistle
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Hania Khoury
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Radma Mahmood
- Experimental Histopathology, Mill Hill Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nuha R. Mansour
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward J. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Luiz Pedro S. de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Steven C. Ley
- Immune Cell Signaling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mark S. Wilson
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep 2016; 36:BSR20160017. [PMID: 27160081 PMCID: PMC5293589 DOI: 10.1042/bsr20160017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.
Collapse
|
28
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
29
|
Krengel U, Bousquet PA. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front Immunol 2014; 5:325. [PMID: 25101077 PMCID: PMC4104838 DOI: 10.3389/fimmu.2014.00325] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/27/2014] [Indexed: 01/30/2023] Open
Abstract
Gangliosides are sialic-acid-containing glycosphingolipids expressed on all vertebrate cells. They are primarily positioned in the plasma membrane with the ceramide part anchored in the membrane and the glycan part exposed on the surface of the cell. These lipids have highly diverse structures, not the least with respect to their carbohydrate chains, with N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) being the two most common sialic-acid residues in mammalian cells. Generally, human healthy tissue is deficient in NeuGc, but this molecule is expressed in tumors and in human fetal tissues, and was hence classified as an onco-fetal antigen. Gangliosides perform important functions through carbohydrate-specific interactions with proteins, for example, as receptors in cell–cell recognition, which can be exploited by viruses and other pathogens, and also by regulating signaling proteins, such as the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), through lateral interaction in the membrane. Through both mechanisms, tumor-associated gangliosides may affect malignant progression, which makes them attractive targets for cancer immunotherapies. In this review, we describe how proteins recognize gangliosides, focusing on the molecular recognition of gangliosides associated with cancer immunotherapy, and discuss the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Ute Krengel
- Department of Chemistry, University of Oslo , Oslo , Norway
| | | |
Collapse
|