1
|
Lee G, Yang J, Kim SJ, Tran TT, Lee SY, Park KH, Kwon SH, Chung KH, Koh JT, Huh YH, Seon JK, Kim HA, Chun JS, Ryu JH. Enhancement of Intracellular Cholesterol Efflux in Chondrocytes Leading to Alleviation of Osteoarthritis Progression. Arthritis Rheumatol 2024. [PMID: 39262222 DOI: 10.1002/art.42984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common degenerative disease worldwide, with no practical means of prevention and limited treatment options. Recently, our group unveiled a novel mechanism contributing to OA pathogenesis in association with abnormal cholesterol metabolism in chondrocytes. In this study, we aimed to establish a clinical link between lipid profiles and OA in humans, assess the effectiveness of cholesterol-lowering drugs in suppressing OA development in mice, and uncover the cholesterol-lowering mechanisms that effectively impede OA progression. METHODS Five clinically approved cholesterol-lowering drugs (fenofibrate, atorvastatin, ezetimibe, niacin, and lomitapide) were injected into the knee joints or administered with diet to mice with OA who underwent destabilization of the medial meniscus induction and were fed a 2% high-cholesterol diet. Gene expression linked to cholesterol metabolism was determined using microarray analysis. Furthermore, the in vivo functions of these genes were explored through intra-articular injection of either its inhibitor or adenovirus. RESULTS Logistic regression analysis confirmed a close relationship between the diagnostic criteria of hyperlipidemia based on serum lipid levels and OA incidence. Among the cholesterol-lowering drugs examined, fenofibrate exerted the most significant protective effect against cartilage destruction, which was attributed to elevated levels of high-density lipoprotein cholesterol that are crucial for cholesterol efflux. Notably, cholesterol efflux was suppressed during OA progression via down-regulation of apolipoprotein A1-binding protein (AIBP) expression. Overexpression of AIBP effectively inhibits OA progression. CONCLUSION Our results suggest that restoration of cholesterol homeostasis to a normal state through administration of fenofibrate or AIBP overexpression, both of which induce cholesterol efflux, offers an effective therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Gyuseok Lee
- Chonnam National University, Gwangju, Republic of Korea
| | - Jiye Yang
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Su-Jin Kim
- Chonnam National University, Gwangju, Republic of Korea
| | | | - Sun Young Lee
- Chonnam National University, Gwangju, Republic of Korea
| | - Ka Hyon Park
- Chonnam National University, Gwangju, Republic of Korea
| | | | - Ki-Ho Chung
- Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Chonnam National University, Gwangju, Republic of Korea
| | - Yun Hyun Huh
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jong-Keun Seon
- Chonnam National University Hwasun Hospital and Medical School, Hwasun, Republic of Korea
| | - Hyun Ah Kim
- Hallym University, Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jang-Soo Chun
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Je-Hwang Ryu
- Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zinellu A, Mangoni AA. The potential role of serum amyloid A as biomarker of rheumatic diseases: a systematic review and meta-analysis. Clin Exp Med 2024; 24:141. [PMID: 38951267 PMCID: PMC11217051 DOI: 10.1007/s10238-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The identification of novel, robust biomarkers for the diagnosis of rheumatic diseases (RDs) and the presence of active disease might facilitate early treatment and the achievement of favourable long-term outcomes. We conducted a systematic review and meta-analysis of studies investigating the acute phase reactant, serum amyloid A (SAA), in RD patients and healthy controls to appraise its potential as diagnostic biomarker. We searched PubMed, Scopus, and Web of Science from inception to 10 April 2024 for relevant studies. We evaluated the risk of bias and the certainty of evidence using the JBI Critical Appraisal Checklist and GRADE, respectively (PROSPERO registration number: CRD42024537418). In 32 studies selected for analysis, SAA concentrations were significantly higher in RD patients compared to controls (SMD = 1.61, 95% CI 1.24-1.98, p < 0.001) and in RD patients with active disease compared to those in remission (SMD = 2.17, 95% CI 1.21-3.13, p < 0.001). Summary receiving characteristics curve analysis showed a good diagnostic accuracy of SAA for the presence of RDs (area under the curve = 0.81, 95% CI 0.78-0.84). The effect size of the differences in SAA concentrations between RD patients and controls was significantly associated with sex, body mass index, type of RD, and study country. Pending the conduct of prospective studies in different types of RDs, the results of this systematic review and meta-analysis suggest that SAA is a promising biomarker for the diagnosis of RDs and active disease.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
3
|
Khomeijani-Farahani M, Karami J, Farhadi E, Soltani S, Delbandi AA, Shekarabi M, Tahmasebi MN, Vaziri AS, Jamshidi A, Mahmoudi M, Akhlaghi M. TAK-242 (Resatorvid) inhibits proinflammatory cytokine production through the inhibition of NF-κB signaling pathway in fibroblast-like synoviocytes in osteoarthritis patients. Adv Rheumatol 2024; 64:46. [PMID: 38849923 DOI: 10.1186/s42358-024-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-β, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikβα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-β, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikβα and pIkβα. RESULTS The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-β, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikβα which was increased by LPS treatment. CONCLUSION According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.
Collapse
Affiliation(s)
- Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
- Rheumatology Research Center, Shariati Hospital, Kargar Ave., Tehran, Iran.
| |
Collapse
|
4
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Li M, Kim YM, Koh JH, Park J, Kwon HM, Park JH, Jin J, Park Y, Kim D, Kim WU. Serum amyloid A expression in liver promotes synovial macrophage activation and chronic arthritis via NFAT5. J Clin Invest 2024; 134:e167835. [PMID: 38426494 PMCID: PMC10904059 DOI: 10.1172/jci167835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern-triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6- and chemokine ligand 2-dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.
Collapse
Affiliation(s)
- Meiling Li
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Uijeoungbu St.Mary’s hospital, the Catholic University of Korea, Uijeoungbu, Republic of Korea
| | - Jihyun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H. Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Hwan Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jingchun Jin
- Department of Immunology of Yanbian University Hospital, Yanji, Jilin Province, China
- Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanji, Jilin Province, China
| | - Youngjae Park
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Raimondi L, De Luca A, Gallo A, Perna F, Cuscino N, Cordaro A, Costa V, Bellavia D, Faldini C, Scilabra SD, Giavaresi G, Toscano A. Investigating the Differential Circulating microRNA Expression in Adolescent Females with Severe Idiopathic Scoliosis: A Proof-of-Concept Observational Clinical Study. Int J Mol Sci 2024; 25:570. [PMID: 38203740 PMCID: PMC10779108 DOI: 10.3390/ijms25010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angela De Luca
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Alessia Gallo
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Fabrizio Perna
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| | - Nicola Cuscino
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Aurora Cordaro
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Viviana Costa
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Daniele Bellavia
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Cesare Faldini
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Simone Dario Scilabra
- Fondazione Ri.MED, Dipartimento di Ricerca IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angelo Toscano
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| |
Collapse
|
7
|
Feng H, Zhou W, Yang Y, Zhang X, Mao R, Zhou Y, Cheng T, Xiao H, Rao Y, He J, Zhao P, Li J, Jiang C. Serum amyloid A aggravates endotoxin-induced ocular inflammation through the regulation of retinal microglial activation. FASEB J 2024; 38:e23389. [PMID: 38153347 DOI: 10.1096/fj.202301150rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Serum amyloid A (SAA) are major acute-phase response proteins which actively participate in many inflammatory diseases. This study was designed to explore the function of SAA in acute ocular inflammation and the underlying mechanism. We found that SAA3 was upregulated in endotoxin-induced uveitis (EIU) mouse model, and it was primarily expressed in microglia. Recombinant SAA protein augmented intraocular inflammation in EIU, while the inhibition of Saa3 by siRNA effectively alleviated the inflammatory responses and rescued the retina from EIU-induced structural and functional damage. Further study showed that the recombinant SAA protein activated microglia, causing characteristic morphological changes and driving them further to pro-inflammatory status. The downregulation of Saa3 halted the amoeboid change of microglia, reduced the secretion of pro-inflammatory factors, and increased the expression of tissue-reparative genes. SAA3 also regulated the autophagic activity of microglial cells. Finally, we showed that the above effect of SAA on microglial cells was at least partially mediated through the expression and signaling of Toll-like receptor 4 (TLR4). Collectively, our study suggested that microglial cell-expressed SAA could be a potential target in treating acute ocular inflammation.
Collapse
Affiliation(s)
- Huazhang Feng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Mao
- Naval Healthcare Information Center, PLA Naval Medical University, Shanghai, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongjie Cheng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Yang G, Li J, Zhang S, Ouyang H, Jiang C, Pan H. A flexible gradient lateral flow immunochromatographic assay for qualitative, semi-quantitative, and quantitative determination of serum amyloid A. J Immunol Methods 2023; 523:113574. [PMID: 37884205 DOI: 10.1016/j.jim.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase protein produced in response to inflammatory proteins during infections, inflammation, trauma, surgery, cancer, and other conditions. Early and accurate detection of SAA is necessary for diagnosis and monitoring of disease progression. To meet this need, we developed a gradient lateral flow immunoassay test strip using Au nanoparticles as signal reporters. The test strip has three test (T1, T2, and T3) lines with progressively decreasing concentrations of SAA antibody, enabling the determination of high, medium, and low concentrations of SAA in serum. The test strip results were analyzed using three distinct readout methods, each with different sensitivity, accuracy, and precision for SAA concentration measurements. Qualitative judgment is based on the color of the T1 line. Semi-quantitative assessment of SAA concentration is determined by the number of colored T-lines. Specifically, color development in T1 line alone indicates a concentration range of 10-50 μg/mL, while T1 and T2 lines together indicate a range of 50-100 μg/mL, and development in all three lines (T1, T2, and T3) indicates a concentration of >100 μg/mL. Quantitative analysis was performed using either smartphone imaging or image scanning with ImageJ software. By using a five-parameter logistic function, we found a strong correlation (R2 = 0.998) between the ratio of signal intensities of (T1 + T2 + T3) to the control (C) line and SAA concentrations ranging from 5 to 1000 μg/mL. At lower concentrations (0-100 μg/mL), we observed a proportional relationship between the value of (T1 + T2 + T3)/C and SAA concentration. The limit of detection for SAA was 9.33 ng/mL (or 6.53 μg/mL of SAA in undiluted serum samples) for the smartphone method and 3.06 ng/mL (or 2.14 μg/mL of SAA in undiluted serum samples) for the scanner method. The gradient test strip was highly consistent with a commercially available SAA immunochromatographic test strip when tested with real human serum samples. Passing-Bablok regression indicated that results obtained using the smartphone app and scanner methods of the gradient test strip were comparable to those obtained using the commercial test strip. The gradient test strip is flexible and adaptable, providing solutions for qualitative, semi-quantitative, and quantitative SAA measurements.
Collapse
Affiliation(s)
- Guangtian Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jishun Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shenglan Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Huixiang Ouyang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chunhai Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
9
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
10
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
11
|
Dai J, Zhang X, Zhou J, Pan W, Yu F. Clinical performance evaluation of serum amyloid A module of Mindray BC-7500CS automated hematology analyzer. Transl Pediatr 2023; 12:20-30. [PMID: 36798927 PMCID: PMC9926133 DOI: 10.21037/tp-22-661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Laboratory detection of high values of serum amyloid A (SAA) is impaired by the hook effect. In response to this problem, Mindray has launched the new generation BC-7500CS automated hematology analyzer with an SAA autodilution (SAA-D) function. The present study aimed to verify the performance of the SAA module. METHODS Venous whole-blood specimens anticoagulated with EDTA-K2 were randomly collected from outpatients and inpatient of the Children's Hospital of Nanjing Medical University (CH). Background, repeatability, precision, linear range, intermode comparison, and interference of the SAA module of the Mindray BC-7500CS were evaluated, and the performance of the SAA-D function was verified. RESULTS The Mindray BC-7500CS showed an SAA background of 0.14 mg/L, well below that claimed by the manufacturer. Repeatability of SAA with standard deviation (SD) <0.6 mg/L and coefficient of variation (CV) <6%, the quality control (QC) precision was less than 8%. The measured value of the linear range was essentially consistent with the theoretical value, and the maximum measured values could reach 1932.38 mg/L. The deviation between whole-blood mode and micro-whole-blood mode was small (r=0.999), and the SAA module displayed high anti-interference ability. In addition, the measured results of specimens with high SAA concentration diluted by SAA-D were close to those after manual dilution (r=0.993). CONCLUSIONS The SAA module of the Mindray BC-7500CS had excellent performance, and the SAA-D function was highly accurate at measuring specimens with high SAA concentration, enabling reliable SAA detection in the laboratory and clinical practice.
Collapse
Affiliation(s)
- Jincheng Dai
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Pan
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Goto T, Miyazaki Y, Nakayamada S, Shiraishi N, Yoshinaga T, Tanaka Y, Nakamura T. Down-regulated Th17 cells in a patient with familial Mediterranean fever associated with amyloid A amyloidosis in the treatment of canakinumab. Mod Rheumatol Case Rep 2023; 7:237-242. [PMID: 35349715 DOI: 10.1093/mrcr/rxac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023]
Abstract
Autoinflammatory diseases are innate immune-mediated inflammatory disorders, unlike autoimmune diseases, which are characterised by abnormalities in adoptive immunity, although autoimmune and autoinflammatory diseases have certain similar clinical features. Familial Mediterranean fever (FMF), the most common monogenic autoinflammatory disease, is associated with mutations in the MEFV gene that encodes pyrin, which results in inflammasome activation and uncontrolled production of interleukin (IL)-1β. Regular use of colchicine, the primary drug for FMF treatment, prevents febrile attacks and reduces the long-term risk of subsequent complications of amyloid A (AA) amyloidosis. However, a minority of FMF patients develop colchicine resistance, and anti-IL-1β treatment with canakinumab, which is a genetically modified human IgG subclass type 1 (IgG1) monoclonal antibody specific for human IL-1β, was beneficial in inhibiting inflammation in such patients. Here, we present a patient with FMF associated with AA amyloidosis, who was treated with canakinumab and demonstrated down-regulated Th17 cells and activated Th17 cells (from 21.4% to 12.8%, and from 1.45% to 0.83%, respectively) in peripheral blood, as shown by immunophenotyping via multicolour flow cytometry and by disease activity and improved laboratory inflammatory surrogate markers-C-reactive protein (CRP) and serum AA protein (SAA). CRP had values within normal limits, but SAA did not (Spearman's rank correlation coefficient; ρ = 0.133). We report that SAA and IL-1β may differentiate Th17 cells from CD4+-naïve T cells, and we discuss interactions between autoinflammation and autoimmunity as a model based on this case, through modes of action with IL-1β and SAA. This report is the first demonstrating that an IL-1β antagonist may reduce Th17 cells in FMF as a therapeutic option.
Collapse
Affiliation(s)
- Takeshi Goto
- Kumamoto University School of Medical Sciences, Kumamoto, Japan
| | - Yusuke Miyazaki
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naoki Shiraishi
- Section of Nephrology, Sakurajyuji Hospital, Kumamoto, Japan
| | | | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | |
Collapse
|
13
|
Klinedinst NJ, Huang W, Nelson AK, Resnick B, Renn C, Kane MA, Dorsey SG. Protein Changes After 6 weeks of Walking and the Relationship to Pain in Adults with Knee Osteoarthritis. Biol Res Nurs 2023; 25:65-75. [PMID: 36050838 DOI: 10.1177/10998004221117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Knee osteoarthritis (KOA) affects 22.9% of individuals over the age of 40 and causes significant pain and disability. Pain is the most prevalent and troublesome symptom of KOA leading patients to seek medical interventions for relief. Knee osteoarthritis pain has both peripheral and central mechanisms that vary by individual. Non-pharmacological pain management strategies such as walking is the first step in reducing KOA pain. However, initiation of a walking regime can induce knee pain for some and the mechanism by which habitual walking reduces KOA pain is unclear. Purpose: The purpose of this study was to use a discovery proteomics approach and quantitative sensory testing (QST) to determine the molecular changes that occur after habitual walking and their relationship to pain sensitivity. Research Design and Study Sample: We conducted a pre-test/post-test study using QST to measure neurophysiological parameters at the knee and contralateral forearm and examined platelet protein signatures before and after 6 weeks of walking 3 days per week for 30 minutes among six adults with KOA and six healthy controls. Results: Knee pain sensitivity did not change significantly after 6 weeks of walking among either KOA or healthy participants. However, forearm pressure pain sensitivity decreased for both groups after walking, indicating reduction in central pain pathways. Protein signatures showed downregulation of immune and inflammatory, pathways among KOA participants after walking which were upregulated in healthy controls. Conclusion: These differences may contribute differences in centralized pain thresholds seen between KOA and healthy participants.
Collapse
Affiliation(s)
| | - Weiliang Huang
- 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Amy K Nelson
- 16112University of Maryland School of Nursing, Baltimore, MD, USA
| | - Barbara Resnick
- 16112University of Maryland School of Nursing, Baltimore, MD, USA
| | - Cynthia Renn
- 16112University of Maryland School of Nursing, Baltimore, MD, USA
| | - Maureen A Kane
- 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Susan G Dorsey
- 16112University of Maryland School of Nursing, Baltimore, MD, USA
| |
Collapse
|
14
|
Effects of Nitisinone on Oxidative and Inflammatory Markers in Alkaptonuria: Results from SONIA1 and SONIA2 Studies. Cells 2022; 11:cells11223668. [PMID: 36429096 PMCID: PMC9688277 DOI: 10.3390/cells11223668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.
Collapse
|
15
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
16
|
Klinedinst NJ, Huang W, Nelson AK, Resnick B, Renn C, Kane MA, Dorsey SG. Inflammatory and Immune Protein Pathways Possible Mechanisms for Pain Following Walking in Knee Osteoarthritis. Nurs Res 2022; 71:328-335. [PMID: 35302959 PMCID: PMC9246935 DOI: 10.1097/nnr.0000000000000593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Knee osteoarthritis affects nearly 30% of adults aged 60 years or older and causes significant pain and disability. Walking is considered a "gold standard" treatment option for reducing knee osteoarthritis pain and maintaining joint mobility but does not reduce pain for all adults with knee osteoarthritis pain and may induce pain-particularly when starting a walking routine. The mechanism by which walking is helpful for knee osteoarthritis pain is unclear. Quantitative sensory testing has revealed that knee osteoarthritis pain has both peripheral and central components, which vary by individual. OBJECTIVE The purpose of this study was to better understand the mechanisms underlying the value of walking for knee pain. METHODS We conducted a pretest/posttest study using quantitative sensory testing to measure neurophysiological parameters and examined systemic protein signatures. Adults with knee osteoarthritis and healthy controls underwent quantitative sensory testing and blood draw for platelet proteomics before and after a 30-minute walk at 100 steps per minute. RESULTS A single 30-minute walk moderately increased pressure pain sensitivity at the affected knee among persons with knee osteoarthritis. Healthy adults showed no difference in pain sensitivity. Protein signatures among participants with knee osteoarthritis indicated changes in inflammatory and immune pathways, including the complement system and SAA1 protein that coincided with changes in pain with walking and differed from healthy participants. DISCUSSION One goal of developing individualized interventions for knee osteoarthritis pain is to elucidate the mechanisms by which self-management interventions affect pain. The addition of therapies that target the complement system or SAA1 expression may improve the pain sensitivity after a moderate walk for adults with knee osteoarthritis.
Collapse
|
17
|
Li YY, Feng YP, Liu L, Ke J, Long X. Inhibition of HMGB1 suppresses inflammation and catabolism in temporomandibular joint osteoarthritis <em>via</em> NF-κB signaling pathway. Eur J Histochem 2022; 66. [PMID: 35726537 PMCID: PMC9251613 DOI: 10.4081/ejh.2022.3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
HMGB1 is a highly conserved nuclear protein that is rapidly released into the extracellular environment during infection or tissue damage. In osteoarthritis, HMGB1 acts as a pro-inflammatory cytokine inducing a positive feedback loop for synovial inflammation and cartilage degradation. The aim of this study was to explore the role of HMGB1 in inflammation and catabolism of temporomandibular joint osteoarthritis (TMJOA) and whether inhibition of HMGB1 affects TMJOA. Human synovial fibroblasts were incubated with HMGB1, the expression of pro-inflammatory cytokines and catabolic mediators were measured by Western blot and ELISA. NF-κB signaling pathway involvement was studied by the NF-κB inhibitor and detected by Western blotting and immunofluorescence staining. TMJOA was induced by an injection of complete Freund’s adjuvant (CFA) into anterosuperior compartment of rat’s joint. An anti-HMGB1 antibody was used to assess the effect to HMGB1 in the synovium and cartilage of the CFA-induced TMJOA rats by hematoxylin and eosin, Safranin O, Masson trichrome staining, immunohistochemistry and immunofluorescence. HMGB1 markedly increased the production of MMP13, ADAMTS5, IL-1β and IL-6 through activating NF-κB signaling pathway in human synovial fibroblasts. In vivo, application of the HMGB1 neutralizing antibody effectively ameliorated the detrimental extent of TMJOA. Furthermore, the HMGB1 neutralizing antibody reduced the expression of NF-κB, pro-inflammatory cytokines and catabolic mediators in the synovium and cartilage of CFA-induced TMJOA rats. HMGB1 inhibition alleviates TMJOA by reducing synovial inflammation and cartilage catabolism possibly through suppressing the NF-κB signaling pathway and may become a therapeutic method against TMJOA.
Collapse
Affiliation(s)
- Yan Yan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Ya Ping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Li Liu
- Department of Prosthodontics, School of Stomatology Kunming Medical University, Kunming.
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University.
| |
Collapse
|
18
|
Malaise O, Paulissen G, Deroyer C, Ciregia F, Poulet C, Neuville S, Plener Z, Daniel C, Gillet P, Lechanteur C, Brondello JM, de Seny D, Malaise M. Influence of Glucocorticoids on Cellular Senescence Hallmarks in Osteoarthritic Fibroblast-like Synoviocytes. J Clin Med 2021; 10:jcm10225331. [PMID: 34830613 PMCID: PMC8617749 DOI: 10.3390/jcm10225331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is recognized as being a cellular senescence-linked disease. Intra-articular injections of glucocorticoids (GC) are frequently used in knee OA to treat synovial effusion but face controversies about toxicity. We investigated the influence of GC on cellular senescence hallmarks and senescence induction in fibroblast-like synoviocytes (FLS) from OA patients and mesenchymal stem cells (MSC). Methods: Cellular senescence was assessed via the proliferation rate, β-galactosidase staining, DNA damage and CKI expression (p21, p16INK4A). Experimental senescence was induced by irradiation. Results: The GC prednisolone did not induce an apparent senescence phenotype in FLS, with even higher proliferation, no accumulation of β-galactosidase-positive cells nor DNA damage and reduction in p21mRNA, only showing the enhancement of p16INK4A. Prednisolone did not modify experimental senescence induction in FLS, with no modulation of any senescence parameters. Moreover, prednisolone did not induce a senescence phenotype in MSC: despite high β-galactosidase-positive cells, no reduction in proliferation, no DNA damage and no CKI enhancement was observed. Conclusions: We provide reassuring in vitro data about the use of GC regarding cellular senescence involvement in OA: the GC prednisolone did not induce a senescent phenotype in OA FLS (the proliferation ratio was even higher) and in MSC and did not worsen cellular senescence establishment.
Collapse
Affiliation(s)
- Olivier Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
- Correspondence: ; Tel.: +32-4-366-7863
| | - Geneviève Paulissen
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Christophe Poulet
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Christophe Daniel
- Orthopedic Surgery Department, CHU de Liège, 4000 Liège, Belgium; (C.D.); (P.G.)
| | - Philippe Gillet
- Orthopedic Surgery Department, CHU de Liège, 4000 Liège, Belgium; (C.D.); (P.G.)
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU de Liège, 4000 Liège, Belgium;
| | - Jean-Marc Brondello
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, INSERM UMR1183, 34298 Montpellier, France;
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Michel Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| |
Collapse
|
19
|
Hemed-Shaked M, Cowman MK, Kim JR, Huang X, Chau E, Ovadia H, Amar KO, Eshkar-Sebban L, Melamed M, Lev LB, Kedar E, Armengol J, Alemany J, Beyth S, Okon E, Kanduc D, Elgavish S, Wallach-Dayan SB, Cohen SJ, Naor D. MTADV 5-MER peptide suppresses chronic inflammations as well as autoimmune pathologies and unveils a new potential target-Serum Amyloid A. J Autoimmun 2021; 124:102713. [PMID: 34390919 DOI: 10.1016/j.jaut.2021.102713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
Despite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1β from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.
Collapse
Affiliation(s)
- Maayan Hemed-Shaked
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, Brooklyn, USA
| | - Xiayun Huang
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, Brooklyn, USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, Brooklyn, USA
| | - Haim Ovadia
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Keren-Or Amar
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Lora Eshkar-Sebban
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Michal Melamed
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Libat Bar Lev
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Eli Kedar
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | | | - Shaul Beyth
- Orthopedic Surgery Department, Hadassah University Hospital, Jerusalem, Israel
| | - Eli Okon
- Department of Pathology, Hadassah University Hospital, Jerusalem, Israel
| | - Darja Kanduc
- Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Sharona Elgavish
- Bioinformatics Unit of the Hebrew University of Jerusalem and Hadassah Medical Center, Israel
| | - Shulamit B Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Israel
| | - Shmuel Jaffe Cohen
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - David Naor
- The Lautenberg Center of Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
20
|
Roszkowski L, Ciechomska M. Tuning Monocytes and Macrophages for Personalized Therapy and Diagnostic Challenge in Rheumatoid Arthritis. Cells 2021; 10:cells10081860. [PMID: 34440629 PMCID: PMC8392289 DOI: 10.3390/cells10081860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.
Collapse
|
21
|
Farré-Alins V, Palomino-Antolín A, Narros-Fernández P, Lopez-Rodriguez AB, Decouty-Perez C, Muñoz-Montero A, Zamorano-Fernández J, Mansilla-Fernández B, Giner-García J, García-Feijoo P, Sáez-Alegre M, Palpán-Flores AJ, Roda-Frade JM, Carabias CS, Rosa JM, Civantos-Martín B, Yus-Teruel S, Gandía L, Lagares A, Hernández-García BJ, Egea J. Serum Amyloid A1/Toll-Like Receptor-4 Axis, an Important Link between Inflammation and Outcome of TBI Patients. Biomedicines 2021; 9:biomedicines9060599. [PMID: 34070533 PMCID: PMC8227125 DOI: 10.3390/biomedicines9060599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and disability worldwide without any validated biomarker or set of biomarkers to help the diagnosis and evaluation of the evolution/prognosis of TBI patients. To achieve this aim, a deeper knowledge of the biochemical and pathophysiological processes triggered after the trauma is essential. Here, we identified the serum amyloid A1 protein-Toll-like receptor 4 (SAA1-TLR4) axis as an important link between inflammation and the outcome of TBI patients. Using serum and mRNA from white blood cells (WBC) of TBI patients, we found a positive correlation between serum SAA1 levels and injury severity, as well as with the 6-month outcome of TBI patients. SAA1 levels also correlate with the presence of TLR4 mRNA in WBC. In vitro, we found that SAA1 contributes to inflammation via TLR4 activation that releases inflammatory cytokines, which in turn increases SAA1 levels, establishing a positive proinflammatory loop. In vivo, post-TBI treatment with the TLR4-antagonist TAK242 reduces SAA1 levels, improves neurobehavioral outcome, and prevents blood–brain barrier disruption. Our data support further evaluation of (i) post-TBI treatment in the presence of TLR4 inhibition for limiting TBI-induced damage and (ii) SAA1-TLR4 as a biomarker of injury progression in TBI patients.
Collapse
Affiliation(s)
- Víctor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alejandra Palomino-Antolín
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Paloma Narros-Fernández
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Ana Belen Lopez-Rodriguez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Céline Decouty-Perez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alicia Muñoz-Montero
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Jorge Zamorano-Fernández
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Beatriz Mansilla-Fernández
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Javier Giner-García
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Pablo García-Feijoo
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Miguel Sáez-Alegre
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Alexis J. Palpán-Flores
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - José María Roda-Frade
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Cristina S. Carabias
- Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, imas12, Universidad Complutense de Madrid, 28041 Madrid, Spain; (C.S.C.); (A.L.)
| | - Juliana M. Rosa
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
| | - Belén Civantos-Martín
- Servicio de Medicina Intensiva, Hospital Universitario La Paz, 28046 Madrid, Spain; (B.C.-M.); (S.Y.-T.)
| | - Santiago Yus-Teruel
- Servicio de Medicina Intensiva, Hospital Universitario La Paz, 28046 Madrid, Spain; (B.C.-M.); (S.Y.-T.)
| | - Luis Gandía
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alfonso Lagares
- Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, imas12, Universidad Complutense de Madrid, 28041 Madrid, Spain; (C.S.C.); (A.L.)
| | - Borja J. Hernández-García
- Servicio de Neurocirugía, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.Z.-F.); (B.M.-F.); (J.G.-G.); (P.G.-F.); (M.S.-A.); (A.J.P.-F.); (J.M.R.-F.); (B.J.H.-G.)
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain; (V.F.-A.); (A.P.-A.); (P.N.-F.); (A.B.L.-R.); (C.D.-P.); (J.M.R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
- Correspondence: ; Tel.: +34-915574402
| |
Collapse
|
22
|
Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater 2021; 123:31-50. [PMID: 33444800 DOI: 10.1016/j.actbio.2021.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.
Collapse
|
23
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
24
|
Lambert C, Zappia J, Sanchez C, Florin A, Dubuc JE, Henrotin Y. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature. Front Med (Lausanne) 2021; 7:607186. [PMID: 33537330 PMCID: PMC7847938 DOI: 10.3389/fmed.2020.607186] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
During the osteoarthritis (OA) process, activation of immune systems, whether innate or adaptive, is strongly associated with low-grade systemic inflammation. This process is initiated and driven in the synovial membrane, especially by synovium cells, themselves previously activated by damage-associated molecular patterns (DAMPs) released during cartilage degradation. These fragments exert their biological activities through pattern recognition receptors (PRRs) that, as a consequence, induce the activation of signaling pathways and beyond the release of inflammatory mediators, the latter contributing to the vicious cycle between cartilage and synovial membrane. The primary endpoint of this review is to provide the reader with an overview of these many molecules categorized as DAMPs and the contribution of the latter to the pathophysiology of OA. We will also discuss the different strategies to control their effects. We are convinced that a better understanding of DAMPs, their receptors, and associated pathological mechanisms represents a decisive issue for degenerative joint diseases such as OA.
Collapse
Affiliation(s)
- Cécile Lambert
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Antoine Florin
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Jean-Emile Dubuc
- Orthopaedic Department, University Clinics St. Luc, Brussels, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium.,Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
25
|
de Seny D, Bianchi E, Baiwir D, Cobraiville G, Collin C, Deliège M, Kaiser MJ, Mazzucchelli G, Hauzeur JP, Delvenne P, Malaise MG. Proteins involved in the endoplasmic reticulum stress are modulated in synovitis of osteoarthritis, chronic pyrophosphate arthropathy and rheumatoid arthritis, and correlate with the histological inflammatory score. Sci Rep 2020; 10:14159. [PMID: 32887899 PMCID: PMC7473860 DOI: 10.1038/s41598-020-70803-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
It is now well recognized that osteoarthritis (OA) synovial membrane presents inflammatory components. The aim of this work is to provide evidence that similar inflammatory mechanisms exist in synovial membrane (n = 24) obtained from three pathologies presenting altogether an inflammatory gradient: OA, chronic pyrophosphate arthropathy (CPPA) and rheumatoid arthritis (RA). Synovial biopsies were first characterized by a histological score based on synovial hyperplasia and infiltration of lymphocytes, plasma cells, polymorphonuclear and macrophages. All biopsies were also analyzed by 2D-nano-UPLC-ESI-Q-Orbitrap for protein identification and quantification. Protein levels were correlated with the histological score. Histological score was in the range of 3 to 8 for OA, 5 to 13 for CPPA and 12 to 17 for RA. Of the 4,336 proteins identified by mass spectrometry, 51 proteins were selected for their strong correlation (p < 0.001) with the histological score of which 11 proteins (DNAJB11, CALR, ERP29, GANAB, HSP90B1, HSPA1A, HSPA5, HYOU1, LMAN1, PDIA4, and TXNDC5) were involved in the endoplasmic reticulum (ER) stress. Protein levels of S100A8 and S100A9 were significantly higher in RA compared to OA (for both) or to CPPA (for S100A8 only) and also significantly correlated with the histological score. Eighteen complement component proteins were identified, but only C1QB and C1QBP were weakly correlated with the histological score. This study highlights the inflammatory gradient existing between OA, CPPA and RA synovitis either at the protein level or at the histological level. Inflamed synovitis was characterized by the overexpression of ER stress proteins.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium.
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, 4000, Liege, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Charlotte Collin
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Mégane Deliège
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Marie-Joëlle Kaiser
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Unit Research, University of Liege, 4000, Liege, Belgium
| | - Jean-Philippe Hauzeur
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Philippe Delvenne
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| |
Collapse
|
26
|
Sinkeviciute D, Aspberg A, He Y, Bay-Jensen AC, Önnerfjord P. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol 2020; 4:30. [PMID: 32426694 PMCID: PMC7216541 DOI: 10.1186/s41927-020-00122-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Osteoarthritis (OA) is a progressive, chronic disease characterized by articular cartilage destruction. The pro-inflammatory cytokine IL-17 levels have been reported elevated in serum and synovial fluid of OA patients and correlated with increased cartilage defects and bone remodeling. The aim of this study was to characterize an IL-17-mediated articular cartilage degradation ex-vivo model and to investigate IL-17 effect on cartilage extracellular matrix protein turnover. Methods Full-depth bovine femoral condyle articular cartilage explants were cultured in serum-free medium for three weeks in the absence, or presence of cytokines: IL-17A (100 ng/ml or 25 ng/ml), or 10 ng OSM combined with 20 ng/ml TNFα (O + T). RNA isolation and PCR analysis were performed on tissue lysates to confirm IL-17 receptor expression. GAG and ECM-turnover biomarker release into conditioned media was assessed with dimethyl methylene blue and ELISA assays, respectively. Gelatin zymography was used for matrix metalloproteinase (MMP) 2 and MMP9 activity assessment in conditioned media, and shotgun LC-MS/MS for identification and label-free quantification of proteins and protein fragments in conditioned media. Western blotting was used to validate MS results. Results IL-17RA mRNA was expressed in bovine full-depth articular cartilage and the treatment with IL-17A did not interfere with metabolic activity of the model. IL-17A induced cartilage breakdown; conditioned media GAG levels were 3.6-fold-elevated compared to untreated. IL-17A [100 ng/ml] induced ADAMTS-mediated aggrecan degradation fragment release (14-fold increase compared to untreated) and MMP-mediated type II collagen fragment release (6-fold-change compared to untreated). MS data analysis revealed 16 differentially expressed proteins in IL-17A conditioned media compared to untreated, and CHI3L1 upregulation in conditioned media in response to IL-17 was confirmed by Western blotting. Conclusions We showed that IL-17A has cartilage modulating potential. It induces collagen and aggrecan degradation indicating an upregulation of MMPs. This was confirmed by zymography and mass spectrometry data. We also showed that the expression of other cytokines is induced by IL-17A, which provide further insight to the pathways that are active in response to IL-17A. This exploratory study confirms that IL-17A may play a role in cartilage pathology and that the applied model may be a good tool to further investigate it.
Collapse
Affiliation(s)
- Dovile Sinkeviciute
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Aspberg
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Yi He
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark
| | | | - Patrik Önnerfjord
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Barreto G, Manninen M, K. Eklund K. Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis. BIOLOGY 2020; 9:biology9040065. [PMID: 32235418 PMCID: PMC7235883 DOI: 10.3390/biology9040065] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs).
Collapse
Affiliation(s)
- Goncalo Barreto
- Department of Rheumatology, Helsinki University and Helsinki University Hospital, 00014 Helsinki, Finland;
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-4585-381-10
| | | | - Kari K. Eklund
- Department of Rheumatology, Helsinki University and Helsinki University Hospital, 00014 Helsinki, Finland;
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
- Orton Research Institute, 00280 Helsinki, Finland;
| |
Collapse
|
28
|
Sinovich M, Villarino NF, Singer E, Robinson CS, Rubio-Martínez LM. Can blood serum amyloid A concentrations in horses differentiate synovial sepsis from extrasynovial inflammation and determine response to treatment? Vet Rec 2020; 187:235. [PMID: 32098906 PMCID: PMC7591800 DOI: 10.1136/vr.105153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 11/09/2022]
Abstract
Background Serum amyloid A (SAA) concentrations in blood and synovial fluid of horses with synovial sepsis have diagnostic value. Studies suggest serial blood SAA measurements could act as a prognostic indicator. This study evaluated the use of serial blood SAA concentrations for monitoring of horses with synovial sepsis. Methods A prospective clinical trial was performed of horses referred to a single hospital with synovial sepsis that survived (n=17), synovial sepsis that were euthanised (n=5), non-septic intrasynovial pathologies (n=14) or extensive extrasynovial lacerations (n=5). SAA concentrations were determined on admission and every 24 hours thereafter. The area under the concentration–time curve from 0 to 144 hours of each group was compared by Kruskal-Wallis and post hoc Dunn’s tests (P<0.05). Results Significant difference in mean blood concentration of SAA was found between synovial sepsis that survived and non-septic pathologies in the first 48 hours, as well as between non-septic intrasynovial pathologies and non-responsive sepsis requiring euthanasia. No difference was found between extensive extrasynovial lacerations and any septic group. Conclusions While serial blood SAA is useful for monitoring clinical response of intrasynovial septic pathologies, interpretation should consider other clinical findings since blood SAA is not a specific marker for synovial sepsis.
Collapse
Affiliation(s)
- Matthew Sinovich
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, Cheshire, UK
| | - Nicolas F Villarino
- Program in Individualised Medicine, Washington State University, Washington, DC, USA
| | - Ellen Singer
- E Singer Equine Surgery and Orthopaedics, Parkgate, UK
| | | | - Luis M Rubio-Martínez
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, Cheshire, UK .,Sussex Equine Hospital, Ashington, Sussex, UK
| |
Collapse
|
29
|
Li Z, Zou Y, Fan D, Zhang W, Gao H, Ge N, Tian S. The mechanism of medial collateral ligament repair in knee osteoarthritis based on the TLR4/MyD88/NF-κB inflammatory signaling pathway. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:398-403. [PMID: 32877976 PMCID: PMC7493448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To explore the role of medial collateral ligament repair in knee osteoarthritis based on TLR4/ MyD88/ NF-κ inflammatory signaling pathway. METHODS The modified Hulth method was used to establish models, which were divided into a repair group, a model group, and a sham operation group. The repair group was treated with medial ligament repair technology. Synovium and cartilage morphological changes were evaluated by hematoxylin-eosin staining to determine the degree of reparation. The cartilage was evaluated by the Mankin's score, and inflammatory factors in cartilage tissues were determined by ELISA. The changes in TLR4, MyD88, and NF-κB levels were analyzed using the real-time quantitative PCR and Western blot assays. RESULTS The synovial and cartilage damages in the repair group and the sham operation group were significantly alleviated compared to the model group. The Mankin's score of the model group was significantly lower than the other two groups. The expression of inflammatory factors in the repair group and the sham operation group were significantly lower than in the model group. The expressions of those factors in the repair group and the model group were higher than those in the model group. CONCLUSIONS Medial ligament repair can improve the cartilage morphology and delay the development and progression of knee osteoarthritis by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| | - Yu Zou
- Qiqihar Medical University, Qiqihar, P.R. China
| | - Dandan Fan
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| | - Wenlong Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| | - Hongwei Gao
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| | - Na Ge
- CT Room, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| | - Shaohua Tian
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, P.R. China
| |
Collapse
|
30
|
Chen H, Qin Z, Zhao J, He Y, Ren E, Zhu Y, Liu G, Mao C, Zheng L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019; 225:119520. [PMID: 31586865 DOI: 10.1016/j.biomaterials.2019.119520] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) microenvironment is marked by matrix metalloproteinases-13 (MMP-13) overexpression and weak acidity, making it possible to develop dual-stimuli responsive theranostic nanoprobes for OA diagnosis and therapy. However, current MMP/pH-responsive systems are not suitable for OA because of their poor biocompatibility, poor degradation and non-cartilage-targeting of the responsive probes. Here we designed a novel biocompatible cartilage-targeting and MMP-13/pH-responsive ferritin nanocages (CMFn) loaded with an anti-inflammatory drug (Hydroxychloroquine, HCQ), termed CMFn@HCQ, for OA imaging and therapy. We found that CMFn could be smartly "turned on" to emit light for OA imaging in response to the level of overexpressed MMP-13 in OA microenvironment, corresponding to the degree of OA severity. Thus the light intensity detected reflected the degree of OA severity, enabling the precise disease classification by our CMFn. CMFn could be "turned off" to stop emitting light in the normal joint. CMFn@HCQ nanocages could target the cartilage and release HCQ in the OA joint specifically under acidic pH conditions in a sustained manner, prolonging the drug retention time to 14 days to remarkably reduce synovial inflammation in the OA joints. The CMFn@HCQ nanocages represent a smart dual-stimuli responsive and cartilage-targeting nanoprobes, and hold promise for imaging-guided precision therapy for OA.
Collapse
Affiliation(s)
- Haimin Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yi He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
31
|
Cicaloni V, Spiga O, Dimitri GM, Maiocchi R, Millucci L, Giustarini D, Bernardini G, Bernini A, Marzocchi B, Braconi D, Santucci A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease. FASEB J 2019; 33:12696-12703. [PMID: 31462106 DOI: 10.1096/fj.201901529r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | | | - Rebecca Maiocchi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Lia Millucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Unità Operativa Complessa (UOC) Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
32
|
Tateiwa D, Yoshikawa H, Kaito T. Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review. Cells 2019; 8:cells8080818. [PMID: 31382539 PMCID: PMC6721572 DOI: 10.3390/cells8080818] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Arthritis is inflammation of the joints accompanied by osteochondral destruction. It can take many forms, including osteoarthritis, rheumatoid arthritis, and psoriatic arthritis. These diseases share one commonality—osteochondral destruction based on inflammation. The background includes a close interaction between osseous tissues and immune cells through various inflammatory cytokines. However, the tissues and cytokines that play major roles are different in each disease, and as a result, the mechanism of osteochondral destruction also differs. In recent years, there have been many findings regarding not only extracellular signaling pathways but also intracellular signaling pathways. In particular, we anticipate that the intracellular signals of osteoclasts, which play a central role in bone destruction, will become novel therapeutic targets. In this review, we have summarized the pathology of arthritis and the latest findings on the mechanism of osteochondral destruction, as well as present and future therapeutic strategies for these targets.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
34
|
Nys G, Cobraiville G, Servais AC, Malaise MG, de Seny D, Fillet M. Targeted proteomics reveals serum amyloid A variants and alarmins S100A8-S100A9 as key plasma biomarkers of rheumatoid arthritis. Talanta 2019; 204:507-517. [PMID: 31357327 DOI: 10.1016/j.talanta.2019.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023]
Abstract
Serum amyloid A (SAA) and S100 (S100A8, S100A9 and S100A12) proteins were previously identified as biomarkers of interest for rheumatoid arthritis (RA). Among SAA family, two closely related isoforms (SAA-1 and SAA-2) are linked to the acute-phase of inflammation. They respectively exist under the form of three (α, β, and γ) and two (α and β) allelic variants. We developed a single run quantitative method for these protein variants and investigated their clinical relevance in the context of RA. The method was developed and validated according to regulations before being applied on plasma coming from RA patients (n = 46), other related inflammatory pathologies (n = 116) and controls (n = 62). Depending on the activity score of RA, SAA1 isoforms (mainly of SAA1α and SAA1β subtypes) were found to be differentially present in plasma revealing their dual role during the development of RA. In addition, the weight of SAA1α in the total SAA response varied from 32 to 80% depending on the pathology studied. A negative correlation between SAA1α and SAA1β was also highlighted for RA early-onset (r = -0.41). SAA2 and S100A8/S100A9 proteins were significantly overexpressed compared to control samples regardless of RA stage. The pathophysiological relevance of these quantitative and qualitative characteristics of the SAA response remains unknown. However, the significant negative correlation observed between SAA1α and SAA1β levels in RA early-onset suggests the existence of still unknown regulatory mechanisms in these diseases.
Collapse
Affiliation(s)
- Gwenaël Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Gaël Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium; Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium.
| |
Collapse
|
35
|
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem 2019; 90:25-80. [PMID: 31122611 DOI: 10.1016/bs.acc.2019.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute-phase reactant serum amyloid A (A-SAA) plays an important role in acute and chronic inflammation and is used in clinical laboratories as an indicator of inflammation. Although both A-SAA and C-reactive protein (CRP) are acute-phase proteins, the detection of A-SAA is more conclusive than the detection of CRP in patients with viral infections, severe acute pancreatitis, and rejection reactions to kidney transplants. A-SAA has greater clinical diagnostic value in patients who are immunosuppressed, patients with cystic fibrosis who are treated with corticoids, and preterm infants with late-onset sepsis. Nevertheless, for the assessment of the inflammation status and identification of viral infection in other pathologies, such as bacterial infections, the combinatorial use of A-SAA and other acute-phase proteins (APPs), such as CRP and procalcitonin (PCT), can provide more information and sensitivity than the use of any of these proteins alone, and the information generated is important in guiding antibiotic therapy. In addition, A-SAA-associated diseases and the diagnostic value of A-SAA are discussed. However, the relationship between different A-SAA isotypes and their human diseases are mostly derived from research laboratories with limited clinical samples. Thus, further clinical evaluations are necessary to confirm the clinical significance of each A-SAA isotype. Furthermore, the currently available A-SAA assays are based on polyclonal antibodies, which lack isotype specificity and are associated with many inflammatory diseases. Therefore, these assays are usually used in combination with other biomarkers in the clinic.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- C.N. Maternity & Infant Health Hospital, Shanghai, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
36
|
Burkhardt NB, Röll S, Staudt A, Elleder D, Härtle S, Costa T, Alber A, Stevens MP, Vervelde L, Schusser B, Kaspers B. The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Front Immunol 2019; 10:124. [PMID: 30774632 PMCID: PMC6367253 DOI: 10.3389/fimmu.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
Collapse
Affiliation(s)
- Nina B. Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susanne Röll
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anke Staudt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Taiana Costa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Schusser
- Reproductive Biotechnology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
37
|
Kurvits L, Reimann E, Kadastik-Eerme L, Truu L, Kingo K, Erm T, Kõks S, Taba P, Planken A. Serum Amyloid Alpha Is Downregulated in Peripheral Tissues of Parkinson's Disease Patients. Front Neurosci 2019; 13:13. [PMID: 30760975 PMCID: PMC6361740 DOI: 10.3389/fnins.2019.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
We report the changed levels of serum amyloid alpha, an immunologically active protein, in Parkinson’s disease (PD) patients’ peripheral tissues. We have previously shown that Saa-1 and -2 (serum amyloid alpha-1,-2, genes) were among the top downregulated genes in PD patients’ skin, using whole-genome RNA sequencing. In the current study, we characterized the gene and protein expression profiles of skin and blood samples from patients with confirmed PD diagnosis and age/sex matched controls. qRT-PCR analysis of PD skin demonstrated downregulation of Saa-1 and -2 genes in PD patients. However, the lowered amount of protein could not be visualized using immunohistochemistry, due to low quantity of SAA (Serum Amyloid Alpha, protein) in skin. Saa-1 and -2 expression levels in whole blood were below detection threshold based on RNA sequencing, however significantly lowered protein levels of SAA1/2 in PD patients’ serum were shown with ELISA, implying that SAA is secreted into the blood. These results show that SAA is differentially expressed in the peripheral tissues of PD patients.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ene Reimann
- Institute of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Liis Kadastik-Eerme
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Triin Erm
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Sulev Kõks
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | - Anu Planken
- Oncology and Haematology Clinic, North-Estonian Medical Centre, Tallinn, Estonia
| |
Collapse
|
38
|
Braconi D, Giustarini D, Marzocchi B, Peruzzi L, Margollicci M, Rossi R, Bernardini G, Millucci L, Gallagher JA, Le Quan Sang KH, Imrich R, Rovensky J, Al-Sbou M, Ranganath LR, Santucci A. Inflammatory and oxidative stress biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthritis Cartilage 2018; 26:1078-1086. [PMID: 29852277 DOI: 10.1016/j.joca.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work was to assess baseline serum levels of established biomarkers related to inflammation and oxidative stress in samples from alkaptonuric subjects enrolled in SONIA1 (n = 40) and SONIA2 (n = 138) clinical trials (DevelopAKUre project). METHODS Baseline serum levels of Serum Amyloid A (SAA), IL-6, IL-1β, TNFα, CRP, cathepsin D (CATD), IL-1ra, and MMP-3 were determined through commercial ELISA assays. Chitotriosidase activity was assessed through a fluorimetric method. Advanced Oxidation Protein Products (AOPP) were determined by spectrophotometry. Thiols, S-thiolated proteins and Protein Thiolation Index (PTI) were determined by spectrophotometry and HPLC. Patients' quality of life was assessed through validated questionnaires. RESULTS We found that SAA serum levels were significantly increased compared to reference threshold in 57.5% and 86% of SONIA1 and SONIA2 samples, respectively. Similarly, chitotriosidase activity was above the reference threshold in half of SONIA2 samples, whereas CRP levels were increased only in a minority of samples. CATD, IL-1β, IL-6, TNFα, MMP-3, AOPP, thiols, S-thiolated protein and PTI showed no statistically significant differences from control population. We provided evidence that alkaptonuric patients presenting with significantly higher SAA, chitotriosidase activity and PTI reported more often a decreased quality of life. This suggests that worsening of symptoms in alkaptonuria (AKU) is paralleled by increased inflammation and oxidative stress, which might play a role in disease progression. CONCLUSIONS Monitoring of SAA may be suggested in AKU to evaluate inflammation. Though further evidence is needed, SAA, chitotriosidase activity and PTI might be proposed as disease activity markers in AKU.
Collapse
Affiliation(s)
- D Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - D Giustarini
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy.
| | - B Marzocchi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy.
| | - L Peruzzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - M Margollicci
- UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - R Rossi
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Siena, Italy.
| | - G Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - L Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - J A Gallagher
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.
| | | | - R Imrich
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - J Rovensky
- National Institute of Rheumatic Diseases, Piešťany, Slovakia.
| | - M Al-Sbou
- Department of Pharmacology, Alkaptonuria Research Office, Faculty of Medicine, Mutah University, Mutah, Karak, Jordan.
| | - L R Ranganath
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK; Department of Clinical Biochemistry and Metabolism, Royal Liverpool University Hospital, Liverpool, UK.
| | - A Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|
39
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
41
|
Alonso-Pérez A, Franco-Trepat E, Guillán-Fresco M, Jorge-Mora A, López V, Pino J, Gualillo O, Gómez R. Role of Toll-Like Receptor 4 on Osteoblast Metabolism and Function. Front Physiol 2018; 9:504. [PMID: 29867550 PMCID: PMC5952219 DOI: 10.3389/fphys.2018.00504] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a process whose main function is to fight against invading pathogens or foreign agents. Nonetheless, it is widely accepted that inflammation takes part in multiple processes in a physiological or pathophysiological context. Among these processes the inflammation has been closely related to bone metabolism. It is well-known that in systemic inflammatory diseases such as rheumatoid arthritis the inflammatory environment contributes to the reduction of the bone mineral density. This has been further evidenced in different animals models of osteoporosis where the deletion of key inflammatory molecules dramatically reduced the bone loss. On the contrary, it is also well-known that certain degree of inflammation is required to allow bone fractures healing. In fact, excessive use of anti-inflammatory drugs inhibits bone fracture consolidation. The innate immune responses (IIRs) contribute to the development and maintenance of the inflammation. These responses have been observed in cells of the musculoskeletal system. Chondrocytes and osteoblasts are equipped with the molecular repertoire necessary to setting up these IIR, including the expression of several toll-like receptors. Specifically, toll-like receptor 4 (TLR4) activation in mesenchymal stem cells, osteoblasts, and osteocytes has been involved in catabolic and anabolic process. Accordingly, in this review we have summarized the current knowledge about the physiology of TLR4, including its signaling, and its endogenous agonists. In addition we have focused on its role on osteoblast metabolism and function.
Collapse
Affiliation(s)
- Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Verónica López
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Jesús Pino
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Robinson CS, Singer ER, Piviani M, Rubio-Martinez LM. Are serum amyloid A or D-lactate useful to diagnose synovial contamination or sepsis in horses? Vet Rec 2017; 181:425. [PMID: 28765498 PMCID: PMC5738594 DOI: 10.1136/vr.104386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 06/22/2017] [Indexed: 11/04/2022]
Abstract
Synovial sepsis in horses is life threatening and accurate diagnosis allowing prompt treatment is warranted. This study assessed the diagnostic value of serum amyloid A (SAA) and D-lactate in blood and synovial fluid (SF) as diagnostic markers of synovial sepsis in horses and correlated them with total nucleated cell count (TNCC), percentage of neutrophils (%N) and total protein (TP) in SF. Blood and SF SAA and D-lactate concentrations were determined in a case–control observational study including 112 horses (38 with synovial contamination or sepsis (SCS), 66 with non-septic intra-synovial pathology (NSISP) and 8 controls). Blood and SF SAA were significantly higher in SCS than in NSISP and control horses. SAA values were similar in NSISP and control horses. SF SAA was moderately correlated with synovial TNCC, TP and blood SAA. Blood and SF SAA were 82.4 per cent and 80 per cent sensitive and 88.9 per cent and 73 per cent specific for diagnosis of SCS, with cut-off values of 60.7 and 1.14 µg/ml, respectively. Blood and SF D-lactate concentrations were not significantly different between groups. This study shows that blood and SF SAA concentrations can aid to distinguish SCS from non-septic synovial pathology; however, D-lactate was not useful.
Collapse
Affiliation(s)
- Claire S Robinson
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Ellen R Singer
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Martina Piviani
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| | - Luis M Rubio-Martinez
- Department of Equine Clinical Science, Institute of Veterinary Science, University of Liverpool, Wirral, UK
| |
Collapse
|
45
|
Hulme CH, Wilson EL, Peffers MJ, Roberts S, Simpson DM, Richardson JB, Gallacher P, Wright KT. Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles. Arthritis Res Ther 2017; 19:150. [PMID: 28666451 PMCID: PMC5493128 DOI: 10.1186/s13075-017-1336-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. Methods SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17–54)) and 13 non-responders (mean Lysholm decrease of 14 (4–46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Results Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. Conclusions The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success.
Collapse
Affiliation(s)
- Charlotte H Hulme
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Emma L Wilson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.,Institute of Medicine, Chester University, Chester, UK
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Sally Roberts
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - James B Richardson
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Pete Gallacher
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Karina T Wright
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK. .,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.
| |
Collapse
|
46
|
Yoo J, Lee SK, Lim M, Sheen D, Choi EH, Kim SA. Exosomal amyloid A and lymphatic vessel endothelial hyaluronic acid receptor-1 proteins are associated with disease activity in rheumatoid arthritis. Arthritis Res Ther 2017; 19:119. [PMID: 28569211 PMCID: PMC5452405 DOI: 10.1186/s13075-017-1334-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 01/22/2023] Open
Abstract
Background Exosomes are thought to play an important role in exchanging information between cells. The proteins and lipids in exosomes play roles in mediating inflammatory and autoimmune diseases. The aim of this study was to identify exosomal candidate proteins that are related to other inflammatory parameters in rheumatoid arthritis (RA). Methods The study population consisted of 60 patients with RA: 30 in the clinical remission (CR) group with a Disease Activity Score in 28 joints based on erythrocyte sedimentation rate (DAS28-ESR) ≤2.6 and 30 in the non-clinical remission (non-CR) group with a DAS28-ESR >2.6. Preparation of exosomes from patient serum samples was performed with the ExoQuick kit, and protein identification/quantification was performed using tandem mass tag labeling/mass spectrometry and an enzyme-linked immunosorbent assay. Comparisons between groups were made using Student’s t test or the Mann-Whitney U test, as appropriate. Spearman’s correlation coefficients (ρ) were calculated. Results We identified six candidate proteins. Exosomal levels of amyloid A (AA) and lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1) differed between the CR and non-CR groups. Both serum and exosomal AA levels were higher in the non-CR group than in the CR group (p = 0.001). Significant positive correlations were found between exosomal AA and C-reactive protein (CRP) as well as between serum AA and CRP (ρ = 0.614, p = 0.001, and ρ = 0.624, p = 0.001, respectively). Although serum levels of LYVE-1 did not differ between the non-CR and CR groups, exosomal levels of LYVE-1 were lower in the non-CR group than in the CR group (p = 0.01). We identified positive correlations between serum/exosomal LYVE-1 and CRP only in the non-CR group (serum ρ = 0.376, p = 0.04; exosome ρ = 0.545, p = 0.002). Conclusions Exosomal LYVE-1 shows potential for use as an additional marker of disease activity in patients with RA, and exosomes may carry other useful markers for RA.
Collapse
Affiliation(s)
- Jihyung Yoo
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Sang Kwang Lee
- Eulji Medi-Bio Research Institute, Eulji University, Daejeon, Korea
| | - Mikyung Lim
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Donghyuk Sheen
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Eun-Hye Choi
- Eulji Medi-Bio Research Institute, Eulji University, Daejeon, Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Korea.
| |
Collapse
|
47
|
Microglia activation due to obesity programs metabolic failure leading to type two diabetes. Nutr Diabetes 2017; 7:e254. [PMID: 28319103 PMCID: PMC5380893 DOI: 10.1038/nutd.2017.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/04/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes.
Collapse
|
48
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
49
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|
50
|
Hwang YG, Balasubramani GK, Metes ID, Levesque MC, Bridges SL, Moreland LW. Differential response of serum amyloid A to different therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Res Ther 2016; 18:108. [PMID: 27188329 PMCID: PMC4869396 DOI: 10.1186/s13075-016-1009-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background The aim was to compare the effect of etanercept (ETN) and conventional synthetic disease-modifying anti-rheumatic drug (DMARD) therapy on serum amyloid A (SAA) levels and to determine whether SAA reflects rheumatoid arthritis (RA) disease activity better than C-reactive protein (CRP). Methods We measured SAA and CRP at baseline, 24, 48, and 102 week follow-up visits in 594 patients participating in the Treatment of early RA (TEAR) study. We used Spearman correlation coefficients (rho) to evaluate the relationship between SAA and CRP and mixed effects models to determine whether ETN and methotrexate (MTX) treatment compared to triple DMARD therapy differentially lowered SAA. Akaike information criteria (AIC) were used to determine model fits. Results SAA levels were only moderately correlated with CRP levels (rho = 0.58, p < 0.0001). There were significant differences in SAA by both visit (p = 0.0197) and treatment arm (p = 0.0130). RA patients treated with ETN plus MTX had a larger reduction in SAA than patients treated with traditional DMARD therapy. Similar results were found for serum CRP by visit (p = 0.0254) and by treatment (p < 0.0001), with a more pronounced difference than for SAA. Across all patients and time points, models of the disease activity score of 28 joints (DAS28)-erythrocyte sedimentation rate (ESR) using SAA levels were better than models using CRP; the ΔAIC between the SAA and CRP models was 305. Conclusions SAA may be a better biomarker of RA disease activity than CRP, especially during treatment with tumor necrosis factor (TNF) antagonists. This warrants additional studies in other cohorts of patients on treatment for RA. Trial registration (ClinicalTrials.gov identifier: NCT00259610, Date of registration: 28 November 2005)
Collapse
Affiliation(s)
- Yong Gil Hwang
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Goundappa K Balasubramani
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 DeSoto Street, 127 Parran Hall, Pittsburgh, PA, 15261, USA
| | - Ilinca D Metes
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Marc C Levesque
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA.,AbbVie Inc, 100 Research Dr, Worcester, MA, 01605, USA
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and Rheumatology Birmingham, University of Alabama at Birmingham, Shelby Building, Room 178B, 1825 University Blvd., Birmingham, AL, 35294-2182, USA
| | - Larry W Moreland
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|