1
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
2
|
Sahraoui PF, Vadas O, Kalia YN. Non-Invasive Delivery of Negatively Charged Nanobodies by Anodal Iontophoresis: When Electroosmosis Dominates Electromigration. Pharmaceutics 2024; 16:539. [PMID: 38675200 PMCID: PMC11055110 DOI: 10.3390/pharmaceutics16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged M7D12H nanobody and a series of negatively charged variants with single amino acid substitutions. Surprisingly, M7D12H and its variants were only delivered transdermally by anodal iontophoresis. In contrast, transdermal permeation after cathodal iontophoresis and passive diffusion was
Collapse
Affiliation(s)
- Phedra Firdaws Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Maurizio I, Tosoni B, Gallina I, Ruggiero E, Zanin I, Richter SN. Production of the anti-G-quadruplex antibody BG4 for efficient genome-wide analyses: From plasmid quality control to antibody validation. Methods Enzymol 2024; 695:193-219. [PMID: 38521585 DOI: 10.1016/bs.mie.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that can form at guanine-rich sequences of DNA and RNA in every kingdom of life. At the DNA level, G4s can form throughout genomes but they are prevalently found in promoter regions and at telomeres, and they have been attributed functions spanning from transcriptional regulation, to control of DNA replication, to maintenance of chromosome ends. Our understanding of the functions of G4s in cells has greatly improved with the development of specific anti-G4 antibodies, which allow the visualization of G4s by immunofluorescence but also the mapping of these secondary DNA structures genome wide. Whole genome identification of the location and abundance of G4s with techniques such as Chromatin Immunoprecipitation coupled with sequencing (ChIP-Seq) and Cleavage Under Target and Tagmentation (CUT&Tag) has allowed the profiling of G4 distribution across distinct cell types and deepen the understanding of G4 functions, particularly in the regulation of transcription. Crucial for these types of genome-wide studies is the availability of an anti-G4 antibody preparation with high affinity and specificity. Here, we describe a protocol for the expression and purification of the anti-DNA G4 structure antibody (BG4) first developed by the Balasubramanian group, which has been proven to selectively recognize G4 structures both in vitro and within cells, and which has great applicability in high-throughput techniques. We provide a detailed, step-by-step protocol to obtain active BG4 starting from a commercially available expression plasmid. We also describe three different approaches to validate the activity of the BG4 preparation.
Collapse
Affiliation(s)
- Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Beatrice Tosoni
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Irene Zanin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
4
|
De Marchis F, Vanzolini T, Maricchiolo E, Bellucci M, Menotta M, Di Mambro T, Aluigi A, Zattoni A, Roda B, Marassi V, Crinelli R, Pompa A. A biotechnological approach for the production of new protein bioplastics. Biotechnol J 2024; 19:e2300363. [PMID: 37801630 DOI: 10.1002/biot.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
The future of biomaterial production will leverage biotechnology based on the domestication of cells as biological factories. Plants, algae, and bacteria can produce low-environmental impact biopolymers. Here, two strategies were developed to produce a biopolymer derived from a bioengineered vacuolar storage protein of the common bean (phaseolin; PHSL). The cys-added PHSL* forms linear-structured biopolymers when expressed in the thylakoids of transplastomic tobacco leaves by exploiting the formation of inter-chain disulfide bridges. The same protein without signal peptide (ΔPHSL*) accumulates in Escherichia coli inclusion bodies as high-molar-mass species polymers that can subsequently be oxidized to form disulfide crosslinking bridges in order to increase the stiffness of the biomaterial, a valid alternative to the use of chemical crosslinkers. The E. coli cells produced 300 times more engineered PHSL, measured as percentage of total soluble proteins, than transplastomic tobacco plants. Moreover, the thiol groups of cysteine allow the site-specific PEGylation of ΔPHSL*, which is a desirable functionality in the design of a protein-based drug carrier. In conclusion, ΔPHSL* expressed in E. coli has the potential to become an innovative biopolymer.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Biosciences and Bioresources, Division of Perugia, National Research Council, Perugia, Italy
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Andrea Pompa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
5
|
Bhardwaj T, Giri R. Potential of ADAM 17 Signal Peptide To Form Amyloid Aggregates in Vitro. ACS Chem Neurosci 2023; 14:3818-3825. [PMID: 37802503 DOI: 10.1021/acschemneuro.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
ADAM 17, a disintegrin and metalloproteinase 17 belonging to the adamalysin protein family, is a Zn2+-dependent type-I transmembrane α-secretase protein. As a major sheddase, ADAM 17 acts as an indispensable regulator of chief cellular events and controls diverse cytokines, adhesion molecules, and growth factors. The signal peptide (residues 1-17) of ADAM 17 targets the protein to the secretory pathway and gets cleaved off afterward. No other function is documented for the ADAM 17 signal peptide (ADAM 17-SP) inside the cells. Here, we have taken a reductionist approach to understand the biophysical properties of ADAM 17-SP. Aiming to understand the possibility of aggregation, we found several aggregation-prone segments in the signal peptide. We performed in vitro experiments to show that the signal peptide forms amyloid-like aggregates in buffered conditions. We also studied its aggregation in the presence of sodium tripolyphosphate and heparin to correlate with the cellular conditions, as these biomolecules are naturally present inside cells. Further, we performed seeding experiments to observe the possibility of ADAM 17-SP aggregate interaction with the Aβ42 peptide. The results suggest that its seeds escalate the aggregation kinetics of the Aβ42 peptide and form heteromeric aggregates with it. We believe this finding could further intensify the aggregation studies on other signal peptides and shed light on the potential role of these segments other than signaling.
Collapse
Affiliation(s)
- Taniya Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh 175075, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
Liu C, Yan Q, Yi K, Hu T, Wang J, Zhang Z, Li H, Luo Y, Zhang D, Meng E. A secretory system for extracellular production of spider neurotoxin huwentoxin-I in Escherichia coli. Prep Biochem Biotechnol 2022; 53:914-922. [PMID: 36573266 DOI: 10.1080/10826068.2022.2158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.
Collapse
Affiliation(s)
- Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Qing Yan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Ke Yi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Tianhao Hu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Jianjie Wang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Huimin Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Yutao Luo
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Dongyi Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| |
Collapse
|
7
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
8
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Hashemzaei M, Nezafat N, Ghoshoon MB, Negahdaripour M. In-silico selection of appropriate signal peptides for romiplostim secretory production in Escherichia coli. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Signal sequence contributes to the immunogenicity of Pasteurella multocida lipoprotein E. Poult Sci 2022; 102:102200. [PMID: 36423524 PMCID: PMC9681653 DOI: 10.1016/j.psj.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Recombinant Pasterurella multocida lipoprotein E (PlpE) has been shown to protect against fowl cholera. This study aimed to determine if the signal sequence may contribute to the antigenicity and protective efficacy of recombinant PlpE. A small antigenic domain of PlpE (termed truncated PlpE, tPlpE) was constructed with (SP-tPlpE) or without (tPlpE) the signal sequence and evaluated in vitro and in vivo. In vitro, the HEK-Bule hTLR2 Cells were used to evaluate the activation of NF-kB in the test associated with the stimulation of the SP-tPlpE and tPlpE proteins. When chickens were immunized, compared to the tPlpE vaccine group, the SP-tPlpE group showed higher antibody levels and enhanced CD4+ T cell response. In a challenge test, the SP-tPlpE group showed a survival rate of 87.5% (n = 8), compared to 25% for the tPlpE group. It is confirmed that the inclusion of the native signal sequence enhanced protective efficacy against fowl cholera and may act as a vaccine adjuvant. The short SP-tPlpE construct is amenable to further vaccine engineering and has potential to be developed as a fowl cholera vaccine.
Collapse
|
11
|
Comparative Analysis of NanoLuc Luciferase and Alkaline Phosphatase Luminescence Reporter Systems for Phage-Based Detection of Bacteria. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090479. [PMID: 36135024 PMCID: PMC9495952 DOI: 10.3390/bioengineering9090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
Reporter phage assays are a promising alternative to culture-based assays for rapidly detecting viable bacteria. The reporter systems used in phage-based detection are typically enzymes and their corresponding substrates that provide a signal following infection and expression. While several reporter systems have been developed, comparing reporter systems based on reported bacteria detection limits from literature can be challenging due to factors other than the reporter system that influence detection capabilities. To advance the development of phage-based assays, a systematic comparison and understanding of the components are necessary. The objective of this study was to directly compare two common enzyme-mediated luminescence reporter systems, NanoLuc/Nano-Glo and alkaline phosphatase (ALP*)/DynaLight, for phage-based detection of bacteria. The detection limits of the purified enzymes were determined, as well as the expression levels and bacteria detection capabilities following engineering of the coding genes into T7 phage and infection of E. coli BL21. When comparing the sensitivity of the purified enzymes, NLuc/Nano-Glo enzyme/substrate system demonstrated a lower detection limit than ALP*/DynaLight. In addition, the expression of the NLuc reporter following phage infection of E. coli was greater than ALP*. The lower detection limit combined with the higher expression resulted in a greater than 100-fold increase in sensitivity for the NLuc/Nano-Glo® reporter system compared to ALP*/DynaLight when used for the detection of E. coli in a model system. These findings provide a comparative analysis of two common reporter systems used for phage-based detection of bacteria and a foundational understanding of these systems for engineering future reporter phage assays.
Collapse
|
12
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Gao J, Ouyang C, Zhao J, Han Y, Guo Q, Liu X, Zhang T, Duan M, Wang X, Xu C. Coexpressing the Signal Peptide of Vip3A and the Trigger Factor of Bacillus thuringiensis Enhances the Production Yield and Solubility of eGFP in Escherichia coli. Front Microbiol 2022; 13:892428. [PMID: 35923407 PMCID: PMC9342664 DOI: 10.3389/fmicb.2022.892428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many fusion tags have been developed to improve the expression of recombinant proteins. Besides the translocation of cargo proteins, the signal peptides (SPs) of some secretory proteins, such as the ssTorA and Iasp, have been used as an inclusion body tag (IB-tag) or the recombinant expression enhancer in the cytosol of E. coli. In this study, the approach to utilize the SP of Vip3A (Vasp) from Bacillus thuringiensis (Bt) as a fusion tag was investigated. The results showed that either the Vasp or its predicted N- (VN), H- (VH), and C-regions (VC), as well as their combinations (VNH, VNC, and VHC), were able to significantly enhance the production yield of eGFP. However, the hydrophobic region of the Vasp (VH and/or VC) made more than half of the eGFP molecules aggregated (VeGFP, VHeGFP, VCeGFP, VNHeGFP, VNCeGFP, and VHCeGFP). Interestingly, the addition of the Bt trigger factor (BtTF) led to the neutralization of the negative impact and solubilization of the fusion proteins. Therefore, the coexpression of Vasp or its derivates with the chaperone BtTF could be a novel dual-enhancement system for the production yield and solubility of recombinant proteins. Notably, EcTF was unable to impact the solubility of Vasp or its derivates guided proteins, suggesting its different specificities on the recognition or interaction. Additionally, this study also suggested that the translocation of Vip3 in the host cell would be regulated by the BtTF-involved model.
Collapse
Affiliation(s)
- Jianhua Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Chunping Ouyang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Juanli Zhao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Yan Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Qinghua Guo
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Xuan Liu
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Tianjiao Zhang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Ming Duan
- Experimental Teaching Center, Shanxi Agricultural University, Jinzhong, China
| | - Xingchun Wang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
- Xingchun Wang
| | - Chao Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Chao Xu
| |
Collapse
|
14
|
Lisov AV, Kiselev SS, Trubitsina LI, Belova OV, Andreeva-Kovalevskaya ZI, Trubitsin IV, Shushkova TV, Leontievsky AA. Multifunctional Enzyme with Endoglucanase and Alginase/Glucuronan Lyase Activities from Bacterium Cellulophaga lytica. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:617-627. [PMID: 36154882 DOI: 10.1134/s0006297922070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of β-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas β-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-β-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.
Collapse
Affiliation(s)
- Alexander V Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei S Kiselev
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liubov I Trubitsina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Belova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan V Trubitsin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Shushkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
15
|
Rajasekaran N, Kaiser CM. Co-Translational Folding of Multi-Domain Proteins. Front Mol Biosci 2022; 9:869027. [PMID: 35517860 PMCID: PMC9065291 DOI: 10.3389/fmolb.2022.869027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
The majority of proteins in nature are composed of multiple domains connected in a single polypeptide. How these long sequences fold into functional structures without forming toxic misfolds or aggregates is poorly understood. Their folding is inextricably linked to protein synthesis and interactions with cellular machinery, making mechanistic studies challenging. Recent progress has revealed critical features of multi-domain protein folding in isolation and in the context of translation by the ribosome. In this review, we discuss challenges and progress in understanding multi-domain protein folding, and highlight how molecular interactions shape folding and misfolding pathways. With the development of new approaches and model systems, the stage is now set for mechanistically exploring the folding of large multi-domain proteins.
Collapse
Affiliation(s)
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Christian M. Kaiser,
| |
Collapse
|
16
|
Tan Y, Henehan GT, Kinsella GK, Ryan BJ. Extracellular secretion of a cutinase with polyester-degrading potential by E. coli using a novel signal peptide from Amycolatopsis mediterranei. World J Microbiol Biotechnol 2022; 38:60. [PMID: 35195792 PMCID: PMC8866283 DOI: 10.1007/s11274-022-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 10/26/2022]
Abstract
Recent studies in this laboratory showed that an extracellular cutinase from A. mediterranei (AmCut) was able to degrade the plastics polycaprolactone and polybutylene succinate. Such plastics can be slow to degrade in soils due to a lack of efficient polyester degrading organisms. AmCut also showed potential for the biocatalytic synthesis of esters by reverse hydrolysis. The gene for AmCut has an upstream leader sequence whose transcript is not present in the purified enzyme. In this study, we show using predictive modelling, that this sequence codes for an N-terminal signal peptide that directs transmembrane expression via the Sec secretion pathway. E. coli is a useful host for recombinant enzymes used in biocatalysis due to the ease of genetic manipulation in this organism, which allows tuning of enzymes for specific applications, by mutagenesis. When a truncated GST-tagged AmCut gene (lacking its signal peptide) was expressed in E. coli, all cutinase activity was observed in the cytosolic fraction. However, when GST-tagged AmCut was expressed in E. coli along with its native signal peptide, cutinase activity was observed in both the periplasmic space and the culture medium. This finding revealed that the native signal peptide of a Gram-positive organism (AmCut) was being recognised by the Gram-negative (E. coli) Sec transmembrane transport system. AmCut was transported into E. coli's periplasmic space from where it was released into the culture medium. Surprisingly, the presence of a bulky GST tag at the N-terminus of the signal peptide did not hinder transmembrane targeting. Although the periplasmic targeting was unexpected, it is not unprecedented due to the conservation of the Sec pathway across species. It was more surprising that AmCut was secreted from the periplasmic space into the culture medium. This suggests that extracellular AmCut translocation across the E. coli outer membrane may involve non-classical secretion pathways. This tuneable recombinant E. coli expressing extracellular AmCut may be useful for degradation of polyester substrates in the environment; this and other applications are discussed.
Collapse
Affiliation(s)
- Yeqi Tan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Gary T Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Barry J Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland.
| |
Collapse
|
17
|
Sharma N, Sahoo D, Rai AK, Singh SP. A highly alkaline pectate lyase from the Himalayan hot spring metagenome and its bioscouring applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Different strategies for expression and purification of the CT26-poly-neoepitopes vaccine in Escherichia coli. Mol Biol Rep 2022; 49:859-873. [DOI: 10.1007/s11033-021-06727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
|
19
|
Paraskevopoulou V, Alissa M, Hage N, Falcone FH. Introduction of a Hexalysine (6 K) Tag Can Protect from N-Terminal Cleavage and Increase Yield of Recombinant Proteins Expressed in the Periplasm of E. coli. Methods Mol Biol 2022; 2406:155-167. [PMID: 35089556 DOI: 10.1007/978-1-0716-1859-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recombinant expression of proteins in the periplasm of E. coli is frequently used for proteins containing disulfide bonds that are essential for protein folding and activity, as the cytosol of E. coli constitutes a reducing environment. The periplasm in contrast is an oxidative environment which supports proper protein folding. However, yields can be limited compared with cytoplasmic expression, and protocols must be adjusted to avoid overloading the periplasmic transportation machinery. Another less-appreciated issue with periplasmic expression is the potential generation of unwanted N-terminal cleavage products, a persistent issue which we encountered when expressing the disulfide bond containing extracellular regions of several Helicobacter pylori adhesins (BabA, BabB, BabC, and LabA) in the periplasm of E. coli XL10 GOLD, a strain traditionally not used for proteins expression. Here, we describe how introducing a C-terminal hexa-lysine (6 K) tag enhanced solubility and protected BabA from N-terminal proteolytic degradation (BabA), enabling crystallization and subsequent X-ray structural analysis. However. the same strategy had no advantageous effect for LabA, which using this protocol could be retrieved from the periplasm in relatively high yields (20-40 mg/L).
Collapse
Affiliation(s)
- Vasiliki Paraskevopoulou
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Mohammed Alissa
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Naim Hage
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Franco H Falcone
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
- Institute for Parasitology, Justus-Liebig-University of Gießen, Gießen, Germany.
| |
Collapse
|
20
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz NP, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings CL, Rothenberg ME, Pöhlmann S, Whelan SPJ, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A 2021; 118:e2108728118. [PMID: 34635581 PMCID: PMC8694051 DOI: 10.1073/pnas.2108728118] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| | - Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael A Tartell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Dustin Pwee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Jorine Voss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Melody Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | | | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110;
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| |
Collapse
|
21
|
Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili. eLife 2021; 10:63755. [PMID: 34232858 PMCID: PMC8263058 DOI: 10.7554/elife.63755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Type VI Secretion Systems (T6SSs) are widespread in bacteria and can dictate the development and organisation of polymicrobial ecosystems by mediating contact dependent killing. In Neisseria species, including Neisseria cinerea a commensal of the human respiratory tract, interbacterial contacts are mediated by Type four pili (Tfp) which promote formation of aggregates and govern the spatial dynamics of growing Neisseria microcolonies. Here, we show that N. cinerea expresses a plasmid-encoded T6SS that is active and can limit growth of related pathogens. We explored the impact of Tfp on N. cinerea T6SS-dependent killing within a colony and show that pilus expression by a prey strain enhances susceptibility to T6SS compared to a non-piliated prey, by preventing segregation from a T6SS-wielding attacker. Our findings have important implications for understanding how spatial constraints during contact-dependent antagonism can shape the evolution of microbial communities.
Collapse
Affiliation(s)
- Rafael Custodio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rhian M Ford
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Cara J Ellison
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gerda Mickute
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Jamshidi Kandjani O, Alizadeh AA, Moosavi-Movahedi AA, Dastmalchi S. Expression, purification and molecular dynamics simulation of extracellular domain of glucagon-like peptide-2 receptor linked to teduglutide. Int J Biol Macromol 2021; 184:812-820. [PMID: 34174312 DOI: 10.1016/j.ijbiomac.2021.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Teduglutide is the only drug approved for long-term treatment of short bowel syndrome (SBS). This drug exerts its pharmacological effects via binding to the GLP-2 receptors (ECD-GLP2R) located in intestinal tissue. The three dimensional (3D) structure of ECD-GLP2R hasn't been determined yet and hence its mode of interaction with agonists/antagonists is not clear. Therefore, it would be of great importance to develop a structural scaffold for investigation of ECD-GLP2R interactions with its binders. For this, the current study aimed to produce fusion protein of ECD-GLP2R-teduglutide. The ECD-GLP2R-teduglutide protein was expressed in bacterial expression system and purified using affinity and size exclusion chromatography techniques. Using circular dichroism the secondary structure content of purified protein was determined which was comparable to that of theoretical calculations. The low structural stability of purified protein (ΔG = 3.64 kJ.mol-1) was elucidated by monitoring its fluorescence emission at the presence of various concentrations of GdnHCl as a denaturant. Finally, a 3D model for ECD-GLP2R-teduglutide protein was generated and validated using molecular dynamics simulation whose information alongside the experimental studies can be useful for providing new insight into the mode of interaction of ECD-GLP2R with its specific ligands in order to design potent and specific GLP2R agonists.
Collapse
Affiliation(s)
- Omid Jamshidi Kandjani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Parmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
23
|
Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, Geyeregger R, Kratzer B, Jäger U, Kunert R, Pickl WF, Traxlmayr MW. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol 2021; 10:1184-1198. [PMID: 33843201 PMCID: PMC8155657 DOI: 10.1021/acssynbio.1c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD19 is among the most relevant targets in cancer immunotherapy. However, its extracellular domain (ECD) is prone to aggregation and misfolding, representing a major obstacle for the development and analysis of CD19-targeted therapeutics. Here, we engineered stabilized CD19-ECD (termed SuperFolder) variants, which also showed improved expression rates and, in contrast to the wild type protein, they could be efficiently purified in their monomeric forms. Despite being considerably more stable, these engineered mutants largely preserved the wild type sequence (>98.8%). We demonstrate that the variant SF05 enabled the determination of the monovalent affinity between CD19 and a clinically approved FMC63-based CAR, as well as monitoring and phenotypic characterization of CD19-directed CAR-T cells in the blood of lymphoma patients. We anticipate that the SuperFolder mutants generated in this study will be highly valuable tools for a range of applications in basic immunology and CD19-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Elisabeth Laurent
- Department of Biotechnology and BOKU Core Facility Biomolecular and Cellular Analysis, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Anna Sieber
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Anna Wachernig
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jacqueline Seigner
- Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Manfred Lehner
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - René Geyeregger
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
24
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenco AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz N, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings C, Rothenberg ME, Pöhlmann S, Whelan SP, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34131661 DOI: 10.1101/2021.05.06.442935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
|
25
|
Mousavi P, Morowvat MH, Mostafavi-Pour Z, Aram F, Malekzadeh K, Nezafat N, Ghasemi Y. Experimental Analysis of E2BB (LTIIb) Signal Peptide in Secretory Production of Reteplase in Escherichia coli. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Vijaykumar LK, Chikkachowdappa PG, Venkatappa MH, Rizvan A, Yogisharadhya R, Shivachandra SB, Bayyappa MRG. Evaluation of recombinant BgSA3 protein based indirect-ELISA for sero-diagnosis and sero-surveillance of Babesia gibsoni in dogs. Vet Parasitol 2020; 289:109338. [PMID: 33359970 DOI: 10.1016/j.vetpar.2020.109338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Canine babesiosis, a tick-borne haemoprotozoan disease of dogs, is of significance globally due to its rapid spread. A precise confirmatory diagnosis is required to curtail the rapid spread of infection. Our study described the evaluation of recombinant BgSA3 protein based indirect ELISA for sero-diagnosis and sero-surveillance of Babesia gibsoni infection in dogs. A partial BgSA3 gene segment (1921 bp) of B. gibsoni, encoding for recombinant truncated BgSA3 (75 kDa) protein devoid of predicted signal peptide (23 aa) at N-terminus and transmembrane region (20 aa) at C-terminus, was expressed in E. coli using a pET28a(+) vector. The rBgSA3 protein purified under native conditions using Ni-NTA superflow cartridge was confirmed by SDS-PAGE and Western blotting using sera from dogs infected/uninfected with B. gibsoni, and erythrocyte lysate/ plasma from infected/uninfected dogs. The rBgSA3 protein was specific only to B. gibsoni antibodies but did not react with uninfected sera. Further, rBgSA3 protein was evaluated for sero-diagnosis/sero-surveillance using Indirect-ELISA format. There was no cross reactivity to B. vogeli, E. canis, H. canis and D. repens infected dogs serum samples. The diagnostic sensitivity and specificity of rBgSA3 based I-ELISA was found to be 86.4 and 93.1 % respectively, in comparison with cytb based PCR assay. Additionally, rBgSA3-ELISA evaluated using survey serum samples (n = 287), detected 11.85 % samples as positive. In conclusion, B. gibsoni infection, an emerging disease is prevalent in the present study area and the standardized rBgSA3 protein based indirect-ELISA was found to be a specific and sensitive test for large scale sero-diagnosis and sero-surveillance of B. gibsoni infection in dogs.
Collapse
Affiliation(s)
- Lavanya K Vijaykumar
- Veterinary College, Karnataka Veterinary, Animal and Fishries Sciences University (KVAFSU), Bengaluru, 560024, Karnataka, India; Institute of Animal Health and Veterinary Biologicals (IAH&VB), Bengaluru, 560024, Karnataka, India
| | | | - Mohan H Venkatappa
- Veterinary College, Karnataka Veterinary, Animal and Fishries Sciences University (KVAFSU), Bengaluru, 560024, Karnataka, India
| | - Apsana Rizvan
- Institute of Animal Health and Veterinary Biologicals (IAH&VB), Bengaluru, 560024, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, 560064, Karnataka, India
| | | | - Manjunatha Reddy G Bayyappa
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
27
|
Irla M, Drejer EB, Brautaset T, Hakvåg S. Establishment of a functional system for recombinant production of secreted proteins at 50 °C in the thermophilic Bacillus methanolicus. Microb Cell Fact 2020; 19:151. [PMID: 32723337 PMCID: PMC7389648 DOI: 10.1186/s12934-020-01409-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The suitability of bacteria as microbial cell factories is dependent on several factors such as price of feedstock, product range, production yield and ease of downstream processing. The facultative methylotroph Bacillus methanolicus is gaining interest as a thermophilic cell factory for production of value-added products from methanol. The aim of this study was to expand the capabilities of B. methanolicus as a microbial cell factory by establishing a system for secretion of recombinant proteins. RESULTS Native and heterologous signal peptides were tested for secretion of α-amylases and proteases, and we have established the use of the thermostable superfolder green fluorescent protein (sfGFP) as a valuable reporter protein in B. methanolicus. We demonstrated functional production and secretion of recombinant proteases, α-amylases and sfGFP in B. methanolicus MGA3 at 50 °C and showed that the choice of signal peptide for optimal secretion efficiency varies between proteins. In addition, we showed that heterologous production and secretion of α-amylase from Geobacillus stearothermophilus enables B. methanolicus to grow in minimal medium with starch as the sole carbon source. An in silico signal peptide library consisting of 169 predicted peptides from B. methanolicus was generated and will be useful for future studies, but was not experimentally investigated any further here. CONCLUSION A functional system for recombinant production of secreted proteins at 50 °C has been established in the thermophilic B. methanolicus. In addition, an in silico signal peptide library has been generated, that together with the tools and knowledge presented in this work will be useful for further development of B. methanolicus as a host for recombinant protein production and secretion at 50 °C.
Collapse
Affiliation(s)
- Marta Irla
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eivind B Drejer
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
28
|
Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS. Evaluation of Hydra HALT-1 as a toxin moiety for recombinant immunotoxin. BMC Biotechnol 2020; 20:31. [PMID: 32552895 PMCID: PMC7301450 DOI: 10.1186/s12896-020-00628-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
Background Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin. Results In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64− cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64− cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability. Conclusions HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.
Collapse
Affiliation(s)
- William F Jiemy
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lih Fhung Hiew
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Hong Xi Sha
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Borges PT, Brissos V, Hernandez G, Masgrau L, Lucas MF, Monza E, Frazão C, Cordeiro TN, Martins LO. Methionine-Rich Loop of Multicopper Oxidase McoA Follows Open-to-Close Transitions with a Role in Enzyme Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Emanuele Monza
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
30
|
Gao J, Qian H, Guo X, Mi Y, Guo J, Zhao J, Xu C, Zheng T, Duan M, Tang Z, Lin C, Shen Z, Jiang Y, Wang X. The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host's fluorescent intensity. Microb Cell Fact 2020; 19:112. [PMID: 32448275 PMCID: PMC7247199 DOI: 10.1186/s12934-020-01371-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The signal peptides (SPs) of secretory proteins are frequently used or modified to guide recombinant proteins outside the cytoplasm of prokaryotic cells. In the periplasmic space and extracellular environment, recombinant proteins are kept away from the intracellular proteases and often they can fold correctly and efficiently. Consequently, expression levels of the recombinant protein can be enhanced by the presence of a SP. However, little attention has been paid to the use of SPs with low translocation efficiency for recombinant protein production. In this paper, the function of the signal peptide of Bacillus thuringiensis (Bt) Cry1Ia toxin (Iasp), which is speculated to be a weak translocation signal, on regulation of protein expression was investigated using fluorescent proteins as reporters. RESULTS When fused to the N-terminal of eGFP or mCherry, the Iasp can improve the expression of the fluorescent proteins and as a consequence enhance the fluorescent intensity of both Escherichia coli and Bt host cells. Real-time quantitative PCR analysis revealed the higher transcript levels of Iegfp over those of egfp gene in E. coli TG1 cells. By immunoblot analysis and confocal microscope observation, lower translocation efficiency of IeGFP was demonstrated. The novel fluorescent fusion protein IeGFP was then used to compare the relative strengths of cry1Ia (Pi) and cry1Ac (Pac) gene promoters in Bt strain, the latter promoter proving the stronger. The eGFP reporter, by contrast, cannot indicate unambiguously the regulation pattern of Pi at the same level of sensitivity. The fluorescent signals of E. coli and Bt cells expressing the Iasp fused mCherry (ImCherry) were also enhanced. Importantly, the Iasp can also enhanced the expression of two difficult-to-express proteins, matrix metalloprotease-13 (MMP13) and myostatin (growth differentiating factor-8, GDF8) in E. coli BL21-star (DE3) strain. CONCLUSIONS We identified the positive effects of a weak signal peptide, Iasp, on the expression of fluorescent proteins and other recombinant proteins in bacteria. The produced IeGFP and ImCherry can be used as novel fluorescent protein variants in prokaryotic cells. The results suggested the potential application of Iasp as a novel fusion tag for improving the recombinant protein expression.
Collapse
Affiliation(s)
- Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| | - Hongmei Qian
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqin Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yi Mi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Junpei Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Juanli Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chao Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ting Zheng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming Duan
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
31
|
Kusuma SAF, Parwati I, Subroto T, Rukayadi Y, Rostinawati T, Yusuf M, Fadhlillah M, Tanti LD, Ahyudanari RR. Real-time monitoring of rhamnose induction effect on the expression of mpt64 gene fused with pelB signal peptide in Escherichia coli BL21 (DE3). J Adv Pharm Technol Res 2020; 11:69-73. [PMID: 32587819 PMCID: PMC7305781 DOI: 10.4103/japtr.japtr_120_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 01/31/2020] [Indexed: 11/24/2022] Open
Abstract
In this research, Escherichia coli BL21 (DE3) harboring an expression vector constructed with a rhamnose-inducible promoter and a pelB signal peptide was used as a host cell to produce MPT64 protein. The objective of this research was to figure out the optimum time of mpt64 gene expression through real-time monitoring of MPT64 protein production and distribution in host compartments. The mpt64 expression was regulated by the rhamnose presence at a concentration of 4 mM. The real-time isolated protein was monitored using polyacrylamide gel electrophoresis in denaturation condition. Based on real-time monitoring, the MPT64 protein (24 kDa) in the cytoplasm was optimum detected at 24 h after induction. For periplasmic fraction, the protein was detected at 4 h after induction but thinning at 15 h after induction. At 16 h after induction, the MPT64 protein band was found in the medium with increasing concentrations until 24 h. Thus, it can be concluded that the mpt64 gene expression was regulated in the presence of rhamnose as an inducer, and the proteins were shown to be translocated throughout the host cell compartment with different levels of protein accumulation at different times, according to the role of pelB as a signal peptide.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia.,Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medical, Padjadjaran University, Bandung, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia.,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, Indonesia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tina Rostinawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia.,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, Indonesia
| | - Muhammad Fadhlillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia.,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, Indonesia.,PT. GenPro Multiguna Sejahtera, Sumedang, Indonesia
| | - Laily D Tanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia
| | - Risa R Ahyudanari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
32
|
Abstract
More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.
Collapse
|
33
|
Yoo HW, Kim J, Patil MD, Park BG, Joo SY, Yun H, Kim BG. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. BIORESOURCE TECHNOLOGY 2019; 291:121812. [PMID: 31376668 DOI: 10.1016/j.biortech.2019.121812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a signal peptide of AlkL was replaced with other signal peptides to improve the soluble expression and thereby facilitate the transport of dodecanoic acid methyl ester (DAME) substrate into the E. coli. Consequently, AlkL with signal peptide FadL (AlkLf) showed higher transport activity toward DAME. Furthermore, the promoter optimization for the efficient heterologous expression of the transporter AlkLf and alkane monooxygenase (AlkBGT) system was conducted and resulted in increased ω-oxygenation activity of AlkBGT system. Moreover, bioinformatic studies led to the identification of novel monooxygenase from Pseudomonas pelagia (Pel), which exhibited 20% higher activity towards DAME as substrate compared to AlkB. Finally, the construction of a chimeric transporter and the expression of newly identified monooxygenase enabled the production of 44.8 ± 7.5 mM of 12-hydroxy dodecanoic acid methyl ester (HADME) and 31.8 ± 1.7 mM of dodecanedioic acid monomethyl ester (DDAME) in a two-phase reaction system.
Collapse
Affiliation(s)
- Hee-Wang Yoo
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonwon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Beom Gi Park
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sung-Yeon Joo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Byung-Gee Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Kulmala A, Huovinen T, Lamminmäki U. Improvement of Fab expression by screening combinatorial synonymous signal sequence libraries. Microb Cell Fact 2019; 18:157. [PMID: 31526395 PMCID: PMC6745802 DOI: 10.1186/s12934-019-1210-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Antibody fragments can be expressed in Escherichia coli, where they are commonly directed to the periplasm via Sec pathway to enable disulphide bridge formations and correct folding. In order to transport antibody fragments to the periplasmic space via Sec pathway, they are equipped with N-terminal signal sequence. Periplasmic expression has many benefits but it's also subjected to many hurdles like inefficient translocation across the inner membrane and insufficient capacity of the translocation system. One solution to overcome these hurdles is a modulation of codon usage of signal sequence which has proved to be an efficient way of tuning the translocation process. Modulation of codon usage of signal sequences has been successfully employed also in improving the expression levels of antibody fragments, but unfortunately the effect of codon usage on the expression has not been thoroughly analyzed. RESULTS In the present study we established three synonymous PelB signal sequence libraries by modulating codon usage of light chain and heavy chain PelB signal sequences of a Fab fragment. Each region (n-region, hydrophobic region and c-region) of the PelB signal sequence in the both chains of the Fab fragment in a bicistronic expression vector was mutated separately. We then screened for clones with improved expression profile. The best source for improved clones was the n-region library but in general, improved clones were obtained from all of the three libraries. After screening, we analyzed the effects of codon usage and mRNA secondary structures of chosen clones on the expression levels of the Fab fragment. When it comes to codon usage based factors, it was discovered that especially codon usage of fifth leucine position of the light chain PelB affects the expression levels of Fab fragment. In addition, we observed that mRNA secondary structures in the translation initiation regions of the light and heavy chain have an effect on expression levels as well. CONCLUSIONS In conclusion, the established synonymous signal sequence libraries are good sources for discovering Fab fragments with improved expression profile and obtaining new codon usage related information.
Collapse
Affiliation(s)
- Antti Kulmala
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tuomas Huovinen
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
35
|
Karyolaimos A, Ampah-Korsah H, Hillenaar T, Mestre Borras A, Dolata KM, Sievers S, Riedel K, Daniels R, de Gier JW. Enhancing Recombinant Protein Yields in the E. coli Periplasm by Combining Signal Peptide and Production Rate Screening. Front Microbiol 2019; 10:1511. [PMID: 31396164 PMCID: PMC6664373 DOI: 10.3389/fmicb.2019.01511] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Proteins that contain disulfide bonds mainly mature in the oxidative environment of the eukaryotic endoplasmic reticulum or the periplasm of Gram-negative bacteria. In E. coli, disulfide bond containing recombinant proteins are often targeted to the periplasm by an N-terminal signal peptide that is removed once it passes through the Sec-translocon in the cytoplasmic membrane. Despite their conserved targeting function, signal peptides can impact recombinant protein production yields in the periplasm, as can the production rate. Here, we present a combined screen involving different signal peptides and varying production rates that enabled the identification of more optimal conditions for periplasmic production of recombinant proteins with disulfide bonds. The data was generated from two targets, a single chain antibody fragment (BL1) and human growth hormone (hGH), with four different signal peptides and a titratable rhamnose promoter-based system that enables the tuning of protein production rates. Across the screen conditions, the yields for both targets significantly varied, and the optimal signal peptide and rhamnose concentration differed for each protein. Under the optimal conditions, the periplasmic BL1 and hGH were properly folded and active. Our study underpins the importance of combinatorial screening approaches for addressing the requirements associated with the production of a recombinant protein in the periplasm.
Collapse
Affiliation(s)
- Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Henry Ampah-Korsah
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Tamara Hillenaar
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Anna Mestre Borras
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | | | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
36
|
Duman E, Şahin Kehribar E, Ahan RE, Yuca E, Şeker UÖŞ. Biomineralization of Calcium Phosphate Crystals Controlled by Protein–Protein Interactions. ACS Biomater Sci Eng 2019; 5:4750-4763. [DOI: 10.1021/acsbiomaterials.9b00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Elif Duman
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Esra Yuca
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey
| | - Urartu Özgür Şafak Şeker
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
37
|
See PT, Iagallo EM, Oliver RP, Moffat CS. Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops. Front Microbiol 2019; 10:182. [PMID: 30809209 PMCID: PMC6379657 DOI: 10.3389/fmicb.2019.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/05/2022] Open
Abstract
Here, we evaluate the expression of the proteinaceous effectors ToxA and ToxB, produced by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, which confer tan spot disease susceptibility on wheat. These necrotrophic effectors were expressed in two heterologous systems: Escherichia coli and Pichia pastoris. The E. coli SHuffle system was demonstrated to be superior to P. pastoris in generating high-levels of recombinant proteins that were soluble and stable. In addition, protein extracts from P. pastoris induced non-specific chlorosis on wheat, postulated to be caused by co-purified glucanases secreted by the host. Up to 79.6 μg/ml of ToxB was obtained using the SHuffle system in the absence of the native signal peptide, whilst the ToxA yield was considerably lower at 3.2 μg/ml. Results indicated that a histidine tag at the ToxA C-terminus interfered with effector functionality. Heterologously expressed ToxA and ToxB were tested on a panel of Australian cereals, including 122 varieties of bread wheat, 16 durum, 20 triticale and 5 barley varieties, as well as common plant model species including tobacco and Arabidopsis thaliana. A varying degree of effector sensitivities was observed, with a higher ToxB sensitivity and prevalence in the durum and triticale varieties. ToxB-induced chlorosis was also detected on barley. The heterologous expression of effectors that are easily scalable, will facilitate effector-assisted selection of varieties in wheat breeding programs as well as the investigation of P. tritici-repentis effectors in host and non-host interactions.
Collapse
Affiliation(s)
| | | | | | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
38
|
Seyed Hosseini Fin NA, Barshan-Tashnizi M, Sajjadi SM, Asgari S, Mohajerani N, Mirzahoseini H. The effects of overexpression of cytoplasmic chaperones on secretory production of hirudin-PA in E. coli. Protein Expr Purif 2019; 157:42-49. [PMID: 30708036 DOI: 10.1016/j.pep.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
Abstract
The secretory production of heterologous proteins in E. coli has revolutionized biotechnology. Efficient periplasmic production of foreign proteins in E. coli often requires a signal peptide to direct proteins to the periplasm. However, the presence of attached signal peptide does not guarantee periplasmic expression of target proteins. Overproduction of auxiliary proteins, such as chaperones can be a useful approach to enhance protein export. In the current study, three chaperone plasmid sets, including GroEL-GroES (GroELS), Dnak-Dnaj-GrpE (DnaKJE), and trigger factor (TF), were coexpressed in E. coli BL21 (DE3) in a pairwise manner with two pET22-b vectors carrying the recombinant hirudin-PA (Hir) gene and different signal sequences alkaline phosphatase (PhoA) and l-asparaginase II (l-ASP). Overexpression of cytoplasmic combinations of molecular chaperones containing GroELS and DnaKJE with PhoAHir increased the secretory production of PhoAHir by 2.6fold (p < 0.05) and 3.5fold (p < 0.01) compared with their controls, respectively. By contrast, secretory production of PhoAHir significantly reduced in the presence of overexpressed TF (p = 0.02). Further, periplasmic expression of l-ASP was significantly increased only in the presence of DnaKJE (p = 0.04). These findings suggest that using molecular chaperones can be helpful for improving periplasmic expression of Hir. However, tagged signal peptides may affect the physicochemical properties and secondary and tertiary structures of mature Hir, which may alter their interactions with chaperones. Hence, using overexpressed chaperones has various effects on secretory production of PhoAHir and l-ASPHir.
Collapse
Affiliation(s)
| | - Mohammad Barshan-Tashnizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeme Asgari
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Mohajerani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Mirzahoseini
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Nguyen JT, Fong J, Fong D, Fong T, Lucero RM, Gallimore JM, Burata OE, Parungao K, Rascón AA. Soluble expression of recombinant midgut zymogen (native propeptide) proteases from the Aedes aegypti Mosquito Utilizing E. coli as a host. BMC BIOCHEMISTRY 2018; 19:12. [PMID: 30563449 PMCID: PMC6299515 DOI: 10.1186/s12858-018-0101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Background Studying proteins and enzymes involved in important biological processes in the Aedes aegypti mosquito is limited by the quantity that can be directly isolated from the mosquito. Adding to this difficulty, digestive enzymes (midgut proteases) involved in metabolizing blood meal proteins require a more oxidizing environment to allow proper folding of disulfide bonds. Therefore, recombinant techniques to express foreign proteins in Escherichia coli prove to be effective in producing milligram quantities of the expressed product. However, with the most commonly used strains having a reducing cytoplasm, soluble expression of recombinant proteases is hampered. Fortunately, new E. coli strains with a more oxidizing cytoplasm are now available to ensure proper folding of disulfide bonds. Results Utilizing an E. coli strain with a more oxidizing cytoplasm (SHuffle® T7, New England Biolabs) and changes in bacterial growth temperature has resulted in the soluble expression of the four most abundantly expressed Ae. aegypti midgut proteases (AaET, AaSPVI, AaSPVII, and AaLT). A previous attempt of solubly expressing the full-length zymogen forms of these proteases with the leader (signal) sequence and a modified pseudo propeptide with a heterologous enterokinase cleavage site led to insoluble recombinant protein expression. In combination with the more oxidizing cytoplasm, and changes in growth temperature, helped improve the solubility of the zymogen (no leader) native propeptide proteases in E. coli. Furthermore, the approach led to autocatalytic activation of the proteases during bacterial expression and observable BApNA activity. Different time-points after bacterial growth induction were tested to determine the time at which the inactive (zymogen) species is observed to transition to the active form. This helped with the purification and isolation of only the inactive zymogen forms using Nickel affinity. Conclusions The difficulty in solubly expressing recombinant proteases in E. coli is caused by the native reducing cytoplasm. However, with bacterial strains with a more oxidizing cytoplasm, recombinant soluble expression can be achieved, but only in concert with changes in bacterial growth temperature. The method described herein should provide a facile starting point to recombinantly expressing Ae. aegypti mosquito proteases or proteins dependent on disulfide bonds utilizing E. coli as a host. Electronic supplementary material The online version of this article (10.1186/s12858-018-0101-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jonathan Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Daniel Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Timothy Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Rachael M Lucero
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jamie M Gallimore
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Olive E Burata
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Kamille Parungao
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Alberto A Rascón
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA.
| |
Collapse
|
40
|
Owji H, Hemmati S. A comprehensive in silico characterization of bacterial signal peptides for the excretory production of Anabaena variabilis phenylalanine ammonia lyase in Escherichia coli. 3 Biotech 2018; 8:488. [PMID: 30498661 DOI: 10.1007/s13205-018-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
Anabaena variabilis double mutant (C503S/C565S) phenylalanine ammonia-lyase (PAL) is an appealing enzyme in the enzyme-replacement therapy of phenylketonuria. Yet abundant production of this enzyme has been of concern for industrial production. In this study, we have characterized 1175 bacterial signal peptides (SPs) and identified the most efficient ones for the excretory production of mutant AvPAL. Analysis by SignalP 4.1 revealed that more than 61% of SPs had a D-score greater than 0.7, denoting to be highly efficient. The optimum length of a bacterial SP was 25-30. The preferable net positive charge and the second residue of N-region were + 2 and Lys/Arg, respectively. Highly efficient SPs possessed 3-5 Leus in their H-region and A/L/VXA-FF cleavage site. Highly efficient SPs were from Escherichia coli, corroborating the necessity of an agreement between SPs and the host. Physiochemical characterization of mutant AvPAL conjugates via ProtParam and PROSOII, revealed that ~ 99.5% of proteins would not be entraped in inclusion bodies. Secretory pathways were identified by EffectiveDB and more than 98% of SPs were cleavable. Chimeras were modeled using the I-TASSER program, being evaluated by the Ramachandran plots. The mRNA secondary structure of mutant AvPAL upon linkage to SPs was assessed using the mfold program. It was shown that the linkage of a SP does not affect mutant AvPAL's stability at the protein or mRNA level. AllergenFP tool demonstrated that chimeras were not allergen. SPs, including FMF4_ECOLX, E2BB_ECOLX, and LPTA_ECOLI exhibited the highest propensity for secretion and appropriate features in all analyses.
Collapse
Affiliation(s)
- Hajar Owji
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Pressnitz D, Fischereder E, Pletz J, Kofler C, Hammerer L, Hiebler K, Lechner H, Richter N, Eger E, Kroutil W. Asymmetric Synthesis of (
R
)‐1‐Alkyl‐Substituted Tetrahydro‐ß‐carbolines Catalyzed by Strictosidine Synthases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Desiree Pressnitz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Eva‐Maria Fischereder
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Jakob Pletz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christina Kofler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Lucas Hammerer
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
- ACIB GmbH—Austrian Center of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Katharina Hiebler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Horst Lechner
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Nina Richter
- ACIB GmbH—Austrian Center of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Elisabeth Eger
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
42
|
Pressnitz D, Fischereder E, Pletz J, Kofler C, Hammerer L, Hiebler K, Lechner H, Richter N, Eger E, Kroutil W. Asymmetric Synthesis of (R)-1-Alkyl-Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases. Angew Chem Int Ed Engl 2018; 57:10683-10687. [PMID: 29852524 PMCID: PMC6146909 DOI: 10.1002/anie.201803372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Indexed: 01/18/2023]
Abstract
Stereoselective methods for the synthesis of tetrahydro-ß-carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom, strictosidine synthases catalyze the C-C coupling through a Pictet-Spengler reaction of tryptamine and secologanin to exclusively form the (S)-configured tetrahydro-ß-carboline (S)-strictosidine. Investigating the biocatalytic Pictet-Spengler reaction of tryptamine with small-molecular-weight aliphatic aldehydes revealed that the strictosidine synthases give unexpectedly access to the (R)-configured product. Developing an efficient expression method for the enzyme allowed the preparative transformation of various aldehydes, giving the products with up to >98 % ee. With this tool in hand, a chemoenzymatic two-step synthesis of (R)-harmicine was achieved, giving (R)-harmicine in 67 % overall yield in optically pure form.
Collapse
Affiliation(s)
- Desiree Pressnitz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Eva‐Maria Fischereder
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Jakob Pletz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Christina Kofler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
- ACIB GmbH—Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Katharina Hiebler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Horst Lechner
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Nina Richter
- ACIB GmbH—Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Elisabeth Eger
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
43
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
44
|
Cho YH, Kim SJ, Kim JY, Lee DH, Park K, Park YC. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli. Appl Microbiol Biotechnol 2018; 102:7407-7416. [DOI: 10.1007/s00253-018-9139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
|
45
|
Marino J, Holzhüter K, Kuhn B, Geertsma ER. Efficient Screening and Optimization of Membrane Protein Production in Escherichia coli. Methods Enzymol 2017; 594:139-164. [PMID: 28779839 DOI: 10.1016/bs.mie.2017.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Escherichia coli is one of the most widely used expression hosts for membrane proteins. However, establishing conditions for its recombinant production of membrane proteins remains difficult. Attempts to produce membrane proteins frequently result in either no expression or expression as misfolded aggregates. We developed an efficient pipeline for improving membrane protein overexpression in E. coli that is based on two approaches. The first involves transcriptional fusions, small additional RNA sequences upstream of the target open reading frame, to overcome no or poor overall expression levels. The other is based on a tunable promoter in combination with a fusion to green fluorescent protein serving as a reporter for the folding state of the target membrane protein. The latter combination allows adjusting the membrane protein expression rate to the downstream folding capacity, in order to decrease the formation of protein aggregates. This pipeline has proven successful for the efficient and parallel optimization of a diverse set of membrane proteins.
Collapse
Affiliation(s)
| | | | - Benedikt Kuhn
- Goethe University Frankfurt, Frankfurt/Main, Germany
| | | |
Collapse
|
46
|
Orfanoudaki G, Markaki M, Chatzi K, Tsamardinos I, Economou A. MatureP: prediction of secreted proteins with exclusive information from their mature regions. Sci Rep 2017; 7:3263. [PMID: 28607462 PMCID: PMC5468347 DOI: 10.1038/s41598-017-03557-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology-University of Crete, PO Box 1385, Heraklion, Crete, Greece
| | - Maria Markaki
- Computer Science Department, University of Crete, Heraklion, Greece
| | - Katerina Chatzi
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Ioannis Tsamardinos
- Computer Science Department, University of Crete, Heraklion, Greece.,Gnosis Data Analysis PC, Heraklion, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology-University of Crete, PO Box 1385, Heraklion, Crete, Greece. .,KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium.
| |
Collapse
|
47
|
Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 2016; 6:39256. [PMID: 27991536 PMCID: PMC5171800 DOI: 10.1038/srep39256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from four plant families yielded 33 assembled contigs with homology to characterized NCS genes. Predicted translation products generated from nine contigs consisted of two to five sequential repeats, each containing most of the sequence found in single-domain enzymes. Assembled contigs containing tandem domain repeats were detected only in members of the Papaveraceae family, including opium poppy (Papaver somniferum). Fourteen cDNAs were generated from 10 species, five of which encoded NCS orthologs with repeated domains. Functional analysis of corresponding recombinant proteins yielded six active NCS enzymes, including four containing either two, three or four repeated catalytic domains. Truncation of the first 25 N-terminal amino acids from the remaining polypeptides revealed two additional enzymes. Multiple catalytic domains correlated with a proportional increase in catalytic efficiency. Expression of NCS genes in Saccharomyces cereviseae also produced active enzymes. The metabolic conversion capacity of engineered yeast positively correlated with the number of repeated domains.
Collapse
|
48
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
49
|
Neves F, Abrantes J, Esteves PJ. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Innate Immun 2016; 22:336-43. [PMID: 27189425 DOI: 10.1177/1753425916647471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal UMIB/UP - Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
50
|
FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun 2016; 84:1446-1456. [PMID: 26930710 DOI: 10.1128/iai.01311-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
We previously identified a cell wall-associated protein from Fusobacterium nucleatum, a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I (Fusobacterium-associated defensin inducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953. Heterologous expression of plasmid-borne fadI from the highly hBD-2-inducing strains in a ΔfadI mutant of ATCC 10953 resulted in hBD-2 induction to levels comparable to those of the highly inducing strains, indicating that FAD-I is the principal F. nucleatum agent for hBD-2 induction in HOECs. Moreover, anti-FAD-I antibodies blocked F. nucleatum induction of hBD-2 by more than 80%. Recombinant FAD-I (rFAD-I) expressed in Escherichia coli triggered levels of hBD-2 transcription and peptide release in HOECs similar to those of native FAD-I (nFAD-I) isolated from F. nucleatum ATCC 25586. Tandem mass spectrometry revealed a diacylglycerol modification at the cysteine residue in position 16 for both nFAD-I and rFAD-I. Cysteine-to-alanine substitution abrogated FAD-I's ability to induce hBD-2. Finally, FAD-I activation of hBD-2 expression was mediated via both Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6 heterodimerization. Microbial molecules like FAD-I may be utilized in novel therapeutic ways to bolster the host innate immune response at mucosal surfaces.
Collapse
|