1
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
3
|
Giri-Rachman EA, Irasonia Tan M, Ramesh A, Fajar PA, Nurul Ilmi A, Retnoningrum DS, Hertadi R, Irawan A, Wojciechowska GEP, Yuan L. Development of Chimeric Hepatitis B (HBV) - Norovirus (NoV) P particle as candidate vaccine against Hepatitis B and norovirus infection. Vaccine X 2023; 14:100354. [PMID: 37519778 PMCID: PMC10372314 DOI: 10.1016/j.jvacx.2023.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Hepatitis B remains a global problem with no effective treatment. Here, a mucosal vaccine candidate was developed with HBsAg and HBcAg, to provide both prophylactic and therapeutic protection against hepatitis B. The antigens were presented using the P particle of human norovirus (HuNov). As a result, the chimeric HBV - HuNoV P particle can act as a dual vaccine for hepatitis B and HuNoV. Methods The vaccine candidate was expressed and purified from Escherichia coli BL21 (DE3) cells. HBV-HuNoV chimeric P particles were successfully expressed and isolated, with sizes of approximately 25.64 nm. Then, the HBV-HuNoV chimeric P particles were evaluated for safety and immunogenicity in mice and gnotobiotic (Gn) pigs. After three doses (5 µg/dose in mice and 200 µg/dose in Gn pigs) of intranasal immunization, humoral and cellular immune responses, as well as toxicity, were evaluated. Results The vaccine candidate induced strong HBV-HuNoV specific IFN-γ producing T-cell responses in the ileum, spleen, and blood of Gn pigs. Serum IgG and IgA antibodies against HBV-HuNoV chimeric P particles also increased significantly in Gn pigs. Increased HBsAg- and HuNoV-specific serum IgG responses were observed in mice and Gn pigs, although not statistically significant. The vaccine candidate did not show any toxicity in mice. Conclusions In summary, the chimeric HBV-HuNoV P particle vaccine given intranasally was safe and induced strong cellular and humoral immune responses in Gn pig. Modifications to the vaccine structure and dosage need to be evaluated in future studies to further enhance immunogenicity and induce more balanced humoral and cellular responses.
Collapse
Affiliation(s)
| | - Marselina Irasonia Tan
- School of Life Science and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Putri Ayu Fajar
- School of Life Science and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Annisa Nurul Ilmi
- School of Life Science and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | | | - Rukman Hertadi
- Faculty of Mathematics and Natural Science, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Apriliani Irawan
- School of Life Science and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Gladys Emmanuella Putri Wojciechowska
- School of Life Science and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
4
|
Chien ML, Yu CF, Huang CT. Extracellular Production of the Taiwan-Native Norovirus P Domain Overexpressed in Pichia pastoris. FERMENTATION-BASEL 2023; 9:498. [DOI: 10.3390/fermentation9060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Many efforts in norovirus vaccine development have focused on subunit or recombinant protein vaccines, such as subviral P particles formed by the protruding (P) domain of VP1. P particles are immunogenic and have a region with a human histo-blood group antigen binding site, an interaction critical for infecting the host. In the past, only intracellular NoV P proteins expressed in Escherichia coli and Pichia pastoris were reported, and the low yield and difficulty in purification limited their applications. In this study, the Taiwan-native NoV P domain was successfully expressed and secreted by P. pastoris. The secretion efficiency was greatly enhanced by integrating oligosaccharyl transferase (Ost1) into the α-factor signal peptide and coexpressing Hac1. The production of NoV P in fermentation cultures reached 345 mg/L, and the purity and recovery were 94.8% and 66.9%, respectively, after only ion-exchange chromatography. Transmission electron microscopy analysis showed that the small P particles were mostly ring-, square-, and triangle-shaped, with diameters of 10-15 nm. The biological activity of NoV P was confirmed by saliva-binding assay using human histo-blood group antigen. This study describes the secretion and characterization of the Taiwan-native norovirus P domain in P. pastoris. Particles formed from the P domain were similar in size, morphology, and binding ability to those expressed intracellularly. The strategy described in this study provides great potential in scale-up production and antiviral vaccine development.
Collapse
Affiliation(s)
- Man-Ling Chien
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Chun-Fu Yu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
5
|
Philip AA, Patton JT. Generation of Recombinant Rotaviruses Expressing Human Norovirus Capsid Proteins. J Virol 2022; 96:e0126222. [PMID: 36314817 PMCID: PMC9682992 DOI: 10.1128/jvi.01262-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rotavirus, a segmented double-stranded RNA virus of the Reoviridae family, is a primary cause of acute gastroenteritis in young children. In countries where rotavirus vaccines are widely used, norovirus (NoV) has emerged as the major cause of acute gastroenteritis. Towards the goal of creating a combined rotavirus-NoV vaccine, we explored the possibility of generating recombinant rotaviruses (rRVs) expressing all or portions of the NoV GII.4 VP1 capsid protein. This was accomplished by replacing the segment 7 NSP3 open reading frame with a cassette encoding, sequentially, NSP3, a 2A stop-restart translation element, and all or portions (P, P2) of NoV VP1. In addition to successfully recovering rRVs with modified SA11 segment 7 RNAs encoding NoV capsid proteins, analogous rRVs were recovered through modification of the segment 7 RNA of the RIX4414 vaccine strain. An immunoblot assay confirmed that rRVs expressed NoV capsid proteins as independent products. Moreover, VP1 expressed by rRVs underwent dimerization and was recognized by conformational-dependent anti-VP1 antibodies. Serially passaged rRVs that expressed the NoV P and P2 were genetically stable, retaining additional sequences of up to 1.1 kbp without change. However, serially passaged rRVs containing the longer 1.6-kb VP1 sequence were less stable and gave rise to virus populations with segment 7 RNAs lacking VP1 coding sequences. Together, these studies suggest that it may be possible to develop combined rotavirus-NoV vaccines using modified segment 7 RNA to express NoV P or P2. In contrast, development of potential rotavirus-NoV vaccines expressing NoV VP1 will need additional efforts to improve genetic stability. IMPORTANCE Rotavirus (RV) and norovirus (NoV) are the two most important causes of acute viral gastroenteritis (AGE) in infants and young children. While the incidence of RV AGE has been brought under control in many countries through the introduction of universal mass vaccination with live attenuated RV vaccines, similar highly effective NoV vaccines are not available. To pursue the development of a combined RV-NoV vaccine, we examined the potential of using RV as an expression vector of all or portions of the NoV capsid protein VP1. Our results showed that by replacing the NSP3 open reading frame in RV genome segment 7 RNA with a coding cassette for NSP3, a 2A stop-restart translation element, and VP1, recombinant RVs can be generated that express NoV capsid proteins. These findings raise the possibility of developing new generations of RV-based combination vaccines that provide protection against a second enteric pathogen, such as NoV.
Collapse
Affiliation(s)
- Asha A. Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Development and characterization of recombinant ASFV CD2v protein nanoparticle-induced monoclonal antibody. Int J Biol Macromol 2022; 209:533-541. [PMID: 35358580 DOI: 10.1016/j.ijbiomac.2022.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is becoming a serious threat to the swine industry worldwide. CD2v is a key pathogenic factor of ASFV and the protective antigen with low immunogenicity, whereas viral protein-based nanoparticles have advantages of precise assembly and high immunogenicity. In this study, the CD2v protein fused with Norovirus (NoV) P particle assembled into nanoparticle for improved immunogenicity. Then, CD2v protein nanoparticle and monomer CD2v protein were expressed in HEK293F cells. The former induced higher levels of antibodies, and thus highly potent monoclonal antibodies (mAbs) were generated and characterized. The highest antibody titration of mAb 10A3 reached 1:2048000, and mAb 2E9 had the highest inhibition percent of 84% when competed with ASFV positive serum. Meanwhile, all mAbs reacted specifically with the denatured CD2v protein, and the linear epitope with the location of amino acids 28th to 51st of CD2v extracellular domain sequence was identified. In summary, this study produced a highly immunogenic CD2v protein and generated high-titer mAbs, the precise location of linear epitope on the CD2v was further determined. These findings may provide a powerful help for etiology and serological detection of ASFV.
Collapse
|
7
|
Panasiuk M, Zimmer K, Czarnota A, Grzyb K, Narajczyk M, Peszyńska-Sularz G, Żołędowska S, Nidzworski D, Hovhannisyan L, Gromadzka B. Immunization with Leishmania tarentolae-derived norovirus virus-like particles elicits high humoral response and stimulates the production of neutralizing antibodies. Microb Cell Fact 2021; 20:186. [PMID: 34560881 PMCID: PMC8464126 DOI: 10.1186/s12934-021-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sabina Żołędowska
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Dawid Nidzworski
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland. .,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
8
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
9
|
Esposito S, Principi N. Norovirus Vaccine: Priorities for Future Research and Development. Front Immunol 2020; 11:1383. [PMID: 32733458 PMCID: PMC7358258 DOI: 10.3389/fimmu.2020.01383] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Soon after its identification, norovirus (NoV) has been indicated as one of the most common causes of outbreaks of acute gastroenteritis (AGE) and sporadic acute diarrhea episodes in subjects of any age. In 2016 the World Health Organization stated that the development of a NoV vaccine should be considered an absolute priority. Unfortunately, the development of an effective NoV vaccine has proven extremely difficult, and only in recent years, some preparations have been tested in humans in advanced clinical trials. In this paper, reasons that justify efforts to develop a NoV vaccine, difficulties encountered during NoV vaccine development, and NoV vaccine candidates will be discussed. In recent years, identification of some NoV antigens that alone or in combination with other viral antigens can induce a potentially protective immune response has led to the development of a large series of preparations that seem capable of coping with the problems related to NoV infection. Epidemiological and immunological studies have shown that multivalent vaccines, including both GI and GII NoV, are the only solution to induce sufficiently broad protection. However, even if the road to formulation of an effective and safe NoV vaccine seems to be definitively traced, many problems still need to be solved before the total burden of NoV infections can be adequately controlled. Whether currently available vaccines are able to protect against all the heterologous NoV strains and the variants of the most common serotypes that frequently emerge and cause outbreaks must be defined. Moreover, as performed clinical trials have mainly enrolled adults, it is mandatory to know whether vaccines are effective in all age groups, including younger children. Finally, we must know the immune response of immunocompromised patients and the duration of protection induced by NoV vaccines. Only when all these problems have been solved will it be possible to establish an effective immunization schedule against NoV infection and calculate whether systematic vaccination can be cost effective.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | | |
Collapse
|
10
|
Immunogenicity and protective potency of Norovirus GII.17 virus-like particle-based vaccine. Biotechnol Lett 2020; 42:1211-1218. [PMID: 32088791 PMCID: PMC7223773 DOI: 10.1007/s10529-020-02837-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Noroviruses (NoVs) are major cause of acute viral gastroenteritis in worldwide, and the lack of a cell culture system that must be considered the virus like particles (VLPs) are used as an effective vaccine development. MATERIALS AND METHODS In the present study, we investigated the expression of the major capsid protein (VP1) of the Genogroup II, genotype 17 (GII.17) NoV, using recombinant baculovirus system in insect cells, as well as a saliva binding blockade assay to detect their protective potency. RESULTS Our results showed that GII.17 VLPs could be successfully generated in sf9 insect cells, and electron microscopic revealed that GII.17 VLPs appeared as spherical particles with a - 35 nm diameter. Immunized mice with purified VLPs produced GII.17 specific sera and could efficiently block GII.17 VLPs binding to the saliva histo-blood group antigens (HBGAs). CONCLUSIONS Together, these results suggested that GII.17 VLPs represent a promising vaccine candidate against NoV GII.17 infection and strongly support further preclinical and clinical studies.
Collapse
|
11
|
Rotavirus VP6 Adjuvant Effect on Norovirus GII.4 Virus-Like Particle Uptake and Presentation by Bone Marrow-Derived Dendritic Cells In Vitro and In Vivo. J Immunol Res 2020; 2020:3194704. [PMID: 32411793 PMCID: PMC7204108 DOI: 10.1155/2020/3194704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells, which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.
Collapse
|
12
|
Amraouza Y, Ennaji MM, Hafid J. Reemerging Virus: Case of Norovirus. EMERGING AND REEMERGING VIRAL PATHOGENS 2020:277-285. [DOI: 10.1016/b978-0-12-814966-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Tan M, Jiang X. Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics 2019; 11:pharmaceutics11090472. [PMID: 31547456 PMCID: PMC6781506 DOI: 10.3390/pharmaceutics11090472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Major viral structural proteins interact homotypically and/or heterotypically, self-assembling into polyvalent viral capsids that usually elicit strong host immune responses. By taking advantage of such intrinsic features of norovirus capsids, two subviral nanoparticles, 60-valent S60 and 24-valent P24 nanoparticles, as well as various polymers, have been generated through bioengineering norovirus capsid shell (S) and protruding (P) domains, respectively. These nanoparticles and polymers are easily produced, highly stable, and extremely immunogenic, making them ideal vaccine candidates against noroviruses. In addition, they serve as multifunctional platforms to display foreign antigens, self-assembling into chimeric nanoparticles or polymers as vaccines against different pathogens and illnesses. Several chimeric S60 and P24 nanoparticles, as well as P domain-derived polymers, carrying different foreign antigens, have been created and demonstrated to be promising vaccine candidates against corresponding pathogens in preclinical animal studies, warranting their further development into useful vaccines.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
15
|
Yang P, Guo Y, Sun Y, Yu B, Zhang H, Wu J, Yu X, Wu H, Kong W. Active immunization with norovirus P particle-based amyloid-β chimeric protein vaccine induces high titers of anti-Aβ antibodies in mice. BMC Immunol 2019; 20:9. [PMID: 30755174 PMCID: PMC6373079 DOI: 10.1186/s12865-019-0289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Active immunotherapy targeting amyloid-β (Aβ) is a promising treatment for Alzheimer's disease (AD). Numerous preclinical studies and clinical trials demonstrated that a safe and effective AD vaccine should induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. RESULTS An untagged Aβ1-6 chimeric protein vaccine against AD based on norovirus (NoV) P particle was expressed in Escherichia coli and obtained by sequential chromatography. Analysis of protein characteristics showed that the untagged Aβ1-6 chimeric protein expressed in soluble form exhibited the highest particle homogeneity, with highest purity and minimal host cell protein (HCP) and residual DNA content. Importantly, the untagged Aβ1-6 chimeric soluble protein could induce the strongest Aβ-specific humoral immune responses without activation of harmful Aβ-specific T cells in mice. CONCLUSIONS The untagged Aβ1-6 chimeric protein vaccine is safe and highly immunogenic. Further research will determine the efficacy in cognitive improvement and disease progression delay.
Collapse
Affiliation(s)
- Ping Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yongqing Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yao Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Melhem NM, Abou Hassan FF, Ramadan M. The Current Status of Norovirus Vaccine Development. NOROVIRUS 2019:189-242. [DOI: 10.1007/978-3-030-27209-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Chen YL, Chang PJ, Huang CT. Small P particles formed by the Taiwan-native norovirus P domain overexpressed in Komagataella pastoris. Appl Microbiol Biotechnol 2018; 102:9707-9718. [PMID: 30187100 DOI: 10.1007/s00253-018-9331-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Abstract
The protrusion (P) domain of the major structural protein VP1 of norovirus (NoV) is critical for the host's immune response and receptor binding. Most heterologous P domains expressed in Escherichia coli or Komagataella pastoris (formally known as Pichia pastoris) form P particles consisting of 24 P monomers formed through intermolecular contact in the P regions and an end-linked cysteine tag. The small P particle is only found in P domains with terminal modifications. In this study, the NoV P domain of the most predominant NoV strain GII.4 isolated from Taiwan was expressed in K. pastoris. A high yield of NoV P was obtained using the high-cell density fermentation process in K. pastoris. A large amount of the small P particles and the trimer and dimer complexes formed by 12, 6, and 2 P monomers were observed in both the expression of the NoV P-His and P containing cysteine tag at the N-terminus. Dynamic light scattering and transmission electron microscopy analysis of the purified NoV P-His and P revealed that most of these small P particles are triangle-, square-, and ring-shaped with a diameter of 14-15 nm. The binding ability of purified NoV P-His and P to human histo-blood group antigen was confirmed by a saliva-binding assay. Without terminal modification, small P particles were formed in our study. The amino acid sequence analysis showed only four different amino acids (residue 84, 119, 136, and 313) between the P domain in this study and other investigated GII.4 strains suggesting that these amino acids might play an important role in the P particle formation. The small P particles formed by the Taiwan-native norovirus P domain overexpressed in K. pastoris may provide further information for morphogenesis studies and vaccine development.
Collapse
Affiliation(s)
- Yu-Ling Chen
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, No. 259,Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan. .,Department of Nephrology, Chang Gung Memorial Hospital, No. 6 West Sec., Chia-Pu Road, Puzi City, Chiayi, 61363, Taiwan.
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines (Basel) 2018; 6:vaccines6030037. [PMID: 30004398 PMCID: PMC6161069 DOI: 10.3390/vaccines6030037] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) derived from viral nucleocapsids are an important class of nanoparticles. The structure, uniformity, stability, and function of these VLPs have attracted scientists in utilizing them as a unique tool in various applications in biomedical fields. Their interaction with the innate immune system is of major importance for the adaptive immune response they induce. The innate immune cells and molecules recognize and interact with VLPs on the basis of two major characteristics: size and surface geometry. This review discusses the interaction of viral capsid-derived VLPs with the innate immune system.
Collapse
Affiliation(s)
- Mona O Mohsen
- Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
- Qatar Foundation, Doha, Qatar.
- Inselspital, Universitatsklinik RIA, Immunologie, 3010 Bern, Switzerland.
| | - Ariane C Gomes
- Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Monique Vogel
- Inselspital, Universitatsklinik RIA, Immunologie, 3010 Bern, Switzerland.
| | - Martin F Bachmann
- Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
- Inselspital, Universitatsklinik RIA, Immunologie, 3010 Bern, Switzerland.
| |
Collapse
|
19
|
Kocher JF, Debbink K, Lindesmith LC, Graham RL, Bogaerts H, Goodwin RR, Baric RS. Norovirus Vaccines. PLOTKIN'S VACCINES 2018:698-703.e4. [DOI: 10.1016/b978-0-323-35761-6.00041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Matsuzawa-Ishimoto Y, Shono Y, Gomez LE, Hubbard-Lucey VM, Cammer M, Neil J, Dewan MZ, Lieberman SR, Lazrak A, Marinis JM, Beal A, Harris PA, Bertin J, Liu C, Ding Y, van den Brink MRM, Cadwell K. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J Exp Med 2017; 214:3687-3705. [PMID: 29089374 PMCID: PMC5716041 DOI: 10.1084/jem.20170558] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Matsuzawa-Ishimoto et al. show that autophagy gene ATG16L1, which is associated with inflammatory diseases of the gastrointestinal tract, is essential for preventing necroptotic cell death and loss of Paneth cells in the intestinal epithelium. A variant of the autophagy gene ATG16L1 is associated with Crohn’s disease, an inflammatory bowel disease (IBD), and poor survival in allogeneic hematopoietic stem cell transplant recipients. We demonstrate that ATG16L1 in the intestinal epithelium is essential for preventing loss of Paneth cells and exaggerated cell death in animal models of virally triggered IBD and allogeneic hematopoietic stem cell transplantation. Intestinal organoids lacking ATG16L1 reproduced this loss in Paneth cells and displayed TNFα-mediated necroptosis, a form of programmed necrosis. This cytoprotective function of ATG16L1 was associated with the role of autophagy in promoting mitochondrial homeostasis. Finally, therapeutic blockade of necroptosis through TNFα or RIPK1 inhibition ameliorated disease in the virally triggered IBD model. These findings indicate that, in contrast to tumor cells in which autophagy promotes caspase-independent cell death, ATG16L1 maintains the intestinal barrier by inhibiting necroptosis in the epithelium.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis E Gomez
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Vanessa M Hubbard-Lucey
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Michael Cammer
- Microscopy Core, Office of Collaborative Science, New York University School of Medicine, New York, NY
| | - Jessica Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - M Zahidunnabi Dewan
- Histopathology Core, Office of Collaborative Science, New York University School of Medicine, New York, NY
| | - Sophia R Lieberman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jill M Marinis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Allison Beal
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Philip A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Chen Liu
- Departments of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University, Newark, NJ
| | - Yi Ding
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY .,Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Weil Medical College of Cornell University, New York, NY
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY .,Department of Microbiology, New York University School of Medicine, New York, NY
| |
Collapse
|
21
|
Expression and purification of norovirus virus like particles in Escherichia coli and their immunogenicity in mice. Mol Immunol 2017; 93:278-284. [PMID: 28802994 DOI: 10.1016/j.molimm.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
Norovirus (NoV) virus like particles (VLPs) produced in Spodoptera frugiperda (Sf9) cells have been tested in human volunteers as vaccine candidate and were shown to be protective against NoV induced acute gastroenteritis. In this study, prevailing Sydney-2012-like NoV major capsid protein gene with or without N-terminal deletions (N26 and N38, 26 and 38 amino acids deleted from N terminus,respectively) were sub-cloned into prokaryotic expression vector, pCold III and pCold IV. Soluble and insoluble proteins were detected for both vectors after induction and higher levels of protein expression were observed for constructs pCold III-N26 and pCold III-N38. Electron microscopy observation of unpurified and purified lysates indicated in vivo assembly of VLPs with two sizes in accordance with those observed in Sf9 cells. In vitro salivary HBGA-VLP binding assay demonstrated that VLPs assembled in Escherichia coli (E. coli) exhibited the same binding pattern as that of VLPs assembled in Sf9 cells. Immunization of mice with purified VLPs derived from pCold III-N38 demonstrated higher IgG antibody titers and blocking antibody titers when compared with full-length capsid protein assembled VLPs from recombinant baculovirus expression system. In conclusion, NoV VLPs produced in E. coli using pCold expression vector might be used for the development of NoV vaccine.
Collapse
|
22
|
Lucero Y, Vidal R, O'Ryan G M. Norovirus vaccines under development. Vaccine 2017; 36:5435-5441. [PMID: 28668568 DOI: 10.1016/j.vaccine.2017.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Abstract
Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis, including both outbreaks and endemic infections. The development of preventive strategies, including vaccines, for the most susceptible groups (children <5years of age, the elderly and individuals suffering crowding, such as military personnel and travelers) is desirable. However, NoV vaccine development has faced many difficulties, including genetic/antigenic diversity, limited knowledge on NoV immunology and viral cycle, lack of a permissive cell line for cultivation and lack of a widely available and successful animal model. Vaccine candidates rely on inoculation of virus-like particles (VLPs) formed by the main capsid protein VP1, subviral particles made from the protruding domain of VP1 (P-particles) or viral vectors with a NoV capsid gene insert produced by bioengineering technologies. Polivalent vaccines including multiple NoV genotypes and/or other viruses acquired by the enteric route have been developed. A VLP vaccine candidate has reached phase II clinical trials and several others are in pre-clinical stages of development. In this article we discuss the main challenges facing the development of a NoV vaccine and the current status of prevailing candidates.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pediatrics, Hospital Luis Calvo Mackenna, Faculty of Medicine, University of Chile, Santiago, Chile; Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan G
- Millennium Institute of Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile; Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
23
|
Abstract
Noroviruses are the leading cause of acute gastroenteritis around the world. An individual living in the United States is estimated to develop norovirus infection five times in his or her lifetime. Despite this, there is currently no antiviral or vaccine to combat the infection, in large part because of the historical lack of cell culture and small animal models. However, the last few years of norovirus research were marked by a number of ground-breaking advances that have overcome technical barriers and uncovered novel aspects of norovirus biology. Foremost among them was the development of two different
in vitro culture systems for human noroviruses. Underappreciated was the notion that noroviruses infect cells of the immune system as well as epithelial cells within the gastrointestinal tract and that human norovirus infection of enterocytes requires or is promoted by the presence of bile acids. Furthermore, two proteinaceous receptors are now recognized for murine norovirus, marking the first discovery of a functional receptor for any norovirus. Recent work further points to a role for certain bacteria, including those found in the gut microbiome, as potential modulators of norovirus infection in the host, emphasizing the importance of interactions with organisms from other kingdoms of life for viral pathogenesis. Lastly, we will highlight the adaptation of drop-based microfluidics to norovirus research, as this technology has the potential to reveal novel insights into virus evolution. This review aims to summarize these new findings while also including possible future directions.
Collapse
Affiliation(s)
- Eric Bartnicki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Juliana Bragazzi Cunha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer's disease. Sci Rep 2017; 7:41041. [PMID: 28106117 PMCID: PMC5247735 DOI: 10.1038/srep41041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
Disease-modifying immunotherapies focusing on reducing amyloid-beta (Aβ) deposition are the main treatment for Alzheimer’s disease (AD). However, none of the Aβ immunotherapies has produced clinically meaningful results to date. The main reason for this lack of efficacy is that the vaccine induces insufficiently high antibody titers, as it contains small B-cell epitope of Aβ to avoid Aβ42-specific T-cell activation. With the aim of generating a potent AD vaccine, we designed the protein PP-3copy-Aβ1-6-loop123, comprising three copies of Aβ1-6 inserted into three loops of a novel vaccine platform, the norovirus P particle, which could present Aβ at its surface and remarkably enhance the immunogenicity of the vaccine. We demonstrated that PP-3copy-Aβ1-6-loop123 was able to elicit high antibody titers against Aβ42, without causing T-cell activation, in AD mice regardless of their age. Importantly, PP-3copy-Aβ1-6-loop123 treatment successfully reduced amyloid deposition, rescued memory loss, and repaired hippocampus damage in AD mice. The Aβ antibodies induced by this active immunotherapy reacted with and disrupted aggregated Aβ, reducing its cellular toxicity. In addition, our results suggested PP-3copy-Aβ1-6-loop123 immunization could restore Aβ42 homeostasis in both the serum and brain. Thus, the P particle-based Aβ epitope vaccine is a sufficiently immunogenic and safe immunotherapeutic intervention for Alzheimer’s disease.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingnan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yayuan Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
25
|
|
26
|
No! When the immunologist becomes a virologist: Norovirus – an emerging infection in immune deficiency diseases. Curr Opin Allergy Clin Immunol 2016; 16:557-564. [PMID: 27755184 DOI: 10.1097/aci.0000000000000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Fu L, Jin H, Yu Y, Yu B, Zhang H, Wu J, Yin Y, Yu X, Wu H, Kong W. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems. Protein Expr Purif 2016; 130:28-34. [PMID: 27693623 DOI: 10.1016/j.pep.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
Abstract
The Norovirus (NoV) P domain, with three surface loops for foreign antigen insertion, has been demonstrated as an excellent platform for antigen presentation and novel vaccine development. The P domain alone can self-assemble into a P dimer, 12-mer small particle or 24-mer P particle, and vaccines based on those particles may elicit different levels of immunogenicity. Currently, P particles are generally produced in soluble expression systems in Escherichia coli, mainly in the 24-mer form. However, the low yield of the soluble protein has hindered further clinical applications of P particle-based protein vaccines. In this study, we inserted the Alzheimer's disease (AD) immunogen Aβ1-6 into the three loops of the P particle to generate an AD protein vaccine. To increase the yield of this chimeric protein, we tested the generation of proteins in a soluble expression system and an inclusion body expression system separately in E. coli. The result showed that the inclusion body expression system could greatly enhance the product yield of the chimeric protein compared with the soluble expression system. The refolded protein from the inclusion bodies was mainly in the 12-mer form, while the protein generated from the soluble supernatant was mainly in the 24-mer form. Moreover, the immunogenicity of soluble proteins was significantly stronger than that of the refolded proteins. Thus, comparisons between the two expression methods suggested that the soluble expression system generated chimeric P particles with better immunogenicity, while inclusion body expression system yielded more P particle proteins.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Jin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yongjiao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
28
|
Antiviral targets of human noroviruses. Curr Opin Virol 2016; 18:117-25. [PMID: 27318434 DOI: 10.1016/j.coviro.2016.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
Abstract
Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress.
Collapse
|
29
|
Verma V, Tan W, Puth S, Cho KO, Lee SE, Rhee JH. Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB. J Transl Med 2016; 14:135. [PMID: 27184355 PMCID: PMC4869196 DOI: 10.1186/s12967-016-0899-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
Background Noroviruses (NoVs) are a major cause of childhood gastroenteritis and foodborne diseases worldwide. Lack of appropriate animal models or cell-based culture systems makes the development and evaluation of NoV-specific vaccines a daunting task. VP1 is the major capsid protein of the NoVs that acts as a binding motif to human histo-blood group antigens (HBGAs) through its protruding 2 (P2) domain and can serve as a protective antigen candidate for vaccine development. Methods Recombinantly produced NoV specific P domain (Pd) vaccine was inoculated into groups of mice either alone or in conjugation with mucosal adjuvant FlaB, the flagellar protein from Vibrio vulnificus. Antigen specific humoral and cell mediated immune responses were assessed by enzyme linked immunosorbent assay (ELISA) or fluorescent activated cell sorting (FACS). A comparative analysis of various routes of vaccination viz. intranasal, sublingual and subcutaneous, was also done. Results In this study, we show that a recombinant Pd-vaccine administered through intranasal route induced a robust TH2-dependent humoral immune response and that the combination of vaccine with FlaB significantly enhanced the antibody response. Interestingly, FlaB induced a mixed TH1/TH2 type of immune response with a significant induction of IgG1 as well as IgG2a antibodies. FlaB also induced strong IgA responses in serum and feces. FlaB mediated antibody responses were toll like receptor 5 (TLR5) dependent, since the FlaB adjuvanticity was lost in TLR5−/− mice. Further, though the Pd-vaccine by itself failed to induce a cell mediated immune response, the Pd-FlaB combination stimulated a robust CD4+IFNγ+ and CD8+IFNγ+ T cell response in spleen and mesenteric lymph nodes. We also compared the adjuvant effects of FlaB with that of alum and complete Freund’s adjuvant (CFA). We found that subcutaneously inoculated FlaB induced more significant levels of IgG and IgA in both serum and feces compared to alum or CFA in respective samples. Conclusion We validate the use of TLR5 agonist as a strong mucosal adjuvant that would facilitate the development of NoV specific vaccines for humans and veterinary use. This study also highlights the importance of route of immunization in inducing the appropriate immune responses in mucosal compartments.
Collapse
Affiliation(s)
- Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.,Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, 30912, Georgia, USA
| | - Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea. .,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.
| |
Collapse
|
30
|
Vaccines against norovirus: state of the art trials in children and adults. Clin Microbiol Infect 2016; 22 Suppl 5:S136-S139. [PMID: 27130672 DOI: 10.1016/j.cmi.2015.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 01/24/2023]
Abstract
Noroviruses (NoVs), a group of nonenveloped, single-stranded RNA viruses belonging to the Caliciviridae family, are the leading cause worldwide of acute infectious gastroenteritis. Serious and eventual fatal outcomes may be observed in at-risk populations such as the very young or older adults, especially in those with underlying diseases. NoVs are highly infectious, with a low number of virus particles causing infection, and they are highly resistant to environmental conditions. NoVs have multiple routes of transmission including faecal-oral, aerosolized vomitus, person to person and via contaminated surfaces or food and water. NoVs can cause frequent and dramatic outbreaks where people congregate in close quarters such as hospitals, long-term care facilities, cruise liners and military barracks and ships. Of the seven NoV genogroups, human disease is most frequently caused by genogroups I and II, although genogroup IV has also been associated with illness. The absence of reliable, high-yield cell culture systems or animal models has steered the development of vaccines towards nonreplicating recombinant capsid proteins including viruslike particles and the sub-virus-sized P particles. Takeda Vaccines is developing a candidate NoV vaccine formulation based on adjuvanted viruslike particles from the GI.1 genotype and a consensus GII.4 sequence derived from three natural GII.4 variants. Early clinical trial results show good tolerability and robust immune responses to both components. This approach is designed to induce broad protective immune responses in adults and children.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW We highlight recent advances relevant to understanding norovirus infections in the tropics, both in populations living in developing settings and travelers to these regions. RECENT FINDINGS Because of the decrease in diarrheal disease associated with the global rollout of vaccines against rotavirus, norovirus is emerging as the predominant cause of diarrhea morbidity among children in the tropics, and evidence suggests that it contributes to adult disease in endemic populations and travelers. In addition to identifying potential target populations for preventive measures, we provide an update on norovirus vaccine development and concepts related to their implementation in low-income and middle-income countries. SUMMARY These current concepts related to norovirus-attributable disease burden, clinical significance, and economic impact can potentially be applied to tailoring efforts to prevent and mitigate the effects of this important enteropathogen.
Collapse
|
32
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine 2016; 34:905-913. [PMID: 26778421 PMCID: PMC4732564 DOI: 10.1016/j.vaccine.2015.12.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), norovirus (NoV), and astrovirus (AstV) are enterically-transmitted viral pathogens causing epidemic or endemic hepatitis (HEV) and gastroenteritis (NoV and AstV) respectively in humans, leading to significant morbidity and mortality worldwide. While a recombinant subunit vaccine against HEVs is available in China, there is no commercial vaccine or antiviral against NoV or AstV. We report here our development of a trivalent vaccine against the three viral pathogens through our new polymer vaccine technology. All HEV, NoV, and AstV are non-enveloped RNA viruses covered by a protein capsid, featuring surface protruding (P) proteins that are responsible for virus-host interaction. These dimeric P proteins elicit neutralizing antibody and are good targets for subunit vaccine development. The trivalent subunit vaccine was developed by fusion of the dimeric P domains of the three viruses together that formed tetramers. This trivalent vaccine elicited significantly higher antibody responses in mice against all three P domains than those induced by a mixture of the three free P domains (mixed vaccine). Furthermore, the post-immune antisera of the trivalent vaccine showed significantly higher neutralizing titers against HEV infection in cell culture and higher blocking activity against NoV binding to HBGA ligands than those of the post-immune sera of the mixed vaccine. Thus, the trivalent vaccine is a promising vaccine candidate against HEV, NoV, and AstV.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
33
|
Melhem NM. Norovirus vaccines: Correlates of protection, challenges and limitations. Hum Vaccin Immunother 2016; 12:1653-69. [PMID: 26836766 DOI: 10.1080/21645515.2015.1125054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Norovirus (NoV) is responsible for at least 50% of all gastroenteritis outbreaks worldwide. NoVs are classified into 6 different genogroups (GGI- GGVI) based on the viral capsid protein with NoV genogroup II genotype 4 (GII.4) being the predominant strain causing human diseases. Supportive therapy involving reversal of dehydration and electrolyte deficiency is the main treatment of NoV gastroenteritis. However, the worldwide increased recognition of NoV as an important agent of diarrheal gastroenteritis prompted researchers to focus on establishing preventive strategies conferring long-lasting immunity. This review describes the current status of animal and human vaccine models/studies targeting NoV and addresses the factors hampering the development of a broadly effective vaccine.
Collapse
Affiliation(s)
- Nada M Melhem
- a Medical Laboratory Sciences Program, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
34
|
Li Y, Fu L, Hu Y, Jin H, Zheng Y, Yin Y, Wu H, Yu X, Kong W. Establishment of a novel method without sequence modification for developing NoV P particle-based chimeric vaccines. Protein Expr Purif 2016; 121:73-80. [PMID: 26773744 DOI: 10.1016/j.pep.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022]
Abstract
The Norovirus (NoV) P particle (PP) is a subviral particle formed by 24 copies of the protruding (P) domain of the capsid protein. Each P domain has three surface loops that can be used for foreign antigen presentation. Hence, PPs have been demonstrated to be an excellent platform for vaccine development against many pathogens. However, current processes for preparing those chimeric PP vaccines vary and would change the original sequence of the PP. A detailed strategy also has not been reported for inserting a foreign antigen into all three loops. In order to develop a novel method for preparing distinct types of PP-based protein vaccines, we created two restriction enzyme sites (EagI and KpnI) in the P domain by site-directed mutagenesis without changing its original sequence. A synthesized gene with three copies of the Alzheimer's disease (AD) immunogen Aβ1-6 was then incorporated in loop2 of the P domain. Additionally, a synthesized gene with one copy of Aβ1-6 was inserted into each loop of the P domain. Furthermore, two recombinant proteins PP-3 copy-Aβ1-6-loop2 and PP-1 copy-Aβ1-6-loop123 were successfully purified without affecting PP formation. Particle size analysis and TEM observations demonstrated that the two chimeric P particles were still able to form 24-mer nanoparticles. Moreover, the two chimeric PP-based AD vaccines could both efficiently elicit strong immune responses in the mouse model. In conclusion, we have successfully established a novel method for preparing vaccines based on the NoV PP which would not affect PP sequence and function.
Collapse
Affiliation(s)
- Yingnan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Jin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yayuan Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
35
|
|
36
|
O'Ryan M, Vidal R, del Canto F, Salazar JC, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae. Hum Vaccin Immunother 2015; 11:584-600. [PMID: 25715048 DOI: 10.1080/21645515.2015.1011019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.
Collapse
Key Words
- ALA, aminolevulenic acid
- ASC, antibody secreting cell
- Ace, accessory cholera enterotoxin
- CT, cholera toxin
- CT-A cholera toxin A subunit
- CT-B cholera toxin B subunit
- Cep, core encoded pilus
- E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, global enteric multi-center study
- HA/P, hemaglutinin protease
- HBGA, histo-blood group antibodies
- IS, intussusception
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LB, lower boundary
- LLR, Lanzhou Lamb Rotavirus vaccine
- LPS, lipopolysaccharide
- MPL, monophosphoril lipid A
- MSH, mannose-sensitive hemaglutinin pilus
- REST, rotavirus efficacy and safety trial
- RITARD
- RR, relative risk, CI, confidence interval
- RecA, recombinase A
- SAES, serious adverse events
- SRSV, small round virus, ORF, open reading frame
- STEC
- STEC, shigatoxin producing E. coli
- TCP, toxin co-regulated pilus
- V. cholerae
- VA1.3, vaccine attempt 1.3
- VLP, virus like particle
- VLPs, virus like particles, VRPs, virus replicon particles
- VP, viral proteins
- WHO, World Health Organization
- Zot, zonula occludens toxin
- acute diarrhea
- campylobacter
- enteric pathogens
- gastroenteritis
- norovirus
- removable intestinal tie-adult rabbit diarrhea
- rotavirus
- salmonella
- shigella
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Universidad de Chile ; Santiago , Chile
| | | | | | | | | |
Collapse
|
37
|
Lamounier TADC, de Oliveira LM, de Camargo BR, Rodrigues KB, Noronha EF, Ribeiro BM, Nagata T. Production of Brazilian human norovirus VLPs and comparison of purification methods. Braz J Microbiol 2015; 46:1265-8. [PMID: 26691489 PMCID: PMC4704647 DOI: 10.1590/s1517-838246420140925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/12/2015] [Indexed: 11/22/2022] Open
Abstract
Noroviruses (NVs) are responsible for most cases of human nonbacterial
gastroenteritis worldwide. Some parameters for the purification of NV virus-like
particles (VLPs) such as ease of production and yield were studied for future
development of vaccines and diagnostic tools. In this study, VLPs were produced by
the expression of the VP1 and VP2 gene cassette of the Brazilian NV isolate, and two
purification methods were compared: cesium chloride (CsCl) gradient centrifugation
and ion-exchange chromatography (IEC). IEC produced more and purer VLPs of NV
compared to CsCl gradient centrifugation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tatsuya Nagata
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
38
|
Wang X, Ku Z, Dai W, Chen T, Ye X, Zhang C, Zhang Y, Liu Q, Jin X, Huang Z. A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine 2015; 33:5779-5785. [PMID: 26424606 DOI: 10.1016/j.vaccine.2015.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
|
39
|
Huo Y, Wan X, Ling T, Wu J, Wang Z, Meng S, Shen S. Prevailing Sydney like Norovirus GII.4 VLPs induce systemic and mucosal immune responses in mice. Mol Immunol 2015; 68:367-72. [PMID: 26375574 DOI: 10.1016/j.molimm.2015.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/29/2015] [Accepted: 09/05/2015] [Indexed: 02/08/2023]
Abstract
The newly emerged Norovirus (NoV) Sydney 2012 strain has been sweeping all over the world, causing acute non-bacterial gastroenteritis in adults and children. Due to a lack of cell culture system, virus like particles (VLPs) has been assembled and used as vaccine candidates in preclinical and clinical studies. Expression of the major capsid protein of NoVs using recombinant baculovirus expression system in Sf9 cells leads to formation of VLPs that are morphologically and antigenically similar to true virions. In this study, VLPs were successfully produced using the VP1 of Sydney-2012-like strain and its immunogenicity was evaluated by different routes and its capability in inducing mucosal immune responses in the presence and absence of adjuvants in BALB/c mice. Administration of NoV VLPs in the presence of Al(OH)3 or monophosphoryl lipid A (MPL-A) led to high titers of VLP-specific IgG antibodies. Administration of VLPs orally in the presence of cholera toxin subunit B (CTB) didn't enhance mucosal immune response as less fecal IgA positive mice were observed when compared with those given VLPs only. Our study represents the first immunogenicity study of VLPs derived from current pandemic Sydney 2012 strain and which might have implications in the development of NoVs vaccine in china.
Collapse
Affiliation(s)
- Yuqi Huo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China.
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Tong Ling
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China.
| |
Collapse
|
40
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
41
|
Kim SH, Chen S, Jiang X, Green KY, Samal SK. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein. Virology 2015; 484:163-169. [PMID: 26099695 DOI: 10.1016/j.virol.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shun Chen
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xi Jiang
- Division of Infectious Disease, Cincinnati Children׳s Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
42
|
Ayukekbong JA, Mesumbe HN, Oyero OG, Lindh M, Bergström T. Role of noroviruses as aetiological agents of diarrhoea in developing countries. J Gen Virol 2015; 96:1983-1999. [PMID: 26002299 DOI: 10.1099/vir.0.000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diarrhoea is considered to be the second leading cause of death due to infections among children < 5 years of age worldwide that may be caused by bacteria, parasites, viruses and non-infectious agents. The major causative agents of diarrhoea in developing countries may vary from those in developed countries. Noroviruses are considered to be the most common cause of acute diarrhoea in both children and adults in industrialized countries. On the other hand, there is a lack of comprehensive epidemiological evidence from developing countries that norovirus is a major cause of diarrhoea. In these regions, asymptomatic norovirus infections are very common, and similar detection rates have been observed in patients with diarrhoea and asymptomatic persons. This review summarizes the current knowledge of norovirus infection in developing countries and seeks to position infections with noroviruses among those of other enteropathogens in terms of disease burden in these regions.
Collapse
Affiliation(s)
- James Ayukepi Ayukekbong
- Section for Clinical Research, Redeem Biomedical System, Buea, Cameroon
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Olufunmilayo G Oyero
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Nigeria
| | - Magnus Lindh
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Dai YC, Zhang XF, Xia M, Tan M, Quigley C, Lei W, Fang H, Zhong W, Lee B, Pang X, Nie J, Jiang X. Antigenic Relatedness of Norovirus GII.4 Variants Determined by Human Challenge Sera. PLoS One 2015; 10:e0124945. [PMID: 25915764 PMCID: PMC4411064 DOI: 10.1371/journal.pone.0124945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
The GII.4 noroviruses (NoVs) are a single genotype that is responsible for over 50% of NoV gastroenteritis epidemics worldwide. However, GII.4 NoVs have been found to undergo antigenic drifts, likely selected by host herd immunity, which raises an issue for vaccine strategies against NoVs. We previously characterized GII.4 NoV antigenic variations and found significant levels of antigenic relatedness among different GII.4 variants. Further characterization of the genetic and antigenic relatedness of recent GII.4 variants (2008b and 2010 cluster) was performed in this study. The amino acid sequences of the receptor binding interfaces were highly conserved among all GII.4 variants from the past two decades. Using serum samples from patients enrolled in a GII.4 virus challenge study, significant cross-reactivity between major GII.4 variants from 1998 to 2012 was observed using enzyme-linked immunosorbent assays and HBGA receptor blocking assays. The overall abilities of GII.4 NoVs to bind to the A/B/H HBGAs were maintained while their binding affinities to individual ABH antigens varied. These results highlight the importance of human HBGAs in NoV evolution and how conserved antigenic types impact vaccine development against GII.4 variants.
Collapse
Affiliation(s)
- Ying-Chun Dai
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming Xia
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming Tan
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Christina Quigley
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Wen Lei
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hao Fang
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Weiming Zhong
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bonita Lee
- Provincial Laboratory for Public Health (ProvLab), Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton,Alberta, Canada
| | - Xiaoli Pang
- Provincial Laboratory for Public Health (ProvLab), Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton,Alberta, Canada
| | - Jun Nie
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (XJ); (JN)
| | - Xi Jiang
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (XJ); (JN)
| |
Collapse
|
44
|
Kambhampati A, Koopmans M, Lopman BA. Burden of norovirus in healthcare facilities and strategies for outbreak control. J Hosp Infect 2015; 89:296-301. [PMID: 25726433 PMCID: PMC4668703 DOI: 10.1016/j.jhin.2015.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/06/2015] [Indexed: 12/23/2022]
Abstract
Norovirus is the most frequently occurring cause of community-acquired acute gastroenteritis in people of all ages. It is also one of the most frequent causes of outbreaks in healthcare settings, affecting both long-term care facilities and acute care hospitals. Whereas norovirus gastroenteritis is typically mild and resolves without medical attention, healthcare-associated infections often affect vulnerable populations, resulting in severe infections and disruption of healthcare services. Globally, most norovirus outbreaks in hospitals and residential care institutions are associated with genogroup II type 4 (GII.4) strains. Recent data demonstrate that excess mortality occurs during outbreak periods in healthcare facilities. Nosocomial outbreaks can result in large economic and societal costs. Current control measures for norovirus are largely based on general infection control principles, and treatment is mainly supportive and non-specific. While neither vaccines nor antiviral agents are currently available, both are being developed with encouraging results.
Collapse
Affiliation(s)
- A Kambhampati
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Koopmans
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B A Lopman
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
45
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
46
|
Tomé-Amat J, Fleischer L, Parker SA, Bardliving CL, Batt CA. Secreted production of assembled Norovirus virus-like particles from Pichia pastoris. Microb Cell Fact 2014; 13:134. [PMID: 25201129 PMCID: PMC4174286 DOI: 10.1186/s12934-014-0134-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Norovirus virus-like particles (NoV VLPs) have recently been explored as potential vaccine platforms due to their ability to produce an effective immune response. Expression of the main structural protein, VP1, leads to formation of self-assembled particles with similar characteristics to the original virus. These NoV VLPs have been expressed in Escherichia coli, yeast and insect cells. Expression in E. coli and insect cells share downstream processing issues due to the presence of inclusion bodies or the need for numerous purification steps. NoV VLPs have also been produced in the yeast P. pastoris; however the protein was only expressed intracellularly. RESULTS We have successfully expressed and secreted the VP1 protein in the novel P. pastoris strain, Bg11, using the methanol inducible pJ912 expression vector, containing the cDNA of NoV VP1. Expression of the VP1 protein in Bg11 was carried out in a 1.5 L bioreactor resulting in a total yield of NoV VLPs greater than 0.6 g/L. NoV VLPs obtained from the culture supernatant were purified via ion-exchange chromatography, resulting in particles with a purity over 90%. The average size of the particles after purification was 40 nm. Transmission electron microscopy was used to visualize the morphology of the particles and saliva-binding assay confirmed that the NoV VLPs bind to Histo-Blood Group Antigens (HBGA). CONCLUSIONS In this study we describe the expression and characterization of fully assembled Norovirus virus-like particles obtained from P. pastoris. The particles are similar in size, morphology and binding capacity, as previously described, for the original NoV. Our results detail the successful expression and secretion of VLPs in P. pastoris, improving their candidacy as a vaccine platform.
Collapse
|
47
|
Affiliation(s)
- Timo Vesikari
- Vaccine Research Center, University of Tampere, Finland
| | | |
Collapse
|
48
|
Abstract
Acute gastroenteritis caused by noroviruses often has a duration of 2-3 days and is characteristically self-limiting. In contrast, chronic infection caused by noroviruses in immunocompromised individuals can last from weeks to years, making clinical management difficult. The mechanisms by which noroviruses establish persistent infection, and the role of immunocompromised hosts as a reservoir for noroviruses in the general human population, are not known. However, study of this patient cohort may lead to new insights into norovirus biology and approaches to treatment.
Collapse
Affiliation(s)
- K Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Intranasal P particle vaccine provided partial cross-variant protection against human GII.4 norovirus diarrhea in gnotobiotic pigs. J Virol 2014; 88:9728-43. [PMID: 24920797 DOI: 10.1128/jvi.01249-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Noroviruses (NoVs) are the leading cause of nonbacterial acute gastroenteritis worldwide in people of all ages. The P particle is a novel vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. This study utilized the neonatal gnotobiotic pig model to evaluate the protective efficacies of primary infection, P particles, and virus-like particles (VLPs) against NoV infection and disease and the T cell responses to these treatments. Pigs either were vaccinated intranasally with GII.4/1997 NoV (VA387)-derived P particles or VLPs or were inoculated orally with a GII.4/2006b NoV variant. At postinoculation day (PID) 28, pigs either were euthanized or were challenged with the GII.4/2006b variant and monitored for diarrhea and virus shedding for 7 days. The T cell responses in intestinal and systemic lymphoid tissues were examined. Primary NoV infection provided 83% homologous protection against diarrhea and 49% homologous protection against virus shedding, while the P particle and VLP vaccines provided cross-variant protection (47% and 60%, respectively) against diarrhea. The protection rates against diarrhea are significantly inversely correlated with T cell expansion in the duodenum and are positively correlated with T cell expansion in the ileum and spleen. The P particle vaccine primed for stronger immune responses than VLPs, including significantly higher numbers of activated CD4+ T cells in all tissues, gamma interferon-producing (IFN-γ+) CD8+ T cells in the duodenum, regulatory T cells (Tregs) in the blood, and transforming growth factor β (TGF-β)-producing CD4+ CD25- FoxP3+ Tregs in the spleen postchallenge, indicating that P particles are more immunogenic than VLPs at the same dose. In conclusion, the P particle vaccine is a promising vaccine candidate worthy of further development. IMPORTANCE The norovirus (NoV) P particle is a vaccine candidate derived from the protruding (P) domain of the NoV VP1 capsid protein. P particles can be easily produced in Escherichia coli at high yields and thus may be more economically viable than the virus-like particle (VLP) vaccine. This study demonstrated, for the first time, the cross-variant protection (46.7%) of the intranasal P particle vaccine against human NoV diarrhea and revealed in detail the intestinal and systemic T cell responses by using the gnotobiotic pig model. The cross-variant protective efficacy of the P particle vaccine was comparable to that of the VLP vaccine in pigs (60%) and to the homologous protective efficacy of the VLP vaccine in humans (47%). NoV is now the leading cause of pediatric dehydrating diarrhea, responsible for approximately 1 million hospital visits for U.S. children and 218,000 deaths in developing countries. The P particle vaccine holds promise for reducing the disease burden and mortality.
Collapse
|
50
|
Newcastle disease virus vector producing human norovirus-like particles induces serum, cellular, and mucosal immune responses in mice. J Virol 2014; 88:9718-27. [PMID: 24920815 DOI: 10.1128/jvi.01570-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human norovirus infection is the most common cause of viral gastroenteritis worldwide. Development of an effective vaccine is required for reducing norovirus outbreaks. The inability to grow human norovirus in cell culture has hindered the development of live-attenuated vaccines. To overcome this obstacle, we generated a recombinant Newcastle disease virus (rNDV)-vectored experimental norovirus vaccine by expressing the capsid protein (VP1) of norovirus strain VA387. We compared two different NDV vectors, a conventional rNDV vector and a modified rNDV vector, for their efficiencies in expressing VP1 protein. Our results showed that the modified vector replicated to higher titers and expressed higher levels of VP1 protein in DF1 cells and in allantoic fluid of embryonated chicken eggs than did the conventional vector. We further demonstrated that the VP1 protein produced by rNDVs was able to self-assemble into virus-like particles (VLPs) that are morphologically similar to baculovirus-expressed VLPs. Evaluation of their immunogenicity in mice showed that the modified rNDV vector induced a higher level of IgG response than those induced by the conventional vector and by the baculovirus-expressed VLPs. The rNDV vectors predominantly induced IgG2a subclass antibody for the Th1 response, and specifically, high levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) were detected in splenocytes. In addition, the modified rNDV vector induced a higher level of fecal IgA response in mice than did baculovirus-expressed VLPs. Our findings suggest that the rNDV vector is an efficient system to produce cost-effective VLPs in embryonated chicken eggs and has the potential to be used as a live-attenuated vaccine in humans. IMPORTANCE Noroviruses are the major cause of viral gastroenteritis worldwide. Currently, effective vaccines against norovirus infection are not available. In this study, we have evaluated Newcastle disease virus (NDV) as a vaccine vector for norovirus. Our results suggest that NDV can be used not only as a cost-effective method for large-scale production of norovirus-like particle vaccines but also as a live-attenuated vectored vaccine.
Collapse
|