1
|
Yegnaswamy S, C SK, Aldaais E. Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex. J Biomol Struct Dyn 2025:1-15. [PMID: 39755960 DOI: 10.1080/07391102.2024.2437529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/21/2024] [Indexed: 01/07/2025]
Abstract
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.
Collapse
Affiliation(s)
- Subha Yegnaswamy
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Ebtisam Aldaais
- College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia
| |
Collapse
|
2
|
Sultana R, Stahelin RV. Strengths and limitations of SARS-CoV-2 virus-like particle systems. Virology 2025; 601:110285. [PMID: 39536645 PMCID: PMC11624109 DOI: 10.1016/j.virol.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Virus-like particles (VLPs) resemble the parent virus but lack the viral genome, providing a safe and efficient platform for the analysis of virus assembly and budding as well as the development of vaccines and drugs. During the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the formation of SARS-CoV-2 VLPs was investigated as an alternative to authentic virions because the latter requires biosafety level 3 (BSL-3) facilities. This allowed researchers to model its assembly and budding processes, examine the role of mutations in variants of concern, and determine how the structural proteins interact with each other. Also, the absence of viral genome in VLPs circumvents worries of gains in infectivity via mutagenesis. This review summarizes the strengths and limitations of several SARS-CoV-2 VLP systems and details some of the strides that have been made in using these systems to study virus assembly and budding, viral entry, and antibody and vaccine development.
Collapse
Affiliation(s)
- Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
4
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Zhou Q, Song X, Li Y, Huang J, Yu QS, Den GN, Zhang JQ, Zhu CX, Zhang B. Preparation of a novel type I feline coronavirus virus-like particle vaccine and its immunogenicity in mice and cats. Microb Pathog 2024; 194:106795. [PMID: 39019122 DOI: 10.1016/j.micpath.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.
Collapse
MESH Headings
- Animals
- Cats
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Coronavirus, Feline/immunology
- Immunoglobulin G/blood
- Adjuvants, Immunologic/administration & dosage
- Viral Load
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Interleukin-4/metabolism
- Interferon-gamma/metabolism
- Mice, Inbred BALB C
- Feces/virology
- Adjuvants, Vaccine
- Polysorbates/administration & dosage
- Female
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spleen/immunology
- Cat Diseases/prevention & control
- Cat Diseases/immunology
- Cat Diseases/virology
- Baculoviridae/genetics
- Vaccination
- Immunization, Secondary
- Squalene
Collapse
Affiliation(s)
- Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xin Song
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Jian Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Qi-Sheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Gu-Nan Den
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jia-Qi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chen-Xi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
6
|
Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen YQ, Yuan Y, Zhao J, Mao Y. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nat Commun 2024; 15:4162. [PMID: 38755139 PMCID: PMC11099032 DOI: 10.1038/s41467-024-48503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingchi Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Foshan Institute for Food and Drug Control, Foshan, China
| | - Bowen Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Jinghong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Luoyi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Arpaporn Chuchuay
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanqiu Yuan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| |
Collapse
|
7
|
Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Int J Mol Sci 2024; 25:2428. [PMID: 38397104 PMCID: PMC10889775 DOI: 10.3390/ijms25042428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Noé Vazquez
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
9
|
Poggio E, Vallese F, Hartel AJW, Morgenstern TJ, Kanner SA, Rauh O, Giamogante F, Barazzuol L, Shepard KL, Colecraft HM, Clarke OB, Brini M, Calì T. Perturbation of the host cell Ca 2+ homeostasis and ER-mitochondria contact sites by the SARS-CoV-2 structural proteins E and M. Cell Death Dis 2023; 14:297. [PMID: 37120609 PMCID: PMC10148623 DOI: 10.1038/s41419-023-05817-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the β-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca2+) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.
Collapse
Affiliation(s)
- Elena Poggio
- Department of Biology, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Doctoral Program in Neurobiology and Behavior, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Karakasiliotis I, Lagopati N, Evangelou K, Gorgoulis VG. Cellular senescence as a source of SARS-CoV-2 quasispecies. FEBS J 2023; 290:1384-1392. [PMID: 34653312 DOI: 10.1111/febs.16230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023]
Abstract
In-depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly unraveling the mechanisms through which the virus induces all aspects of COVID-19 pathology. Emergence of hundreds of variants and several important variants of concern has focused research on the mechanistic elucidation of virus mutagenesis. RNA viruses evolve quickly either through the error-prone polymerase or the RNA-editing machinery of the cell. In this review, we are discussing the links between cellular senescence, a natural aging process that has been recently linked to SARS-CoV-2 infection, and virus mutagenesis through the RNA-editing enzymes APOBEC. The action of APOBEC, enhanced by cellular senescence, is hypothesized to assist the emergence of novel variants, called quasispecies, within a cell or organism. These variants when introduced to the community may lead to the generation of a variant of concern, depending on fitness and transmissibility of the new genome. Such a mechanism of virus evolution may highlight the importance of inhibitors of cellular senescence during SARS-CoV-2 clinical treatment.
Collapse
Affiliation(s)
- Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, UK.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, UK
| |
Collapse
|
11
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
12
|
Hassan SS, Kodakandla V, Redwan EM, Lundstrom K, Choudhury PP, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palu G, Abd El-Aziz TM, Barh D, Uhal BD, Adadi P, Takayama K, Bazan NG, Tambuwala M, Sherchan SP, Lal A, Chauhan G, Baetas-da-Cruz W, Uversky VN. Non-uniform aspects of the SARS-CoV-2 intraspecies evolution reopen question of its origin. Int J Biol Macromol 2022; 222:972-993. [PMID: 36174872 PMCID: PMC9511875 DOI: 10.1016/j.ijbiomac.2022.09.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Vaishnavi Kodakandla
- Department of Life sciences, Sophia College For Women, University of Mumbai, Bhulabhai Desai Road, Mumbai 400026, India
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | | | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata 700108, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Cat'olica de Valencia San Vicente Martir, c/Guillem de Castro, 94, 46001 Valencia, Valencia, Spain.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Geńetica, Ecologia e Evolucao, Instituto de Cíencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA 70112, USA.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Samendra P Sherchan
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vladimir N Uversky
- Department of Molecular Medicineand USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny 141700, Russia.
| |
Collapse
|
13
|
Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022; 122:14066-14084. [PMID: 35863749 PMCID: PMC9344915 DOI: 10.1021/acs.chemrev.1c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
The global spread
of SARS-CoV-2 has proceeded at an unprecedented
rate. Remarkably, characterization of the virus using modern tools
in structural biology has also progressed at exceptional speed. Advances
in electron-based imaging techniques, combined with decades of foundational
studies on related viruses, have enabled the research community to
rapidly investigate structural aspects of the novel coronavirus from
the level of individual viral proteins to imaging the whole virus
in a native context. Here, we provide a detailed review of the structural
biology and pathobiology of SARS-CoV-2 as it relates to all facets
of the viral life cycle, including cell entry, replication, and three-dimensional
(3D) packaging based on insights obtained from X-ray crystallography,
cryo-electron tomography, and single-particle cryo-electron microscopy.
The structural comparison between SARS-CoV-2 and the related earlier
viruses SARS-CoV and MERS-CoV is a common thread throughout this review.
We conclude by highlighting some of the outstanding unanswered structural
questions and underscore areas that are under rapid current development
such as the design of effective therapeutics that block viral infection.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Gandeeva Therapeutics Inc., Vancouver, British Columbia, Canada, V5C 6N5
| |
Collapse
|
14
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alfaro Alvarado LH, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie‐Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, Ortiz‐Alvarez de la Campa M, Paredes I, Wheeler B, Rupert A, Sam A, See K, Soto Zapata S, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first 6 months of the COVID-19 pandemic. Proteins 2022; 90:1054-1080. [PMID: 34580920 PMCID: PMC8661935 DOI: 10.1002/prot.26250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Christine Zardecki
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Elliott M. Dolan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Changpeng Lu
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Zhuofan Shen
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shuchismita Dutta
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - John D. Westbrook
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Brian P. Hudson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David S. Goodsell
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- The Scripps Research InstituteLa JollaCaliforniaUSA
| | - Jonathan K. Williams
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Vidur Sarma
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Lingjun Xie
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thejasvi Venkatachalam
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Steven Arnold
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | - Aaliyah Khan
- University of Maryland Baltimore CountyBaltimoreMarylandUSA
| | | | | | | | | | | | | | - Helen Zheng
- Watchung Hills Regional High SchoolWarrenNew JerseyUSA
| | | | | | - Mark Dresel
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | | | | | | | | | - Evan Lenkeit
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | | | | | - Andrew Sam
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Katherine See
- Rochester Institute of TechnologyRochesterNew YorkUSA
| | | | - Paul A. Craig
- Rochester Institute of TechnologyRochesterNew YorkUSA
| | | | - Jennifer Jiang
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | - Yana Bromberg
- Department of Biochemistry and MicrobiologyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Jay Tischfield
- Department of GeneticsRutgers, The State University of New Jersey, and Human Genetics Institute of New JerseyPiscatawayNew JerseyUSA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and MedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Eddy Arnold
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Center for Advanced Biotechnology and MedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jean Baum
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jesse Sandberg
- Center for Computational and Integrative BiologyRutgers, The State University of New JerseyCamdenNew JerseyUSA
| | - Grace Brannigan
- Center for Computational and Integrative BiologyRutgers, The State University of New JerseyCamdenNew JerseyUSA
- Department of PhysicsRutgers, The State University of New JerseyCamdenNew JerseyUSA
| | - Sagar D. Khare
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Stephen K. Burley
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaSan Diego, La JollaCaliforniaUSA
| |
Collapse
|
15
|
Marques-Pereira C, Pires MN, Gouveia RP, Pereira NN, Caniceiro AB, Rosário-Ferreira N, Moreira IS. SARS-CoV-2 Membrane Protein: From Genomic Data to Structural New Insights. Int J Mol Sci 2022; 23:2986. [PMID: 35328409 PMCID: PMC8948900 DOI: 10.3390/ijms23062986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) is composed of four structural proteins and several accessory non-structural proteins. SARS-CoV-2's most abundant structural protein, Membrane (M) protein, has a pivotal role both during viral infection cycle and host interferon antagonism. This is a highly conserved viral protein, thus an interesting and suitable target for drug discovery. In this paper, we explain the structural nature of M protein homodimer. To do so, we developed and applied a detailed and robust in silico workflow to predict M protein dimeric structure, membrane orientation, and interface characterization. Single Nucleotide Polymorphisms (SNPs) in M protein were retrieved from over 1.2 M SARS-CoV-2 genomes and proteins from the Global Initiative on Sharing All Influenza Data (GISAID) database, 91 of which were located at the predicted dimer interface. Among those, we identified SNPs in Variants of Concern (VOC) and Variants of Interest (VOI). Binding free energy differences were evaluated for dimer interfacial SNPs to infer mutant protein stabilities. A few high-prevalent mutated residues were found to be especially relevant in VOC and VOI. This realization may be a game-changer to structure-driven formulation of new therapeutics for SARS-CoV-2.
Collapse
Affiliation(s)
- Catarina Marques-Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
- IIIs—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Manuel N. Pires
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
- Department of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Raquel P. Gouveia
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
| | - Nádia N. Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
| | - Ana B. Caniceiro
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
| | - Nícia Rosário-Ferreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal; (C.M.-P.); (M.N.P.); (R.P.G.); (N.N.P.); (A.B.C.); (N.R.-F.)
- CQC—Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
da Silva Torres MK, Bichara CDA, de Almeida MDNDS, Vallinoto MC, Queiroz MAF, Vallinoto IMVC, dos Santos EJM, de Carvalho CAM, Vallinoto ACR. The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Front Microbiol 2022; 13:789882. [PMID: 35222327 PMCID: PMC8870622 DOI: 10.3389/fmicb.2022.789882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the death of millions of people worldwide and thousands more infected individuals developed sequelae due to the disease of the new coronavirus of 2019 (COVID-19). The development of several studies has contributed to the knowledge about the evolution of SARS-CoV2 infection and the disease to more severe forms. Despite this information being debated in the scientific literature, many mechanisms still need to be better understood in order to control the spread of the virus and treat clinical cases of COVID-19. In this article, we carried out an extensive literature review in order to bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic, immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic. This information gathered in this article will enable a broad and consistent reading of the main aspects related to the current pandemic.
Collapse
Affiliation(s)
- Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mariana Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- University Center of the State of Pará, Belém, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Antonio Carlos R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| |
Collapse
|
18
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
19
|
Cao Y, Yang R, Wang W, Jiang S, Yang C, Liu N, Dai H, Lee I, Meng X, Yuan Z. Probing the Formation, Structure and Free Energy Relationships of M Protein Dimers of SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:573-582. [PMID: 35047128 PMCID: PMC8756865 DOI: 10.1016/j.csbj.2022.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The M protein of the novel coronavirus 2019 (SARS-CoV-2) is the major structural component of the viral envelope and is also the minimum requirement for virus particle budding. M proteins generally exist as dimers. In virus assembly, they are the main driving force for envelope formation through lateral interactions and interactions with other viral structural proteins that play a central role. We built 100 candidate models and finally analyzed the six most convincing structural features of the SARS-CoV-2 M protein dimer based on long-timescale molecular dynamics (MD) simulations, multiple free energy analyses (potential mean force (PMF) and molecular mechanics Poisson-Boltzmann surface area (MMPBSA)) and principal component analysis (PCA) to obtain the most reasonable structure. The dimer stability was found to depend on the Leu-Ile zipper motif and aromatic amino acids in the transmembrane domain (TMD). Furthermore, the C-terminal domain (CTD) effects were relatively small. These results highlight a model in which there is sufficient binding affinity between the TMDs of M proteins to form dimers through the residues at the interface of the three transmembrane helices (TMHs). This study aims to help find more effective inhibitors of SARS-CoV-2 M dimers and to develop vaccines based on structural information.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- National Supercomputer Center in Tianjin, 300457 PR China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital. 300031, PR China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Shengpeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Chengwen Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Ningbo Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Hongji Dai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- College of Physics, Nankai University, Tianjin 300071, PR China
| | - Imshik Lee
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, PR China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, 300457 PR China
- Corresponding authors.
| | - Zhiyong Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- Corresponding authors.
| |
Collapse
|
20
|
Monje-Galvan V, Voth GA. Molecular interactions of the M and E integral membrane proteins of SARS-CoV-2. Faraday Discuss 2021; 232:49-67. [PMID: 34543372 PMCID: PMC8712422 DOI: 10.1039/d1fd00031d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific lipid-protein interactions are key for cellular processes, and even more so for the replication of pathogens. The COVID-19 pandemic has drastically changed our lives and caused the death of nearly four million people worldwide, as of this writing. SARS-CoV-2 is the virus that causes the disease and has been at the center of scientific research over the past year. Most of the research on the virus is focused on key players during its initial attack and entry into the cellular host; namely the S protein, its glycan shield, and its interactions with the ACE2 receptors of human cells. As cases continue to rise around the globe, and new mutants are identified, there is an urgent need to understand the mechanisms of this virus during different stages of its life cycle. Here, we consider two integral membrane proteins of SARS-CoV-2 known to be important for viral assembly and infectivity. We have used microsecond-long all-atom molecular dynamics to examine the lipid-protein and protein-protein interactions of the membrane (M) and envelope (E) structural proteins of SARS-CoV-2 in a complex membrane model. We contrast the two proposed protein complexes for each of these proteins, and quantify their effect on their local lipid environment. This ongoing work also aims to provide molecular-level understanding of the mechanisms of action of this virus to possibly aid in the design of novel treatments.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois, 60637, USA.
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
21
|
Ahmadi K, Zahedifard F, Mafakher L, Einakian MA, Ghaedi T, Kavousipour S, Faezi S, Karmostaji A, Sharifi-Sarasiabi K, Gouklani H, Hassaniazad M. Active site-based analysis of structural proteins for drug targets in different human Coronaviruses. Chem Biol Drug Des 2021; 99:585-602. [PMID: 34914204 DOI: 10.1111/cbdd.14004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Seven types of Coronaviruses (CoVs) have been identified that can cause infection in humans, including HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, HCoV-MERS, and SARS-CoV-2. In this study, we investigated the genetic structure, the homology of the structural protein sequences, as well as the investigation of the active site of structural proteins. The active site of structural proteins was determined based on the previous studies, and the homology of their amino acid sequences and structure was compared. Multiple sequence alignment of Spike protein of HCoVs showed that the receptor-binding domain of SARS-CoV-2, SARS-CoV, and MERS-CoV was located at a similar site to the S1 subunit. The binding motif of PDZ (postsynaptic density- 95/discs large/zona occludens-1) of the envelope protein, was conserved in SARS-CoV and SARS-CoV-2 according to multiple sequence alignment but showed different changes in the other HCoVs. Overall, Spike protein showed the most variation in its active sites, but the other structural proteins were highly conserved. In this study, for the first time, the active site of all structural proteins of HCoVs as a drug target was investigated. The binding site of these proteins can be suitable targets for drugs or vaccines among HCoVs.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farnaz Zahedifard
- Drug discovery and Evaluation unit, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Einakian
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tayebeh Ghaedi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sobhan Faezi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Afsaneh Karmostaji
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
22
|
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther 2021; 6:317. [PMID: 34446699 PMCID: PMC8390046 DOI: 10.1038/s41392-021-00733-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to the limitations of the present efforts on drug discovery against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of the understanding of the biological regulation mechanisms underlying COVID-19, alternative or novel therapeutic targets for COVID-19 treatment are still urgently required. SARS-CoV-2 infection and immunity dysfunction are the two main courses driving the pathogenesis of COVID-19. Both the virus and host factors are potential targets for antiviral therapy. Hence, in this study, the current therapeutic strategies of COVID-19 have been classified into "target virus" and "target host" categories. Repurposing drugs, emerging approaches, and promising potential targets are the implementations of the above two strategies. First, a comprehensive review of the highly acclaimed old drugs was performed according to evidence-based medicine to provide recommendations for clinicians. Additionally, their unavailability in the fight against COVID-19 was analyzed. Next, a profound analysis of the emerging approaches was conducted, particularly all licensed vaccines and monoclonal antibodies (mAbs) enrolled in clinical trials against primary SARS-CoV-2 and mutant strains. Furthermore, the pros and cons of the present licensed vaccines were compared from different perspectives. Finally, the most promising potential targets were reviewed, and the update of the progress of treatments has been summarized based on these reviews.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yao Xie
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
23
|
Jörrißen P, Schütz P, Weiand M, Vollenberg R, Schrempf IM, Ochs K, Frömmel C, Tepasse PR, Schmidt H, Zibert A. Antibody Response to SARS-CoV-2 Membrane Protein in Patients of the Acute and Convalescent Phase of COVID-19. Front Immunol 2021; 12:679841. [PMID: 34421894 PMCID: PMC8371319 DOI: 10.3389/fimmu.2021.679841] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the course of the antibody response directed to individual epitopes of SARS-CoV-2 proteins is crucial for serological assays and establishment of vaccines. Twenty-one synthetic peptides were synthesized that have ten amino acids overlap and cover the complete membrane (M) protein. Plasma samples from 32 patients having acute disease and 30 patients from the convalescent phase were studied. Only peptide M01 (aa 1–20) and to a lesser extent peptide M21 (aa 201–222) showed specific reactivity as compared to historical control plasma samples. Peptide M01 was recognized by IgM- (71.9%) and IgG-specific antibodies (43.8%) during the acute phase as early as day 8 PIO. In a longitudinal analysis, a higher reactivity was observed for the IgM response directed to peptide M01 following day 20 PIO as compared to earlier time points of the acute phase. In the convalescent phase, antibody reactivity to the two M-specific peptides was significantly lower (<30% seropositivity). A fusion protein encoding major parts of RBD also showed higher rates of recognition during acute (50.0%) and lower rates in the convalescent phase (23.3%). Taken together, our results suggest that during the acute phase of COVID-19 antibodies are raised to two linear epitopes of the SARS-CoV-2 M protein, located at the very N- and C-termini, showing almost similar levels of reactivity as immunodominant linear epitopes derived from the spike and nucleocapsid protein. Anti-M is also present in the convalescent phase of COVID-19 patients, however at lower levels, with the N-terminus of the M protein as a preferred target.
Collapse
Affiliation(s)
- Philipp Jörrißen
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Paula Schütz
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Matthias Weiand
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Kevin Ochs
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Hartmut Schmidt
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
24
|
Laskar R, Ali S. Differential mutation profile of SARS-CoV-2 proteins across deceased and asymptomatic patients. Chem Biol Interact 2021; 347:109598. [PMID: 34303694 PMCID: PMC8299203 DOI: 10.1016/j.cbi.2021.109598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The SARS-CoV-2 infection has spread at an alarming rate with many places showing multiple peaks in incidence. Present study analyzes a total of 332 SARS-CoV-2 genome sequences from 114 asymptomatic and 218 deceased patients from twenty-one different countries to assess the mutation profile therein in order to establish the correlation between the clinical status and the observed mutations. METHODS The mining of mutations was carried out using the GISAID CoVSurver (www.gisaid.org/epiflu-applications/covsurver-mutations-app) with the reference sequence 'hCoV-19/Wuhan/WIV04/2019' present in NCBI with Accession number NC-045512.2. The impact of the mutations on SARS-CoV-2 proteins mutation was predicted using PredictSNP1(loschmidt.chemi.muni.cz/predictsnp1) which is a meta-server integrating six predictor tools: SIFT, PhD-SNP, PolyPhen-1, PolyPhen-2, MAPP and SNAP. The iStable integrated server (predictor.nchu.edu.tw/iStable) was used to predict shifts in the protein stability due to mutations. RESULTS A total of 372 variants were observed in the 332 SARS-CoV-2 sequences with several variants present in multiple patients accounting for a total of 1596 incidences. Asymptomatic and deceased specific mutants constituted 32% and 62% of the repertoire respectively indicating their partial exclusivity. However, the most prevalent mutations were those present in both. Though some parts of the genome are more variable than others but there was clear difference between incidence and prevalence. Non-structural protein 3 (NSP3) with 68 variants had a total of only 105 incidences whereas Spike protein had 346 incidences with just 66 variants. Amongst the Deleterious variants, NSP3 had the highest incidence of 25 followed by NSP2 (16), ORF3a (14) and N (14). Spike protein had just 7 Deleterious variants out of 66. CONCLUSION Deceased patients have more Deleterious than Neutral variants as compared to the asymptomatic ones. Further, it appears that the Deleterious variants which decrease protein stability are more significant in pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Rezwanuzzaman Laskar
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India.
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India.
| |
Collapse
|
25
|
Aldaais EA, Yegnaswamy S, Albahrani F, Alsowaiket F, Alramadan S. Sequence and structural analysis of COVID-19 E and M proteins with MERS virus E and M proteins-A comparative study. Biochem Biophys Rep 2021; 26:101023. [PMID: 34013072 PMCID: PMC8120451 DOI: 10.1016/j.bbrep.2021.101023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.
Collapse
Affiliation(s)
- Ebtisam A. Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31441, Saudi Arabia
| | - Subha Yegnaswamy
- Aldaais Research Group, Imam Abdulrahman bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatimah Albahrani
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatima Alsowaiket
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Sarah Alramadan
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| |
Collapse
|
26
|
Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021; 30:1114-1130. [PMID: 33813796 PMCID: PMC8138525 DOI: 10.1002/pro.4075] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| | - Rui Yang
- Department of Infection and ImmunityTianjin Union Medical Center, Nankai University Affiliated HospitalTianjinPeople's Republic of China
| | - Imshik Lee
- College of PhysicsNankai UniversityTianjinPeople's Republic of China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Xiangfei Meng
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| |
Collapse
|
27
|
Sakr MM, Elsayed NS, El-Housseiny GS. Latest updates on SARS-CoV-2 genomic characterization, drug, and vaccine development; a comprehensive bioinformatics review. Microb Pathog 2021; 154:104809. [PMID: 33647446 PMCID: PMC7910145 DOI: 10.1016/j.micpath.2021.104809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Amid the COVID-19 outbreak, several bioinformatic analyses have been conducted on SARS-CoV-2 virus genome. Numerous studies rushed to fill the gap about this novel virus. Comparison with other related sequences, structural predictions of the produced proteins, determination of variations in amino acid residues and depiction of possible drug and vaccine targets have been the focus of scientific research from the beginning of this year. In addition to discussing the viral taxonomy, clinical features, life cycle, and genome organization, this review will focus on the recent updates in genome and viral proteins characterization and potential therapeutic and vaccine candidates developed so far. Comparative studies with related genomes and proteins provide understanding for the viral molecular mechanisms and suggest targets for therapeutics and vaccinology trials to stop the escalation of this new virus. This pandemic, with its resulting social and economic afflictions, will definitely have significant marks on our lives in the following years.
Collapse
Affiliation(s)
- Masarra M Sakr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt
| | - Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt.
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
28
|
Monje-Galvan V, Voth GA. Molecular interactions of the M and E integral membrane proteins of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33948595 DOI: 10.1101/2021.04.29.442018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Specific lipid-protein interactions are key for cellular processes, and even more so for the replication of pathogens. The COVID-19 pandemic has drastically changed our lives and cause the death of nearly three million people worldwide, as of this writing. SARS-CoV-2 is the virus that causes the disease and has been at the center of scientific research over the past year. Most of the research on the virus is focused on key players during its initial attack and entry into the cellular host; namely the S protein, its glycan shield, and its interactions with the ACE2 receptors of human cells. As cases continue to raise around the globe, and new mutants are identified, there is an urgent need to understand the mechanisms of this virus during different stages of its life cycle. Here, we consider two integral membrane proteins of SARS-CoV-2 known to be important for viral assembly and infectivity. We have used microsecond-long all-atom molecular dynamics to examine the lipid-protein and protein-protein interactions of the membrane (M) and envelope (E) structural proteins of SARS-CoV-2 in a complex membrane model. We contrast the two proposed protein complexes for each of these proteins, and quantify their effect on their local lipid environment. This ongoing work also aims to provide molecular-level understanding of the mechanisms of action of this virus to possibly aid in the design of novel treatments.
Collapse
|
29
|
Alharbi SN, Alrefaei AF. Comparison of the SARS-CoV-2 (2019-nCoV) M protein with its counterparts of SARS-CoV and MERS-CoV species. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2021; 33:101335. [PMID: 33432259 PMCID: PMC7787911 DOI: 10.1016/j.jksus.2020.101335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 05/09/2023]
Abstract
Coronaviruses M proteins are well-represented in the major protein component of the viral envelope. During the viral assembly, they play an important role by association with all other viral structural proteins. Despite their crucial functions, very little information regarding the structures and functions of M proteins is available. Here we utilize bioinformatic tools from available sequences and 3D structures of SARS-CoV, SARS-CoV2, and MERS-CoV M proteins in order to predict potential B-cell epitopes and assessing antibody binding affinity. Such study aims to aid finding more effective vaccines and recognize neutralizing antibodies. we found some rather exciting differences between SARS-COV-2, SARS-Cov and MERS-CoV M proteins. Two SARS-CoV-2 peptides with significant antigen presentation scores for human cell surface proteins have been identified. The results reveal that N-terminal domains of M proteins of SARS-CoV and SARS-CoV2 are translocated (outside) whereas it is inside (cytoplasmic side) in MERS-CoV.
Collapse
Affiliation(s)
- Sultan Nafea Alharbi
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, King Saud University, College of Science, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2021; 78:1655-1688. [PMID: 32712910 DOI: 10.1101/2020.03.13.990598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
31
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
32
|
Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021; 433:166725. [PMID: 33245961 PMCID: PMC7685130 DOI: 10.1016/j.jmb.2020.11.024] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
The unprecedented scale of the ongoing COVID-19 pandemic has catalyzed an intense effort of the global scientific community to unravel different aspects of the disease in a short time. One of the crucial aspects of these developments is the determination of more than three hundred experimental structures of SARS-CoV-2 proteins in the last few months. These include structures of viral non-structural, structural, and accessory proteins and their complexes determined by either X-ray diffraction or cryo-electron microscopy. These structures elucidate the intricate working of different components of the viral machinery at the atomic level during different steps of the viral life cycle, including attachment to the host cell, viral genome replication and transcription, and genome packaging and assembly of the virion. Some of these proteins are also potential targets for drug development against the disease. In this review, we discuss important structural features of different SARS-CoV-2 proteins with their function, and their potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shweta Kumari
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bharati Pandey
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hiral Mistry
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Amit Das
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Gagan D Gupta
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Lata Panicker
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
33
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alvarado LHA, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, de la Campa MOA, Paredes I, Wheeler B, Rupert A, Sam A, See K, Zapata SS, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33299989 DOI: 10.1101/2020.12.01.406637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
|
34
|
Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J 2020; 18:4093-4102. [PMID: 33363705 PMCID: PMC7749296 DOI: 10.1016/j.csbj.2020.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
The genome of SARS-CoV-2, the coronavirus responsible for the Covid-19 pandemic, encodes a number of accessory genes. The longest accessory gene, Orf3a, plays important roles in the virus lifecycle indicated by experimental findings, known polymorphisms, its evolutionary trajectory and a distinct three-dimensional fold. Here we show that supervised, sensitive database searches with Orf3a detect weak, yet significant and highly specific similarities to the M proteins of coronaviruses. The similarity profiles can be used to derive low-resolution three-dimensional models for M proteins based on Orf3a as a structural template. The models also explain the emergence of Orf3a from M proteins and suggest a recent origin across the coronavirus lineage, enunciated by its restricted phylogenetic distribution. This study provides evidence for the common origin of M and Orf3a families and proposes for the first time a working model for the structure of the universally distributed M proteins in coronaviruses, consistent with the properties of both protein families.
Collapse
Affiliation(s)
- Christos A. Ouzounis
- Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece
| |
Collapse
|
35
|
Rajarshi K, Khan R, Singh MK, Ranjan T, Ray S, Ray S. Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19. Gene 2020; 768:145313. [PMID: 33220345 PMCID: PMC7673215 DOI: 10.1016/j.gene.2020.145313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The whole world is still suffering substantially from the coronavirus disease 2019 (COVID-19) outbreak. Several protein-based molecules that are associated with the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are essential for its functionality, survival, and pathogenesis have been identified and are considered as potential therapeutic targets. These protein-based molecules are either structural/non-structural components of SARS-CoV-2 or host factors, which play a crucial role in this infection. Developing drug molecules against these essential functional molecules to hinder their regular functioning and associated physiological pathways could be promising for successful clinical management of this novel coronavirus infection. The review aims to highlight the functional molecules that play crucial roles in SARS-CoV-2 pathogenesis. We have emphasized how these potential druggable targets could be beneficial in tackling the COVID-19 crisis.
Collapse
Affiliation(s)
- Keshav Rajarshi
- School of Community Science and Technology (SOCSAT), Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Rajni Khan
- Motihari College of Engineering, Motihari 845401, India
| | | | - Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agriculture University, Sabour, Bhagalpur, India.
| | - Sandipan Ray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India.
| |
Collapse
|
36
|
Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104474. [PMID: 32712315 PMCID: PMC7378008 DOI: 10.1016/j.meegid.2020.104474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Synthetic or natural derived cell-penetrating peptides (CPPs) are vastly investigated as tools for the intracellular delivery of membrane-impermeable molecules. As viruses are intracellular obligate parasites, viral originated CPPs have been considered as suitable intracellular shuttling vectors for cargo transportation. A total of 310 CPPs were identified in the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Screening the proteome of the cause of COVID-19 reveals that SARS-CoV-2 CPPs (SCV2-CPPs) span the regions involved in replication, protein-nucleotide and protein-protein interaction, protein-metal ion interaction, and stabilization of homo/hetero-oligomers. However, to find the most appropriate peptides as drug delivery vectors, one might face several hurdles. Computational analyses showed that 94.3% of the identified SCV2-CPPs are non-toxins, and 38% are neither antigenic nor allergenic. Interestingly, 36.70% of SCV2-CPPs were resistant to all four groups of protease families. Nearly 1/3 of SCV2-CPPs had sufficient inherent or induced helix and sheet conformation leading to increased uptake efficiency. Heliquest lipid-binding discrimination factor revealed that 44.30% of the helical SCV2-CPPs are lipid-binding helices. Although Cys-rich derived CPPs of helicase (NSP13) can potentially fold into a cyclic conformation in endosomes with a higher rate of endosomal release, the most optimal SCV2-CPP candidates as vectors for drug delivery were SCV2-CPP118, SCV2-CPP119, SCV2-CPP122, and SCV2-CPP129 of NSP12 (RdRp). Ten experimentally validated viral-derived CPPs were also used as the positive control to check the scalability and reliability of our protocol in SCV2-CPP retrieval. Some peptides with a cell-penetration ability known as bioactive peptides are adopted as biotherapeutics themselves. Therefore, 59.60%, 29.63%, and 32.32% of SCV2-CPPs were identified as potential antibacterial, antiviral, and antifungals, respectively. While 63.64% of SCV2-CPPs had immuno-modulatory properties, 21.89% were recognized as anti-cancers. Conclusively, the workflow of this study provides a platform for profound screening of viral proteomes as a rich source of biotherapeutics or drug delivery carriers.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haddad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, Padya BS, Fernandes G, Mutalik S, Prassl R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci 2020; 256:117883. [PMID: 32497632 PMCID: PMC7263255 DOI: 10.1016/j.lfs.2020.117883] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
Abstract
The present pandemic of SARS-CoV-2 has been a tough task for the whole world to deal with. With the absence of specific drugs or vaccines against SARS-CoV-2, the situation is very difficult to control. Apart from the absence of specific therapies, the lack of knowledge about potential therapeutic targets and individual perception is adding to the complications. The present review describes the novel SARS-CoV-2 structure, surface proteins, asymptomatic and symptomatic transmission in addition to the genotype and phenotype of SARS-CoV-2 along with genetic strains and similarity between SARS, MERS and SARS-CoV-2. Therapeutic strategies such as inhibition of the endocytic pathway and suppressing RNA polymerase activity by metal ions, which could be quite beneficial for controlling COVID-19, are outlined. The drug repurposing for SARS-CoV-2 is discussed in detail along with therapeutic classes such as antivirals, antibiotics, and amino quinolones and their probable role in suppressing SARS-CoV-2 with reference to case studies. The ongoing clinical trials both with respect to drug repurposing and vaccines are summarized along with a brief description. The recent advancements and future perspective of ongoing research for therapy and detection of SARS-CoV-2 are provided. The review, in brief, summarizes epidemiology, therapy and the current scenario for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Abhjieet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India; Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka State, India.
| | - Ruth Prassl
- Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, Graz, Austria..
| |
Collapse
|
38
|
Liang XY, Zhu QC, Liang JQ, Liu SY, Liu DX, Fung TS. Development of HiBiT-Tagged Recombinant Infectious Bronchitis Coronavirus for Efficient in vitro and in vivo Viral Quantification. Front Microbiol 2020; 11:2100. [PMID: 32983065 PMCID: PMC7485224 DOI: 10.3389/fmicb.2020.02100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Coronaviruses (CoVs) are enveloped (+) ssRNA viruses of veterinary and medical importance. Because recombinant CoVs with reporter proteins fused with viral proteins are usually non-viable or unstable, a small and quantifiable epitope tag would be beneficial to CoV research. In this study, we integrated the NanoLuc Binary Technology to the reverse genetics of infectious bronchitis virus (IBV), a prototypic gammacoronavirus. The 11-amino-acid HiBiT tag was inserted to the spike (S) or membrane (M) protein, and the recombinant IBVs (rS-HiBiT and rM-HiBiT) were characterized. Compared with the rIBV-p65 control, rS-HiBiT exhibited comparable growth kinetics, whereas rM-HiBiT replicated slightly slower. The levels of HiBiT-tagged S and M proteins in the infected cells or the culture supernatant could be both rapidly (~15 min) and efficiently (30 μL sample volume) determined using the HiBiT luminescence assay. Notably, replication of the HiBiT-tagged IBV could be monitored continuously in an infected chicken embryo, and rS-HiBiT was genetically stable for at least 20 passages. By integrating the HiBiT tagging system with CoV reverse genetics, this new reporter system may facilitate future study of CoV replication and pathogenesis.
Collapse
Affiliation(s)
- Xiao Ying Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qing Chun Zhu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jia Qi Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Si Ying Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2020; 78:1655-1688. [PMID: 32712910 PMCID: PMC7382329 DOI: 10.1007/s00018-020-03603-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein–protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
40
|
Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. J Virol 2019; 93:JVI.00355-19. [PMID: 31315999 PMCID: PMC6744225 DOI: 10.1128/jvi.00355-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development. Human coronavirus NL63 (HCoV-NL63) is a common respiratory virus that causes moderately severe infections. We have previously shown that the virus uses heparan sulfate proteoglycans (HSPGs) as the initial attachment factors, facilitating viral entry into the cell. In the present study, we show that the membrane protein (M) of HCoV-NL63 mediates this attachment. Using viruslike particles lacking the spike (S) protein, we demonstrate that binding to the cell is not S protein dependent. Furthermore, we mapped the M protein site responsible for the interaction with HSPG and confirmed its relevance using a viable virus. Importantly, in silico analysis of the region responsible for HSPG binding in different clinical isolates and the Amsterdam I strain did not exhibit any signs of cell culture adaptation. IMPORTANCE It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development.
Collapse
|
41
|
Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, Ochman M, Zeglen S, Rajfur Z, Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One 2018; 13:e0203489. [PMID: 30183777 PMCID: PMC6124810 DOI: 10.1371/journal.pone.0203489] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| | - Agnieszka Dabrowska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Nowak
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Jasik
- Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, Sosnowiec, Poland
| | - Aleksandra Milewska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| |
Collapse
|
42
|
Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PKS, Di Bonito P, Franconi R. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS. FRONTIERS IN PLANT SCIENCE 2016; 7:54. [PMID: 26904039 PMCID: PMC4742786 DOI: 10.3389/fpls.2016.00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/13/2016] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV), crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N) and the membrane protein (M) using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Silvia Massa
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Elena Illiano
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di MilanoMilan, Italy
| | - Domenico De Martinis
- International Relations Office, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
- Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Paola Di Bonito
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated DiseasesRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| | - Rosella Franconi
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| |
Collapse
|
43
|
Ujike M, Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 2015; 7:1700-25. [PMID: 25855243 PMCID: PMC4411675 DOI: 10.3390/v7041700] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Fumihiro Taguchi
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|