1
|
Li Q, Li H, Zhu R, Cho WCS, Yao X, Leung FP, Tse G, Leung LK, Wong WT. TRPV2 calcium channel promotes breast cancer progression potential by activating autophagy. Cancer Cell Int 2024; 24:324. [PMID: 39334351 PMCID: PMC11438410 DOI: 10.1186/s12935-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca2+), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Qing Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huixian Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, 999077, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lai Kwok Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
2
|
Zhang J, Zhao C, Yao M, Qi J, Tan Y, Shi K, Wang J, Zhou S, Li Z. Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:663-681. [PMID: 39165737 PMCID: PMC11331363 DOI: 10.5187/jast.2023.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 08/22/2024]
Abstract
Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Chunping Zhao
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Min Yao
- Inspection and Testing Department, Guizhou
Testing Center for Livestock and Poultry Germplasm, Guiyang
550002, China
| | - Jing Qi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Ya Tan
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Kaizhi Shi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Jing Wang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Sixuan Zhou
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Zhixin Li
- College of Animal Science, Guizhou
University, Guiyang 550002, China
| |
Collapse
|
3
|
Gallo PN, Mihelc E, Eisert R, Bradshaw GA, Dimek F, Leffler A, Kalocsay M, Moiseenkova-Bell V. The dynamic TRPV2 ion channel proximity proteome reveals functional links of calcium flux with cellular adhesion factors NCAM and L1CAM in neurite outgrowth. Cell Calcium 2024; 121:102894. [PMID: 38728789 PMCID: PMC11456977 DOI: 10.1016/j.ceca.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.
Collapse
Affiliation(s)
- Pamela N Gallo
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Elaine Mihelc
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Robyn Eisert
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, USA
| | - Florian Dimek
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Andreas Leffler
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Marian Kalocsay
- The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Houston, TX, USA.
| | - Vera Moiseenkova-Bell
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Gou R, Liu Y, Gou L, Mi S, Li X, Yang Y, Cheng X, Zhang Y. Transient Receptor Potential Channels in Sensory Mechanisms of the Lower Urinary Tract. Urol Int 2024; 108:464-476. [PMID: 38657590 DOI: 10.1159/000538855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.
Collapse
Affiliation(s)
- Ruiqiang Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,
| | - Yuanyuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shengyan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaonan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaorong Cheng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yibao Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
6
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
7
|
Daba MY, Fan Z, Li Q, Yuan X, Liu B. The Role of Calcium Channels in Prostate Cancer Progression and Potential as a Druggable Target for Prostate Cancer Treatment. Crit Rev Oncol Hematol 2023; 186:104014. [PMID: 37119879 DOI: 10.1016/j.critrevonc.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Prostate cancer (PCa) is the most diagnosed cancer among men. Discovering novel prognostic biomarkers and potential therapeutic targets are critical. Calcium signaling has been implicated in PCa progression and development of treatment resistance. Altered modification of Ca2+ flows leads to serious pathophysiological processes, such as malignant transformation, tumor proliferation, epithelial to mesenchymal transition, evasion of apoptosis, and treatment resistance. Calcium channels control and contribute to these processes. PCa has shown defective Ca2+ channels, which subsequently promotes tumor metastasis and growth. Store-operated Ca2+ entry channels such as Orai and STIM channels and transient receptor potential channels play a significant role in PCa pathogenesis. Pharmacological modulation of these calcium channels or pumps has been suggested as a practical approach. In this review, we discuss the role of calcium channels in PCa development and progression, and we identify current novel discoveries of drugs that target specific calcium channels for the treatment of PCa.
Collapse
Affiliation(s)
- Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
8
|
Expression of the Calcitonin Receptor-like Receptor (CALCRL) in Normal and Neoplastic Tissues. Int J Mol Sci 2023; 24:ijms24043960. [PMID: 36835377 PMCID: PMC9962437 DOI: 10.3390/ijms24043960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.
Collapse
|
9
|
Shoji KF, Bayet E, Leverrier-Penna S, Le Devedec D, Mallavialle A, Marionneau-Lambot S, Rambow F, Perret R, Joussaume A, Viel R, Fautrel A, Khammari A, Constantin B, Tartare-Deckert S, Penna A. The mechanosensitive TRPV2 calcium channel promotes human melanoma invasiveness and metastatic potential. EMBO Rep 2023; 24:e55069. [PMID: 36744297 PMCID: PMC10074106 DOI: 10.15252/embr.202255069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Kenji F Shoji
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Elsa Bayet
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| | | | - Dahiana Le Devedec
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Aude Mallavialle
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | | | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany.,University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Raul Perret
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | - Aurélie Joussaume
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Alain Fautrel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Amir Khammari
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | | | - Sophie Tartare-Deckert
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | - Aubin Penna
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| |
Collapse
|
10
|
Jailani ABA, Bigos KJA, Avgoustou P, Egan JL, Hathway RA, Skerry TM, Richards GO. Targeting the adrenomedullin-2 receptor for the discovery and development of novel anti-cancer agents. Expert Opin Drug Discov 2022; 17:839-848. [PMID: 35733389 DOI: 10.1080/17460441.2022.2090541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Adrenomedullin (AM) is a peptide responsible for many physiological processes including vascular health and hormone regulation. Dysregulation of AM signaling can stimulate cancers by promoting proliferation, angiogenesis and metastasis. Two AM receptors contribute to tumor progression in different ways. Adrenomedullin-1 receptor (AM1R) regulates blood pressure and blocking AM signaling via AM1R would be clinically unacceptable. Therefore, antagonizing adrenomedullin-2 receptor (AM2R) presents as an avenue for anti-cancer drug development. AREAS COVERED We review the literature to highlight AM's role in cancer as well as delineating the specific roles AM1R and AM2R mediate in the development of a pro-tumoral microenvironment. We highlight the importance of exploring the residue differences between the receptors that led to the development of first-in-class selective AM2R small molecule antagonists. We also summarize the current approaches targeting AM and its receptors, their anti-tumor effects and their limitations. EXPERT OPINION As tool compounds, AM2R antagonists will allow the dissection of the functions of CGRPR (calcitonin gene-related peptide receptor), AM1R and AM2R, and has considerable potential as a first-in-class oncology therapy. Furthermore, the lack of detectable side effects and good drug-like pharmacokinetic properties of these AM2R antagonists support the promise of this class of compounds as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ameera B A Jailani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Kamilla J A Bigos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Paris Avgoustou
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Joseph L Egan
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | | | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Gareth O Richards
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
13
|
Guéguinou M, Felix R, Marionneau-Lambot S, Oullier T, Penna A, Kouba S, Gambade A, Fourbon Y, Ternant D, Arnoult C, Simon G, Bouchet AM, Chantôme A, Harnois T, Haelters JP, Jaffrès PA, Weber G, Bougnoux P, Carreaux F, Mignen O, Vandier C, Potier-Cartereau M. Synthetic alkyl-ether-lipid promotes TRPV2 channel trafficking trough PI3K/Akt-girdin axis in cancer cells and increases mammary tumour volume. Cell Calcium 2021; 97:102435. [PMID: 34167050 DOI: 10.1016/j.ceca.2021.102435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
The Transient Receptor Potential Vanilloid type 2 (TRPV2) channel is highly selective for Ca2+ and can be activated by lipids, such as LysoPhosphatidylCholine (LPC). LPC analogues, such as the synthetic alkyl-ether-lipid edelfosine or the endogenous alkyl-ether-lipid Platelet Activating Factor (PAF), modulates ion channels in cancer cells. This opens the way to develop alkyl-ether-lipids for the modulation of TRPV2 in cancer. Here, we investigated the role of 2-Acetamido-2-Deoxy-l-O-Hexadecyl-rac-Glycero-3-PhosphatidylCholine (AD-HGPC), a new alkyl-ether-lipid (LPC analogue), on TRPV2 trafficking and its impact on Ca2+ -dependent cell migration. The effect of AD-HGPC on the TRPV2 channel and tumour process was further investigated using calcium imaging and an in vivo mouse model. Using molecular and pharmacological approaches, we dissected the mechanism implicated in alkyl-ether-lipids sensitive TRPV2 trafficking. We found that TRPV2 promotes constitutive Ca2+ entry, leading to migration of highly metastatic breast cancer cell lines through the PI3K/Akt-Girdin axis. AD-HGPC addresses the functional TRPV2 channel in the plasma membrane through Golgi stimulation and PI3K/Akt/Rac-dependent cytoskeletal reorganization, leading to constitutive Ca2+ entry and breast cancer cell migration (without affecting the development of metastasis), in a mouse model. We describe, for the first time, the biological role of a new alkyl-ether-lipid on TRPV2 channel trafficking in breast cancer cells and highlight the potential modulation of TRPV2 by alkyl-ether-lipids as a novel avenue for research in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France; PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Romain Felix
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | | | - Thibauld Oullier
- Inserm UMR 1235 TENS, Faculté de Médecine, Université de Nantes, F-44035, France
| | - Aubin Penna
- STIM Team, ERL CNRS 7349, UFR SFA Pole Biologie Santé, Université de Poitiers, F-86073, France
| | - Sana Kouba
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Audrey Gambade
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Yann Fourbon
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - David Ternant
- PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Christophe Arnoult
- PATCH Team, EA 7501 GICC, Faculté de Médecine, Université de Tours, F-37032, France
| | - Gaëlle Simon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Ana Maria Bouchet
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Aurélie Chantôme
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Thomas Harnois
- STIM Team, ERL CNRS 7349, UFR SFA Pole Biologie Santé, Université de Poitiers, F-86073, France
| | - Jean-Pierre Haelters
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Gunther Weber
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Philippe Bougnoux
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - François Carreaux
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes, F-35700, France
| | - Olivier Mignen
- Inserm UMR 1227 Immunothérapies et Pathologies Lymphocytaires B, CHU Morvan, Université de Bretagne Occidentale, Brest, F-29609, France
| | - Christophe Vandier
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France.
| |
Collapse
|
14
|
Conde J, Pumroy RA, Baker C, Rodrigues T, Guerreiro A, Sousa BB, Marques MC, de Almeida BP, Lee S, Leites EP, Picard D, Samanta A, Vaz SH, Sieglitz F, Langini M, Remke M, Roque R, Weiss T, Weller M, Liu Y, Han S, Corzana F, Morais VA, Faria C, Carvalho T, Filippakopoulos P, Snijder B, Barbosa-Morais NL, Moiseenkova-Bell VY, Bernardes GJL. Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS CENTRAL SCIENCE 2021; 7:868-881. [PMID: 34079902 PMCID: PMC8161495 DOI: 10.1021/acscentsci.1c00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 05/04/2023]
Abstract
The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.
Collapse
Affiliation(s)
- João Conde
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ruth A. Pumroy
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charlotte Baker
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Guerreiro
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bárbara B. Sousa
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta C. Marques
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bernardo P. de Almeida
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sohyon Lee
- Institute
of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Elvira P. Leites
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Daniel Picard
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Amrita Samanta
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sandra H. Vaz
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Florian Sieglitz
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maike Langini
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Marc Remke
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Rafael Roque
- Laboratório
de Neuropatologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHLN) EPE, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tobias Weiss
- Department
of Neurology and Brain Tumour Center, University
Hospital Zürich and University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Michael Weller
- Department
of Neurology and Brain Tumour Center, University
Hospital Zürich and University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Yuhang Liu
- Discovery
Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Discovery
Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Francisco Corzana
- Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Vanessa A. Morais
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Cláudia
C. Faria
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Department
of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN) EPE, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tânia Carvalho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Panagis Filippakopoulos
- Structural
Genomics Consortium, Oxford University, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Berend Snijder
- Institute
of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Nuno L. Barbosa-Morais
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Y. Moiseenkova-Bell
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- E-mail:
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- E-mail: ;
| |
Collapse
|
15
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
16
|
TRPV2: A Cancer Biomarker and Potential Therapeutic Target. DISEASE MARKERS 2020; 2020:8892312. [PMID: 33376561 PMCID: PMC7746447 DOI: 10.1155/2020/8892312] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The Transient Receptor Potential Vanilloid type-2 (TRPV2) channel exhibits oncogenicity in different types of cancers. TRPV2 is implicated in signaling pathways that mediate cell survival, proliferation, and metastasis. In leukemia and bladder cancer, the oncogenic activity of TRPV2 was linked to alteration of its expression profile. In multiple myeloma patients, TRPV2 overexpression correlated with bone tissue damage and poor prognosis. In prostate cancer, TRPV2 overexpression was associated with the castration-resistant phenotype and metastasis. Loss or inactivation of TRPV2 promoted glioblastoma cell proliferation and increased resistance to CD95-induced apoptotic cell death. TRPV2 overexpression was associated with high relapse-free survival in triple-negative breast cancer, whereas the opposite was found in patients with esophageal squamous cell carcinoma or gastric cancer. Another link was found between TRPV2 expression and either drug-induced cytotoxicity or stemness of liver cancer. Overall, these findings validate TRPV2 as a prime candidate for cancer biomarker and future therapeutic target.
Collapse
|
17
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
18
|
Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening. Rev Physiol Biochem Pharmacol 2020; 181:39-56. [PMID: 32737754 DOI: 10.1007/112_2020_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the last three decades, a growing number of studies have implicated ion channels in all essential processes of prostate carcinogenesis, including cell proliferation, apoptosis, migration, and angiogenesis. The changes in the expression of individual ion channels show a specific profile, making these proteins promising clinical biomarkers that may enable better molecular subtyping of the disease and lead to more rapid and accurate clinical decision-making. Expression profiles and channel function are mainly based on the tumoral tissue itself, in this case, the epithelial cancer cell population. To date, little data on the ion channel profile of the cancerous prostate stroma are available, even though tumor interactions with the microenvironment are crucial in carcinogenesis and each distinct population plays a specific role in tumor progression. In this review, we describe ion channel expression profiles specific for the distinct cell population of the tumor microenvironment (stromal, endothelial, neuronal, and neuroendocrine cell populations) and the technical approaches used for efficient separation and screening of these cell populations.
Collapse
|
19
|
Marinelli O, Morelli MB, Annibali D, Aguzzi C, Zeppa L, Tuyaerts S, Amantini C, Amant F, Ferretti B, Maggi F, Santoni G, Nabissi M. The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer. Int J Mol Sci 2020; 21:ijms21155409. [PMID: 32751388 PMCID: PMC7432565 DOI: 10.3390/ijms21155409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies support, both in vitro and in vivo, the anti-cancer effects of cannabidiol (CBD), a transient receptor potential vanilloid 2 (TRPV2) ligand. TRPV2, often dysregulated in tumors, is associated with altered cell proliferation and aggressiveness. Endometrial cancer (EC) is historically divided in type I endometrioid EC and type II non-endometrioid EC, associated with poor prognosis. Treatment options with chemotherapy and combinations with radiation showed only limited efficacy. Since no data are reported concerning TRPV2 expression as well as CBD potential effects in EC, the aim of this study was to evaluate the expression of TRPV2 in biopsies and cell lines as well as the effects of CBD in in vitro models. Overall survival (OS), progression-free survival (PFS), cell viability, migration, and chemo-resistance have been evaluated. Results show that TRPV2 expression increased with the malignancy of the cancer tissue and correlated with shorter PFS (p = 0.0224). Moreover, in vitro TRPV2 over-expression in Ishikawa cell line increased migratory ability and response to cisplatin. CBD reduced cell viability, activating predominantly apoptosis in type I cells and autophagy in mixed type EC cells. The CBD improved chemotherapeutic drugs cytotoxic effects, enhanced by TRPV2 over-expression. Hence, TRPV2 could be considered as a marker for optimizing the therapy and CBD might be a useful therapeutic option as adjuvant therapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Autophagy/drug effects
- Cannabidiol/pharmacology
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Drug Synergism
- Endometrial Neoplasms/diagnosis
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Progression-Free Survival
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Oliviero Marinelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Daniela Annibali
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Laura Zeppa
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Sandra Tuyaerts
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy;
| | - Frédéric Amant
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Centra (UMC), 1066 Amsterdam, The Netherlands
| | - Benedetta Ferretti
- Oncologia Medica, Ospedale di San Severino, 62027 San Severino Marche (MC), Italy;
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00155 Rome, Italy;
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino (MC), Italy
- Correspondence: ; Tel.: +39-0737-403306
| |
Collapse
|
20
|
Fine Tuning of Calcium Constitutive Entry by Optogenetically-Controlled Membrane Polarization: Impact on Cell Migration. Cells 2020; 9:cells9071684. [PMID: 32668787 PMCID: PMC7408270 DOI: 10.3390/cells9071684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Anomalies in constitutive calcium entry (CCE) have been commonly attributed to cell dysfunction in pathological conditions such as cancer. Calcium influxes of this type rely on channels, such as transient receptor potential (TRP) channels, to be constitutively opened and strongly depend on membrane potential and a calcium driving force. We developed an optogenetic approach based on the expression of the halorhodopsin chloride pump to study CCE in non-excitable cells. Using C2C12 cells, we found that halorhodopsin can be used to achieve a finely tuned control of membrane polarization. Escalating the membrane polarization by incremental changes in light led to a concomitant increase in CCE through transient receptor potential vanilloid 2 (TRPV2) channels. Moreover, light-induced calcium entry through TRPV2 channels promoted cell migration. Our study shows for the first time that by modulating CCE and related physiological responses, such as cell motility, halorhodopsin serves as a potentially powerful tool that could open new avenues for the study of CCE and associated cellular behaviors.
Collapse
|
21
|
Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Alonso V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers (Basel) 2020; 12:E1071. [PMID: 32344908 PMCID: PMC7281772 DOI: 10.3390/cancers12051071] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers that progress to tumor metastases are often considered incurable or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors, de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation, motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways involved in the development of prostate cancer and its progression. Such factors and pathways include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate cancer cells, potentially favoring bone metastases development. New therapies for the treatment of prostate cancer include compounds characterized by potent and specific actions that target calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential (TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated the relationship between calcium signaling and progression of prostate cancer, as well as potential therapies aiming to modulate calcium signaling in prostate tumor progression.
Collapse
Affiliation(s)
- Juan A. Ardura
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Luis Álvarez-Carrión
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Irene Gutiérrez-Rojas
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Verónica Alonso
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
22
|
The TRPV2 cation channels: from urothelial cancer invasiveness to glioblastoma multiforme interactome signature. J Transl Med 2020; 100:186-198. [PMID: 31653969 DOI: 10.1038/s41374-019-0333-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Changes in transient receptor potential (TRP) Ca2+ permeable channels are associated with development and progression of different types of cancer. Herein, we report data relative to the expression and function of TRP vanilloid 2 (TRPV2) channels in cancer. Overexpression of TRPV2 is observed in high-grade urothelial cancers and treatment with the TRPV2 agonist cannabidiol induces apoptosis. In prostate cancer, TRPV2 promotes migration and invasion, and TRPV2 overexpression characterizes the castration-resistant phenotype. In breast cancer cells, inhibition of TRPV2 by tranilast reduces the insulin-like growth factor-1 stimulated proliferation. TRPV2 overexpression in triple-negative breast cancer cells is associated with high recurrence-free survival. Increased TRPV2 overexpression is present in patients with esophageal squamous cell carcinoma associated with advanced disease, lymph node metastasis, and poor prognosis. Increased TRPV2 transcripts have been found both in benign hepatoma and in hepatocarcinomas, where TRPV2 expression is associated with portal vein invasion and reduction of cancer stem cell expression. TRPV2 expression and function has been also evaluated in gliomagenesis. This receptor negatively controls survival, proliferation, and resistance to CD95- or BCNU-induced apoptosis. In glioblastoma stem cells, TRPV2 activation promotes differentiation and inhibits the proliferation in vitro and in vivo. In glioblastoma, the TRPV2 is part of an interactome-based signature complex, which is negatively associated with survival, and it is expressed in high risk of recurrence and temozolomide-resistant patients. Finally, also in hematological malignancies, such as myeloma or acute myeloid leukemia, TRPV2 might represent a target for novel therapeutic approaches. Overall, these findings demonstrate that TRPV2 exhibits an oncogenic activity in different types of cancers, controlling survival, proliferation, migration, angiogenesis, and invasion signaling pathways. Thus, it prompts the pharmacological use of TRPV2 targeting in the control of cancer progression.
Collapse
|
23
|
Transient Receptor Potential Cation Channels in Cancer Therapy. Med Sci (Basel) 2019; 7:medsci7120108. [PMID: 31801263 PMCID: PMC6950741 DOI: 10.3390/medsci7120108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
In mammals, the transient receptor potential (TRP) channels family consists of six different families, namely TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin), that are strictly connected with cancer cell proliferation, differentiation, cell death, angiogenesis, migration, and invasion. Changes in TRP channels' expression and function have been found to regulate cell proliferation and resistance or sensitivity of cancer cells to apoptotic-induced cell death, resulting in cancer-promoting effects or resistance to chemotherapy treatments. This review summarizes the data reported so far on the effect of targeting TRP channels in different types of cancer by using multiple TRP-specific agonists, antagonists alone, or in combination with classic chemotherapeutic agents, microRNA specifically targeting the TRP channels, and so forth, and the in vitro and in vivo feasibility evaluated in experimental models and in cancer patients. Considerable efforts have been made to fight cancer cells, and therapies targeting TRP channels seem to be the most promising strategy. However, more in-depth investigations are required to completely understand the role of TRP channels in cancer in order to design new, more specific, and valuable pharmacological tools.
Collapse
|
24
|
Kudou M, Shiozaki A, Yamazato Y, Katsurahara K, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. The expression and role of TRPV2 in esophageal squamous cell carcinoma. Sci Rep 2019; 9:16055. [PMID: 31690728 PMCID: PMC6831681 DOI: 10.1038/s41598-019-52227-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Transient receptor potential vanilloid 2 (TRPV2) was recently shown to be involved in migrant potentials. The present study aimed to investigate its role in esophageal squamous cell carcinoma (ESCC). Methods: Knockdown experiments were conducted using TRPV2 siRNA in human ESCC cell lines, and anti-tumor effects were analyzed. The gene expression profiles of cells were analyzed using a microarray method. An immunohistochemical staining was performed on 62 primary tumor samples. Results: TRPV2 overexpression was observed in TE15 and KYSE170 cells. TRPV2 depletion suppressed proliferation, cell cycle progression, and invasion/migration ability, and induced apoptosis. A pathway analysis of microarray data showed that TRPV2 depletion down-regulated WNT/β-catenin signaling-related genes and basal cell carcinoma signaling-related genes. The suppression of tumor functions, such as proliferation, invasion, and angiogenesis, was predicted in the ontology analysis. Immunohistochemical analysis revealed a correlation between strong TRPV2 expression and a poor prognosis in ESCC patients. Conclusion: The present results suggest that TRPV2 regulates cancer progression by affecting WNT/β-catenin or basal cell carcinoma signaling, and that TRPV2 strong expression is associated with a worse prognosis in ESCC patients. These results provide an insight into the role of TRPV2 as a novel therapeutic target or biomarker for ESCC.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Keita Katsurahara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
25
|
Bernardini M, Brossa A, Chinigo G, Grolez GP, Trimaglio G, Allart L, Hulot A, Marot G, Genova T, Joshi A, Mattot V, Fromont G, Munaron L, Bussolati B, Prevarskaya N, Fiorio Pla A, Gkika D. Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis. Cancers (Basel) 2019; 11:cancers11070956. [PMID: 31288452 PMCID: PMC6678088 DOI: 10.3390/cancers11070956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Transient receptor potential (TRP) channels control multiple processes involved in cancer progression by modulating cell proliferation, survival, invasion and intravasation, as well as, endothelial cell (EC) biology and tumor angiogenesis. Nonetheless, a complete TRP expression signature in tumor vessels, including in prostate cancer (PCa), is still lacking. Methods: In the present study, we profiled by qPCR the expression of all TRP channels in human prostate tumor-derived ECs (TECs) in comparison with TECs from breast and renal tumors. We further functionally characterized the role of the ‘prostate-associated’ channels in proliferation, sprout formation and elongation, directed motility guiding, as well as in vitro and in vivo morphogenesis and angiogenesis. Results: We identified three ‘prostate-associated’ genes whose expression is upregulated in prostate TECs: TRPV2 as a positive modulator of TEC proliferation, TRPC3 as an endothelial PCa cell attraction factor and TRPA1 as a critical TEC angiogenic factor in vitro and in vivo. Conclusions: We provide here the full TRP signature of PCa vascularization among which three play a profound effect on EC biology. These results contribute to explain the aggressive phenotype previously observed in PTEC and provide new putative therapeutic targets.
Collapse
Affiliation(s)
- Michela Bernardini
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy
| | - Giorgia Chinigo
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Guillaume P Grolez
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Giulia Trimaglio
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Laurent Allart
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Audrey Hulot
- Univ. Lille, Institut Français de Bioinformatique, bilille, F-59000 Lille, France
| | - Guillemette Marot
- Univ. Lille, Institut Français de Bioinformatique, bilille, F-59000 Lille, France
- Univ. Lille, Inria, CHU Lille, EA 2694-MODAL-Models for Data Analysis and Learning, F-59000 Lille, France
| | - Tullio Genova
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Aditi Joshi
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Virginie Mattot
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| | - Gaelle Fromont
- Inserm UMR 1069, Université de Tours, 37000 Tours, France
| | - Luca Munaron
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Dimitra Gkika
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
26
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
27
|
Andersson KE. TRP Channels as Lower Urinary Tract Sensory Targets. Med Sci (Basel) 2019; 7:E67. [PMID: 31121962 PMCID: PMC6572419 DOI: 10.3390/medsci7050067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several members of the transient receptor potential (TRP) superfamily, including TRPV1, TRPV2, TRPV4, TRM4, TRPM8 and TRPA1, are expressed in the lower urinary tract (LUT), not only in neuronal fibers innervating the bladder and urethra, but also in the urothelial and muscular layers of the bladder and urethral walls. In the LUT, TRP channels are mainly involved in nociception and mechanosensory transduction. Animal studies have suggested the therapeutic potential of several TRP channels for the treatment of both bladder over- and underactivity and bladder pain disorders,; however translation of this finding to clinical application has been slow and the involvement of these channels in normal human bladder function, and in various pathologic states have not been established. The development of selective TRP channel agonists and antagonists is ongoing and the use of such agents can be expected to offer new and important information concerning both normal physiological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA.
- Institute of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| |
Collapse
|
28
|
Goutsou S, Tsakona C, Polia A, Moutafidi A, Zolota V, Gatzounis G, Assimakopoulou M. Transient receptor potential vanilloid (TRPV) channel expression in meningiomas: prognostic and predictive significance. Virchows Arch 2019; 475:105-114. [DOI: 10.1007/s00428-019-02584-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023]
|
29
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
30
|
Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer. Biomed Pharmacother 2018; 105:697-706. [PMID: 29906748 DOI: 10.1016/j.biopha.2018.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
The malignant phenotype of the cells resulting from human liver cancer is driven by liver cancer stem-like cells (LCSLCs). Transient Receptor Potential Vanilloid-type 2 channel (TRPV2) contributes to the progression of different tumor types, including liver cancer. In the current study, the TRPV2 expression levels give rise to the effect on stemness in liver cancer cell lines. TRPV2 knockdown in HepG2 cells enhanced spheroid and colony formation, and expression levels of CD133, CD44 and ALDH1 whereas the opposite effects were observed in TRPV2 enforced expression in SMMC-7721 cells. Furthermore, TRPV2 overexpression restored inhibition of spheroid and colony formation, and stem cell markers expression in HepG2 cells with TRPV2 silencing. The addition of the TRPV2 agonist probenecid and the TRPV2 antagonist tranilast suppressed and/or increased in vitro spheroid and colony formation, and stem cell marker expression of LCSLCs and/or liver cancer cell lines, respectively. Notably, probenecid and tranilast significantly inhibited or promoted tumor growth of HepG2 xenografts in the severe combined immunodeficiency (SCID) mouse model, respectively. TRPV2 expression at protein levels revealed converse correlation with those of CD133 and CD44 in human hepatocellular carcinoma (HCC) tissue. Collectively, the data demonstrate that TRPV2 exert effects on stemness of liver cancer and is a potential target in the treatment of human liver cancer patients.
Collapse
|
31
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This study is to highlight recent discoveries associated with the role of calcitonin peptide family and their receptors in prostate cancer progression and bone metastasis. RECENT FINDINGS Studies have linked adrenomedullin (AM), calcitonin (CT) and calcitonin gene-related peptide (CGRP) to the spread of prostate tumours to the bone. AM can induce a metastatic phenotype in prostate cancer cells through its action on TRPV2 calcium channels and is also capable of influencing localised levels of RANKL in the bone to favour tumourigenesis. CT utilises A-kinase anchoring proteins to indirectly act on PKA and promote metastasis in prostate cancer. The receptor for CT contains a PDZ-binding domain, the deletion of which stops metastasis to the bone in orthotopic prostate models. SUMMARY Recent findings show strong evidence for the role of calcitonin peptides and receptors in prostate cancer and bone metastasis. Further research could provide potential prognostic markers and therapeutic targets for prostate cancer patients.
Collapse
|
33
|
Mignen O, Constantin B, Potier-Cartereau M, Penna A, Gautier M, Guéguinou M, Renaudineau Y, Shoji KF, Félix R, Bayet E, Buscaglia P, Debant M, Chantôme A, Vandier C. Constitutive calcium entry and cancer: updated views and insights. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:395-413. [PMID: 28516266 DOI: 10.1007/s00249-017-1216-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Abstract
Tight control of basal cytosolic Ca2+ concentration is essential for cell survival and to fine-tune Ca2+-dependent cell functions. A way to control this basal cytosolic Ca2+ concentration is to regulate membrane Ca2+ channels including store-operated Ca2+ channels and secondary messenger-operated channels linked to G-protein-coupled or tyrosine kinase receptor activation. Orai, with or without its reticular STIM partner and Transient Receptor Potential (TRP) proteins, were considered to be the main Ca2+ channels involved. It is well accepted that, in response to cell stimulation, opening of these Ca2+ channels contributes to Ca2+ entry and the transient increase in cytosolic Ca2+ concentration involved in intracellular signaling. However, in various experimental conditions, Ca2+ entry and/or Ca2+ currents can be recorded at rest, without application of any experimental stimulation. This led to the proposition that some plasma membrane Ca2+ channels are already open/activated in basal condition, contributing therefore to constitutive Ca2+ entry. This article focuses on direct and indirect observations supporting constitutive activity of channels belonging to the Orai and TRP families and on the mechanisms underlying their basal/constitutive activities.
Collapse
Affiliation(s)
- Olivier Mignen
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Bruno Constantin
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marie Potier-Cartereau
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aubin Penna
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Mathieu Gautier
- EA4667, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Maxime Guéguinou
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Yves Renaudineau
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Kenji F Shoji
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Romain Félix
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Elsa Bayet
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Paul Buscaglia
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marjolaine Debant
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aurélie Chantôme
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Christophe Vandier
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France.
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France.
| |
Collapse
|
34
|
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol 2017; 595:3063-3075. [PMID: 28304082 DOI: 10.1113/jp272844] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular calcium (Ca2+ ) signals are key regulators of multiple cellular functions, both healthy and physiopathological. It is therefore unsurprising that several cancers present a strong Ca2+ homeostasis deregulation. Among the various hallmarks of cancer disease, a particular role is played by metastasis, which has a critical impact on cancer patients' outcome. Importantly, Ca2+ signalling has been reported to control multiple aspects of the adaptive metastatic cancer cell behaviour, including epithelial-mesenchymal transition, cell migration, local invasion and induction of angiogenesis (see Abstract Figure). In this context Ca2+ signalling is considered to be a substantial intracellular tool that regulates the dynamicity and complexity of the metastatic cascade. In the present study we review the spatial and temporal organization of Ca2+ fluxes, as well as the molecular mechanisms involved in metastasis, analysing the key steps which regulate initial tumour spread.
Collapse
Affiliation(s)
- Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France.,Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| |
Collapse
|
35
|
Wang M, Xiao X, Zeng F, Xie F, Fan Y, Huang C, Jiang G, Wang L. Common and differentially expressed long noncoding RNAs for the characterization of high and low grade bladder cancer. Gene 2016; 592:78-85. [DOI: 10.1016/j.gene.2016.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 01/17/2023]
|
36
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
37
|
Déliot N, Constantin B. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2512-22. [DOI: 10.1016/j.bbamem.2015.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/20/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
|
38
|
Gautier M, Dhennin-Duthille I, Ay AS, Rybarczyk P, Korichneva I, Ouadid-Ahidouch H. New insights into pharmacological tools to TR(i)P cancer up. Br J Pharmacol 2014; 171:2582-92. [PMID: 24345078 DOI: 10.1111/bph.12561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022] Open
Abstract
The aim of this review is to address the recent advances regarding the use of pharmacological agents to target transient receptor potential (TRP) channels in cancer and their potential application in therapeutics. Physiologically, TRP channels are responsible for cation entry (Ca(2+) , Na(+) , Mg(2+) ) in many mammalian cells and regulate a large number of cellular functions. However, dysfunction in channel expression and/or activity can be linked to human diseases like cancer. Indeed, there is growing evidence that TRP channel expression is altered in cancer tissues in comparison with normal ones. Moreover, these proteins are involved in many cancerous processes, including cell proliferation, apoptosis, migration and invasion, as well as resistance to chemotherapy. Among the TRP superfamily, TRPC, TRPV, TRPM and TRPA1 have been shown to play a role in many cancer types, including breast, digestive, gliomal, head and neck, lung and prostate cancers. Pharmacological modulators are used to characterize the functional implications of TRP channels in whole-cell membrane currents, resting membrane potential regulation and intracellular Ca(2+) signalling. Moreover, pharmacological modulation of TRP activity in cancer cells is systematically linked to the effect on cancerous processes (proliferation, survival, migration, invasion, sensitivity to chemotherapeutic drugs). Here we describe the effects of such TRP modulators on TRP activity and cancer cell phenotype. Furthermore, the potency and specificity of these agents will be discussed, as well as the development of new strategies for targeting TRP channels in cancer.
Collapse
Affiliation(s)
- M Gautier
- Laboratory of Cell and Molecular Physiology, SFR CAP-Santé (FED 4231), University of Picardie Jules Verne, UFR Sciences, EA 4667, Amiens, France
| | | | | | | | | | | |
Collapse
|
39
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
40
|
Over-expression of TRPM8 is associated with poor prognosis in urothelial carcinoma of bladder. Tumour Biol 2014; 35:11499-504. [DOI: 10.1007/s13277-014-2480-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
|
41
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
42
|
Overexpression of transient receptor potential vanilloid 2 is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Med Oncol 2014; 31:17. [PMID: 24878697 DOI: 10.1007/s12032-014-0017-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
Transient receptor potential vanilloid 2 (TRPV2) was proved to play a crucial role in the tumor progression of various cancers. The association between the expression of TRPV2 and clinical outcome in cancer patients has not been studied yet. We aim to elucidate the role of TRPV2 in predicting prognosis of patients with esophageal squamous cell carcinoma (ESCC). Fresh frozen samples were collected immediately from 170 patients with ESCC after surgical resection from 2003 to 2008, including 45 pairs of tumor tissues and non-tumor tissues. TRPV2 expression was measured by quantitative real-time PCR. TRPV2 mRNA was over-expressed in ESCC tissues and cell lines. High expression of TRPV2 was observed more frequently in patients with advanced pT stage (P < 0.001), lymph node metastasis (P = 0.010) and advanced pathological stage (P = 0.001). Patients with high expression of TRPV2 (>44.40, n = 83) had worse 5-year disease-specific survival (40.0 vs 62.6 %, P < 0.001) and disease-free survival (38.4 vs 61.5 %, P < 0.001) than that with low expression (≤ 44.40, n = 87). Multivariate analysis found that the expression of TRPV2 mRNA (HR 2.19, 95 % CI 1.39-3.46, P = 0.031) and pN category (HR 2.13, 95 % CI 1.36-3.33, P = 0.001) were independent prognostic factors. Overexpression of TRPV2 mRNA was associated with poor prognosis and might serve as a novel prognostic biomarker for resected ESCC patients in early stage.
Collapse
|
43
|
Cohen MR, Huynh KW, Cawley D, Moiseenkova-Bell VY. Understanding the cellular function of TRPV2 channel through generation of specific monoclonal antibodies. PLoS One 2013; 8:e85392. [PMID: 24392006 PMCID: PMC3877370 DOI: 10.1371/journal.pone.0085392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques. Polyclonal antibodies against TRPV2 have not been properly validated and characterized, which may contribute to conflicting results regarding its function in the cell. Here, we developed monoclonal antibodies using full-length TRPV2 as an antigen. Extensive characterization of these antibodies and comparison to commonly used commercially available TRPV2 antibodies revealed that while monoclonal antibodies generated in our laboratory were suitable for detection of endogenous TRPV2 by western blot, immunoprecipitation and immunocytochemistry, the commercially available polyclonal antibodies we tested were not able to recognize endogenous TRPV2. We used our newly generated and validated TRPV2 antibodies to determine the effects of insulin-like growth factor 1 (IGF-1) on TRPV2 surface expression in heterologous and endogenous expression systems. We found that IGF-1 had little to no effect on trafficking and plasma membrane expression of TRPV2. Overall, these new TRPV2 monoclonal antibodies served to dispel the controversy of the effects of IGF-1 on TRPV2 plasma membrane expression and will clarify the role TRPV2 plays in cellular function. Furthermore, our strategy of using full-length tetrameric TRP channels may allow for the generation of antibodies against other TRP channels of unclear function.
Collapse
Affiliation(s)
- Matthew R. Cohen
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kevin W. Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daniel Cawley
- Monoclonal Antibody Core Facility, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Vera Y. Moiseenkova-Bell
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
44
|
Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 2013; 4:311. [PMID: 24204345 PMCID: PMC3817680 DOI: 10.3389/fphys.2013.00311] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023] Open
Abstract
Transient Receptor Potential (TRP) channels modulate intracellular Ca(2+) concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the vascular and cancer cell migration process, and we will systematically discuss relevant molecular mechanism involved.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino Torino, Italy ; Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | | |
Collapse
|