1
|
Bisanti L, La Corte C, Dara M, Bertini F, Parisi MG, Chemello R, Cammarata M, Parrinello D. Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral. Sci Rep 2024; 14:8495. [PMID: 38605161 PMCID: PMC11009343 DOI: 10.1038/s41598-024-58652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.
Collapse
Affiliation(s)
- L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - F Bertini
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Chemello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
2
|
Wang S, Lu C, Zhang Q, He X, Wang W, Li J, Su H. Microbial community and transcriptional responses to V. coralliilyticus stress in coral Favites halicora and Pocillopora damicornis holobiont. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106394. [PMID: 38340371 DOI: 10.1016/j.marenvres.2024.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Variability in coral hosts susceptibility to Vibrio coralliilyticus is well-documented; however, the comprehensive understanding of tolerance of response to pathogen among coral species is lacked. Herein, we investigated the microbial communities and transcriptome dynamics of two corals in response to Vibrio coralliilyticus. Favites halicora displayed greater resistance to Vibrio coralliilyticus challenge than Pocillopora damicornis. Furthermore, the relative abundances of Flavobacteriaceae, Vibrionacea, Rhodobacteraceae, and Roseobacteraceae increased significantly in Favites halicora following pathogen stress, whereas that of Akkermansiaceae increased significantly in Pocillopora damicornis, leading to bacterial community imbalance. In contrast to the previous results, pathogen infection did not have much effect on the community structures of Symbiodiniaceae and fungi, but led to a decrease in the density of Symbiodiniaceae. Transcriptome analysis indicated that Vibrio infection triggered a coral immune response, resulting in higher expression of immune-related genes, which appeared to have higher transcriptional plasticity in Favites halicora than in Pocillopora damicornis. Specifically, the upregulated genes of Favites halicora were predominantly involved in the apoptosis pathway, whereas Pocillopora damicornis were significantly enriched in the nucleotide excision repair and base excision repair pathways. These findings suggest that coral holobionts activate different mechanisms across species in response to pathogens through shifts in microbial communities and transcriptomes, which provides novel insight into assessing the future coral assemblages suffering from disease outbreaks.
Collapse
Affiliation(s)
- Shuying Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chunrong Lu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Qi Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Weihui Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiani Li
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Tignat-Perrier R, van de Water JAJM, Allemand D, Ferrier-Pagès C. Holobiont responses of mesophotic precious red coral Corallium rubrum to thermal anomalies. ENVIRONMENTAL MICROBIOME 2023; 18:70. [PMID: 37580830 PMCID: PMC10424431 DOI: 10.1186/s40793-023-00525-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Marine heat waves (MHWs) have increased in frequency and intensity worldwide, causing mass mortality of benthic organisms and loss of biodiversity in shallow waters. The Mediterranean Sea is no exception, with shallow populations of habitat-forming octocorals facing the threat of local extinction. The mesophotic zone, which is less affected by MHWs, may be of ecological importance in conservation strategies for these species. However, our understanding of the response of mesophotic octocoral holobionts to changes in seawater temperature remains limited. To address this knowledge gap, we conducted a study on an iconic Mediterranean octocoral, the red coral Corallium rubrum sampled at 60 m depth and 15 °C. We exposed the colonies to temperatures they occasionally experience (18 °C) and temperatures that could occur at the end of the century if global warming continues (21 °C). We also tested their response to extremely cold and warm temperatures (12 °C and 24 °C). Our results show a high tolerance of C. rubrum to a two-month long exposure to temperatures ranging from 12 to 21 °C as no colony showed signs of tissue loss, reduced feeding ability, stress-induced gene expression, or disruption of host-bacterial symbioses. At 24 °C, however, we measured a sharp decrease in the relative abundance of Spirochaetaceae, which are the predominant bacterial symbionts under healthy conditions, along with a relative increase in Vibrionaceae. Tissue loss and overexpression of the tumor necrosis factor receptor 1 gene were also observed after two weeks of exposure. In light of ongoing global warming, our study helps predict the consequences of MHWs on mesophotic coralligenous reefs and the biodiversity that depends on them.
Collapse
Affiliation(s)
- Romie Tignat-Perrier
- Unité de Recherche sur la Biologie des Coraux Précieux CSM-CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - Jeroen A J M van de Water
- Unité de Recherche sur la Biologie des Coraux Précieux CSM-CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| |
Collapse
|
4
|
Vlaanderen EJ, Ghaly TM, Moore LR, Focardi A, Paulsen IT, Tetu SG. Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121558. [PMID: 37019264 DOI: 10.1016/j.envpol.2023.121558] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.
Collapse
Affiliation(s)
- Eric J Vlaanderen
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Timothy M Ghaly
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Lisa R Moore
- School of Natural Sciences Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Ian T Paulsen
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Harman TE, Barshis DJ, Hauff Salas B, Hamsher SE, Strychar KB. Indications of symbiotic state influencing melanin-synthesis immune response in the facultative coral Astrangia poculata. DISEASES OF AQUATIC ORGANISMS 2022; 151:63-74. [PMID: 36173117 DOI: 10.3354/dao03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased ocean warming is causing detrimental impacts to tropical corals worldwide. Compounding the effects of heat stress, incidences of tropical coral disease have risen concurrently. While tropical coral responses to these impacts are well studied, temperate coral responses remain largely unknown. The present study focused on the immune response of the temperate coral Astrangia poculata to increased temperature and disease. Symbiotic and aposymbiotic A. poculata were collected from Narragansett Bay, Rhode Island (USA) in summer and winter seasons and exposed to control (18°C) versus elevated temperatures (26°C) in the presence of an immune stimulant (i.e. lipopolysaccharide) for a 12 h period. Prophenoloxidase (PPO) and melanin concentrations from the melanin-synthesis pathway were assessed via spectrophotometry to examine immune responses. While PPO measurements were higher on average in symbiotic corals compared with aposymbiotic corals, temperature and season did not significantly affect this metric. Melanin was significantly higher in symbiotic compared to aposymbiotic corals, implying that symbiotic state may be important for melanin-synthesis response. Conversely, melanin as an immune response may be of less importance in aposymbiotic A. poculata due to the potential capacity of other immune responses in this species. In addition, differences in resource allocation to immune investment as a result of symbiosis is plausible given melanin production observed within the present study. However, thermal stressors may reduce the overall influence of symbiosis on melanin production. Future studies should build upon these results to further understand the entirety of innate immunity responses in temperate coral species.
Collapse
Affiliation(s)
- Tyler E Harman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | | | | | | | | |
Collapse
|
6
|
Ushijima B, Saw JH, Videau P, Häse CC. Comparison of Vibrio coralliilyticus virulence in Pacific oyster larvae and corals. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380530 DOI: 10.1099/mic.0.001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterium Vibrio coralliilyticus has been implicated in mass mortalities of corals and shellfish larvae. However, using corals for manipulative infection experiments can be logistically difficult compared to other model organisms, so we aimed to establish oyster larvae infections as a proxy model. Therefore, this study assessed the virulence of six wild-type V. coralliilyticus strains, and mutants of one strain with deletions of known virulence factors, between Pacific oyster larvae (Crassostrea gigas) and Hawaiian rice coral (Montipora capitata) infection systems. The wild-type strains tested displayed variable virulence in each system, but virulence levels between hosts were not necessarily comparable. Strains RE98 and OCN008 maintained a medium to high level of virulence across hosts and appeared to be more generalist pathogens. Strain H1, in contrast, was avirulent towards coral but displayed a medium level of virulence towards oyster larvae. Interestingly, the BAA-450 type strain had a medium level of virulence towards coral and was the least virulent to oyster larvae. A comparison of known virulence factors determined that the flagellum, motility or chemotaxis, all of which play a significant role in coral infections, were not crucial for oyster infections with strain OCN008. A genomic comparison of the newly sequenced strain H1 with the other strains tested identified 16 genes potentially specific to coral pathogens that were absent in H1. This is both the first comparison of various V. coralliilyticus strains across infection systems and the first investigation of a strain that is non-virulent to coral. Our results indicate that the virulence of V. coralliilyticus strains in coral is not necessarily indicative of virulence in oyster larvae, and that the set of genes tested are not required for virulence in both model systems. This study increases our understanding of the virulence between V. coralliilyticus strains and helps assess their potential threat to marine environments and shellfish industries.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA
- Present address: Bayer Crop Science, MO, Chesterfield, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Madeira C, Dias M, Ferreira A, Gouveia R, Cabral H, Diniz MS, Vinagre C. Does Predation Exacerbate the Risk of Endosymbiont Loss in Heat Stressed Hermatypic Corals? Molecular Cues Provide Insights Into Species-Specific Health Outcomes in a Multi-Stressor Ocean. Front Physiol 2022; 13:801672. [PMID: 35299660 PMCID: PMC8922028 DOI: 10.3389/fphys.2022.801672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Ocean warming has been a major driver of coral reef bleaching and mass mortality. Coupled to other biotic pressures, corals’ ability for acclimatization and adaptation may become compromised. Here, we tested the combined effects of warming scenarios (26, 30, and 32°C) and predation (wound vs. no wound) in coral health condition (paleness, bleaching, and mortality), cellular stress responses (heat shock protein 70 kDa Hsp70, total ubiquitin Ub, and total antioxidant capacity TAC), and physiological state (integrated biomarker response index, IBR) of seven Scleractinian coral species, after being exposed for 60 days. Results show that although temperature was the main factor driving coral health condition, thermotolerant species (Galaxea fascicularis, Psammocora contigua, and Turbinaria reniformis) displayed increased paleness, bleaching, and mortality in predation treatments at high temperature, whereas thermosensitive species (Acropora tenuis, Echinopora lamellosa, and Montipora capricornis brown and green morphotypes) all died at 32°C, regardless of predation condition. At the molecular level, results show that there were significant main and interactive effects of species, temperature, and predation in the biomarkers assessed. Temperature affected Hsp70, Ub, and TAC, evidencing the role of protein folding and turnover, as well as reactive oxygen species scavenging in heat stress management. Predation increased Hsp70 and Ub, suggesting the activation of the pro-phenoloxidase system and cytokine activity, whereas the combination of both stressors mainly affected TAC during moderate stress and Ub under severe stress, suggesting that redox balance and defense of homeostasis are crucial in tissue repair at high temperature. IBR levels showed an increasing trend at 32°C in predated coral fragments (although non-significant). We conclude that coral responses to the combination of high temperature and predation pressure display high inter-species variability, but these stressors may pose a higher risk of endosymbiont loss, depending on species physiology and stress intensity.
Collapse
Affiliation(s)
- Carolina Madeira
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Carolina Madeira, , orcid.org/0000-0003-1632-634X
| | - Marta Dias
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Marta Dias, , orcid.org/0000-0003-0447-6009
| | - Ana Ferreira
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Raúl Gouveia
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Henrique Cabral
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- INRAE – National Research Institute for Agriculture, Food and Environment, UR EABX, Cestas, France
| | - Mário S. Diniz
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Catarina Vinagre
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- CCMAR – Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
8
|
Roychowdhury P, Aftabuddin M, Pati MK. Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:21-32. [PMID: 33058003 DOI: 10.1007/s10695-020-00880-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/22/2020] [Indexed: 05/20/2023]
Abstract
Fish mortality generally occurs during extreme summer temperatures in India which are apprehended to be more frequent in near future and may reduce the fish population, particularly in closed aquatic systems. This present study is conducted with the objectives to find out heat shock and associated oxidative stress responses that occurred in selected fish Labeo rohita due to extremely high water temperature (treated, 37-38 °C against control, 28-30 °C) exposure for 2 weeks. Calculated mortality was 30% during the experimental period. The results revealed the biomolecules associated with both the anti-oxidative response (reduced glutathione in serum, liver, muscle; catalase activity in liver, muscle; superoxide dismutase gene expression in the liver) and the heat shock response (hsp70 gene expression in the liver) were elevated under thermal stress. Pro-inflammatory responses (expression of complement protein 3, glyceraldehyde 3-phosphate dehydrogenase in the liver) and oxidative damages (lipid peroxidation in all studied tissue and DNA fragmentation in the liver) were more under thermal stress. Extreme thermal stress induced by partial lethal temperature exposure in this study led to the activation of both the heat shock response and the anti-oxidative response. However, these responses were not elicited to the level so that they can protect from oxidative damages and inflammation in the liver of all the studied fish that caused partial mortality in fish. Thermal stress-induced hepatotoxicity caused fish death which was documented for the first time in freshwater fish.
Collapse
Affiliation(s)
- Prasun Roychowdhury
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| | - Mohammad Aftabuddin
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India.
| | - Manoj Kumar Pati
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| |
Collapse
|
9
|
Roesel CL, Vollmer SV. Differential gene expression analysis of symbiotic and aposymbiotic Exaiptasia anemones under immune challenge with Vibrio coralliilyticus. Ecol Evol 2019; 9:8279-8293. [PMID: 31380089 PMCID: PMC6662555 DOI: 10.1002/ece3.5403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Anthozoans are a class of Cnidarians that includes scleractinian corals, anemones, and their relatives. Despite a global rise in disease epizootics impacting scleractinian corals, little is known about the immune response of this key group of invertebrates. To better characterize the anthozoan immune response, we used the model anemone Exaiptasia pallida to explore the genetic links between the anthozoan-algal symbioses and immunity in a two-factor RNA-Seq experiment using both symbiotic and aposymbiotic (menthol-bleached) Exaiptasia pallida exposed to the bacterial pathogen Vibrio coralliilyticus. Multivariate and univariate analyses of Exaiptasia gene expression demonstrated that exposure to live Vibrio coralliilyticus had strong and significant impacts on transcriptome-wide gene expression for both symbiotic and aposymbiotic anemones, but we did not observe strong interactions between symbiotic state and Vibrio exposure. There were 4,164 significantly differentially expressed (DE) genes for Vibrio exposure, 1,114 DE genes for aposymbiosis, and 472 DE genes for the additive combinations of Vibrio and aposymbiosis. KEGG enrichment analyses identified 11 pathways-involved in immunity (5), transport and catabolism (4), and cell growth and death (2)-that were enriched due to both Vibrio and/or aposymbiosis. Immune pathways showing strongest differential expression included complement, coagulation, nucleotide-binding, and oligomerization domain (NOD), and Toll for Vibrio exposure and coagulation and apoptosis for aposymbiosis.
Collapse
|
10
|
Zhou Z, Zhao S, Tang J, Liu Z, Wu Y, Wang Y, Lin S. Altered Immune Landscape and Disrupted Coral- Symbiodinium Symbiosis in the Scleractinian Coral Pocillopora damicornis by Vibrio coralliilyticus Challenge. Front Physiol 2019; 10:366. [PMID: 31001143 PMCID: PMC6454040 DOI: 10.3389/fphys.2019.00366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
Vibrio coralliilyticus is known to cause coral diseases, especially under environmental perturbation, but its impact on coral physiology and underpinning mechanism is poorly understood. In the present study, we investigated cytological, immunological, and metatranscriptomic responses of the scleractinian coral Pocillopora damicornis to V. coralliilyticus infection. The density and chlorophyll content of symbiotic zooxanthellae decreased significantly at 12 and 24 h after Vibrio challenge. The activities of antioxidant enzymes such as superoxide dismutase and catalase, nitric oxide synthase, phenoloxidase (PO), and the activation level of caspase3 all rose significantly in P. damicornis after Vibrio challenge. In the metatranscriptomic analysis, we found 10 significantly upregulated genes in the symbionts at 24 h after the challenge, which were mostly involved in the metabolism of nucleic acid and polysaccharide, and 133 significantly down-regulated symbiont genes, which were mainly related to amino acid catabolism and transport. Meanwhile, 1432 significantly upregulated coral genes were revealed, highly overrepresented in GO terms that are mostly related to the regulation of immune response, the regulation of cytokine production, and innate immune response. Furthermore, at 24 h after Vibrio challenge, 890 coral genes were significantly downregulated, highly overrepresented in four GO terms implicated in defense response. These results in concert suggest that V. coralliilyticus infection triggered the innate immune response including the redox, PO, and apoptosis systems, but repressed the response of the complement system in the scleractinian coral P. damicornis, accompanied by symbiont density decrease and symbiosis collapse through disordering the metabolism of the symbionts. These findings shed light on the molecular regulatory processes underlying bleaching and degradation of P. damicornis resulting from the infection of V. coralliilyticus.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Shuimiao Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Jia Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yibo Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Yan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
11
|
Aguilar C, Raina JB, Fôret S, Hayward DC, Lapeyre B, Bourne DG, Miller DJ. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics 2019; 20:148. [PMID: 30786881 PMCID: PMC6381741 DOI: 10.1186/s12864-019-5527-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Results Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. Conclusions This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5527-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catalina Aguilar
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida, 33149, USA.,Atlantic Oceanographic and Meteorological Laboratories (AOML), NOAA, 4301 Rickenbacker Causeway, Miami, Florida, 33149, USA
| | - Jean-Baptiste Raina
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Climate Change Cluster (C3), University of Technology, Sydney, NSW, 2007, Australia
| | - Sylvain Fôret
- ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David C Hayward
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Bruno Lapeyre
- Laboratoire d'excellence CORAIL, Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Moorea, B.P.1013, Papeete, French Polynesia
| | - David G Bourne
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - David J Miller
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
12
|
Franzellitti S, Airi V, Calbucci D, Caroselli E, Prada F, Voolstra CR, Mass T, Falini G, Fabbri E, Goffredo S. Transcriptional response of the heat shock gene hsp70 aligns with differences in stress susceptibility of shallow-water corals from the Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2018; 140:444-454. [PMID: 30055833 DOI: 10.1016/j.marenvres.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Shallow-water corals of the Mediterranean Sea are facing a dramatic increase in water temperature due to climate change, predicted to increase the frequency of bleaching and mass mortality events. However, supposedly not all corals are affected equally, as they show differences in stress susceptibility, as suggested by physiological outputs of corals along temperature gradients and under controlled conditions in terms of reproduction, demography, growth, calcification, and photosynthetic efficiency. In this study, gene expression and induction of a 70-kDa heat shock protein (HSP70) was analyzed in five common shallow-water hard corals in the Mediterranean Sea, namely Astroides calycularis, Balanophyllia europaea, Caryophyllia inornata, Cladocora caespitosa, and Leptopsammia pruvoti. The main aim was to assess the contribution of this evolutionary conserved cytoprotective mechanism to the physiological plasticity of these species that possess different growth modes (solitary vs colonial) and trophic strategies (zooxanthellate vs azooxanthellate). Using quantitative real-time PCR, in situ hsp70 baseline levels and expression profiles after a heat-shock exposure were assessed. Levels of hsp70 and heat stress induction were higher in zooxanthellate than in azooxanthellate species, and different heat stress transcriptional profiles were observed between colonial and solitary zooxanthellate corals. On the whole, the hsp70 transcriptional response to heat stress aligns with stress susceptibility of the species and suggests a contribution of trophic strategy and morphology in shaping coral resilience to stress. Understanding these molecular processes may contribute to assess the potential effects and relative resilience of Mediterranean corals under climate change.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, I-48123, Ravenna, Italy.
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, I-40126, Bologna, Italy
| | - Diana Calbucci
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, I-48123, Ravenna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, I-40126, Bologna, Italy
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, I-40126, Bologna, Italy
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Multi Purpose Boulevard, Mt. Carmel, Haifa, 3498838, Israel
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126, Bologna, Italy
| | - Elena Fabbri
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, I-48123, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, I-40126, Bologna, Italy
| |
Collapse
|
13
|
Influence of Chemotaxis and Swimming Patterns on the Virulence of the Coral Pathogen Vibrio coralliilyticus. J Bacteriol 2018; 200:JB.00791-17. [PMID: 29555697 DOI: 10.1128/jb.00791-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
Chemotaxis, the directed movement toward or away from a chemical signal, can be essential to bacterial pathogens for locating hosts or avoiding hostile environments. The coral pathogen Vibrio coralliilyticus chemotaxes toward coral mucus; however, chemotaxis has not been experimentally demonstrated to be important for virulence. To further examine this, in-frame mutations were constructed in genes predicted to be important for V. coralliilyticus chemotaxis. Most Vibrio genomes contain multiple homologs of various chemotaxis-related genes, and two paralogs of each for cheB, cheR, and cheA were identified. Based on single mutant analyses, the paralogs cheB2, cheR2, and cheA1 were essential for chemotaxis in laboratory assays. As predicted, the ΔcheA1 and ΔcheR2 strains had a smooth-swimming pattern, while the ΔcheB2 strain displayed a zigzag pattern when observed under light microscopy. However, these mutants, unlike the parent strain, were unable to chemotax toward the known attractants coral mucus, dimethylsulfoniopropionate, and N-acetyl-d-glucosamine. The ΔcheB2 strain and an aflagellate ΔfliG1 strain were avirulent to coral, while the ΔcheA1 and ΔcheR2 strains were hypervirulent (90 to 100% infection within 14 h on average) compared to the wild-type strain (66% infection within 36 h on average). Additionally, the ΔcheA1 and ΔcheR2 strains appeared to better colonize coral fragments than the wild-type strain. These results suggest that although chemotaxis may be involved with infection (the ΔcheB2 strain was avirulent), a smooth-swimming phenotype is important for bacterial colonization and infection. This study provides valuable insight into understanding V. coralliilyticus pathogenesis and how this pathogen may be transmitted between hosts.IMPORTANCE Corals are responsible for creating the immense structures that are essential to reef ecosystems; unfortunately, pathogens like the bacterium Vibrio coralliilyticus can cause fatal infections of reef-building coral species. However, compared to related human pathogens, the mechanisms by which V. coralliilyticus initiates infections and locates new coral hosts are poorly understood. This study investigated the effects of chemotaxis, the directional swimming in response to chemical signals, and bacterial swimming patterns on infection of the coral Montipora capitata Infection experiments with different mutant strains suggested that a smooth-swimming pattern resulted in hypervirulence. These results demonstrate that the role of chemotaxis in coral infection may not be as straightforward as previously hypothesized and provide valuable insight into V. coralliilyticus pathogenesis.
Collapse
|
14
|
Ushijima B, Richards GP, Watson MA, Schubiger CB, Häse CC. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus. PLoS One 2018; 13:e0199475. [PMID: 29920567 PMCID: PMC6007914 DOI: 10.1371/journal.pone.0199475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022] Open
Abstract
The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8−93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.
Collapse
Affiliation(s)
- Blake Ushijima
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, Oregon, United States of America
| | - Gary P Richards
- United States Department of Agriculture, Agricultural Research Service, Dover, Delaware, United States of America
| | - Michael A Watson
- United States Department of Agriculture, Agricultural Research Service, Dover, Delaware, United States of America
| | - Carla B Schubiger
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, Oregon, United States of America
| | - Claudia C Häse
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, Oregon, United States of America
| |
Collapse
|
15
|
van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, van Oppen MJH. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol 2018; 27:1065-1080. [PMID: 29334418 DOI: 10.1111/mec.14489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Département de Biologie Marine, Centre Scientifique de Monaco, Monaco, Principauté de Monaco
| | - Maryam Chaib De Mares
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Groves B Dixon
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jean-Baptiste Raina
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
16
|
Deciphering the nature of the coral-Chromera association. ISME JOURNAL 2018; 12:776-790. [PMID: 29321691 PMCID: PMC5864212 DOI: 10.1038/s41396-017-0005-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/22/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, a parasitic relationship, or a chance association? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera, and the impact on the host transcriptome was assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery is modified. These responses differ markedly from those described for infection with a competent strain of the coral mutualist Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera could be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist.
Collapse
|
17
|
Liang S, Luo X, You W, Ke C. Hybridization improved bacteria resistance in abalone: Evidence from physiological and molecular responses. FISH & SHELLFISH IMMUNOLOGY 2018; 72:679-689. [PMID: 29127030 DOI: 10.1016/j.fsi.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids are more active or efficient in immune system function, hence they could effectively defense against a bacterial invasion, leading to higher survival rates after challenge. This study provides physiological and molecular evidences for interpreting the disease resistant heterosis in this abalone hybrid system, which could help us in a better understanding and utilization of heterosis in abalone aquaculture.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China; Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
18
|
Pereira LB, Palermo BRZ, Carlos C, Ottoboni LMM. Diversity and antimicrobial activity of bacteria isolated from different Brazilian coral species. FEMS Microbiol Lett 2017; 364:4058407. [DOI: 10.1093/femsle/fnx164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Letícia B. Pereira
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, CP 6010, Campinas, S.P., Brazil
| | - Bruna R. Z. Palermo
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, CP 6010, Campinas, S.P., Brazil
| | - Camila Carlos
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, CP 6010, Campinas, S.P., Brazil
| | - Laura M. M. Ottoboni
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, CP 6010, Campinas, S.P., Brazil
| |
Collapse
|
19
|
Seveso D, Montano S, Reggente MAL, Maggioni D, Orlandi I, Galli P, Vai M. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 2017; 22:225-236. [PMID: 27988888 PMCID: PMC5352596 DOI: 10.1007/s12192-016-0756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Melissa Amanda Ljubica Reggente
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Davide Maggioni
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
20
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
21
|
Garcia GD, Santos EDO, Sousa GV, Zingali RB, Thompson CC, Thompson FL. Metaproteomics reveals metabolic transitions between healthy and diseased stony coral Mussismilia braziliensis. Mol Ecol 2016; 25:4632-44. [PMID: 27492757 DOI: 10.1111/mec.13775] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS- and BBD-affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin-chlorophyll a-binding protein, F0F1-type ATP synthase, alpha-iG protein, calmodulin and ADP-ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with Cnidaria-Symbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP-ribosylation factor 1) and signal transduction (14-3-3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen-fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate-reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide- and cyanotoxin-rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.
Collapse
Affiliation(s)
- Gizele D Garcia
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Eidy de O Santos
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil.,Unidade de Biologia, Centro Universitário Estadual da Zona Oeste (UEZO), Av. Manoel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070200, Brasil
| | - Gabriele V Sousa
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil
| | - Russolina B Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN, Ilha do Fundão, Rio de Janeiro, RJ, CEP21941-902, Brasil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil. .,Laboratório de Sistemas Avançados de Gestão da Produção (SAGE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rua Moniz de Aragão, no.360 - Bloco 2, Ilha do Fundão - Cidade Universitária, Rio de Janeiro, RJ, 21.941-972, Brasil.
| |
Collapse
|
22
|
Fuess LE, Pinzόn C JH, Weil E, Mydlarz LD. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:17-28. [PMID: 27109903 DOI: 10.1016/j.dci.2016.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Jorge H Pinzόn C
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, TX, USA.
| |
Collapse
|
23
|
Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol 2016; 7:519. [PMID: 27148208 PMCID: PMC4840205 DOI: 10.3389/fmicb.2016.00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Collapse
Affiliation(s)
- Angela Z Poole
- Department of Integrative Biology, Oregon State UniversityCorvallis, OR, USA; Department of Biology, Western Oregon UniverstiyMonmouth, OR, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
24
|
Brown T, Rodriguez-Lanetty M. Defending against pathogens - immunological priming and its molecular basis in a sea anemone, cnidarian. Sci Rep 2015; 5:17425. [PMID: 26628080 PMCID: PMC4667181 DOI: 10.1038/srep17425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023] Open
Abstract
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a higher survivorship during a subsequently lethal challenge than naïve anemones that encountered the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure showed no increase in survivorship. We argue that this short-lasting priming of the defense response could be ecologically relevant if pathogen encounters are restricted to short seasons characterized by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve sea anemones and those primed after pathogen exposure suggesting a clear molecular signature associated with immunological priming in cnidarians. Our findings reveal that immunological priming may have evolved much earlier in the tree of life than previously thought.
Collapse
Affiliation(s)
- Tanya Brown
- Department of Biological Sciences, Florida International University, Miami FL 33199
| | | |
Collapse
|
25
|
Brokordt KB, González RC, Farías WJ, Winkler FM. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens. PLoS One 2015; 10:e0141959. [PMID: 26529324 PMCID: PMC4631488 DOI: 10.1371/journal.pone.0141959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2) and the additive genetic coefficient of variation (CVA) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.
Collapse
Affiliation(s)
- Katherina B. Brokordt
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- * E-mail:
| | - Roxana C. González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - William J. Farías
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Federico M. Winkler
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
26
|
Gochfeld DJ, Ankisetty S, Slattery M. Proteomic profiling of healthy and diseased hybrid soft corals Sinularia maxima × S. polydactyla. DISEASES OF AQUATIC ORGANISMS 2015; 116:133-141. [PMID: 26480916 DOI: 10.3354/dao02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerging diseases of marine invertebrates have been implicated as one of the major causes of the continuing decline in coral reefs worldwide. To date, most of the focus on marine diseases has been aimed at hard (scleractinian) corals, which are the main reef builders worldwide. However, soft (alcyonacean) corals are also essential components of tropical reefs, representing food, habitat and the 'glue' that consolidates reefs, and they are subject to the same stressors as hard corals. Sinularia maxima and S. polydactyla are the dominant soft corals on the shallow reefs of Guam, where they hybridize. In addition to both parent species, the hybrid soft coral population in Guam is particularly affected by Sinularia tissue loss disease. Using label-free shotgun proteomics, we identified differences in protein expression between healthy and diseased colonies of the hybrid S. maxima × S. polydactyla. This study provided qualitative and quantitative data on specific proteins that were differentially expressed under the stress of disease. In particular, metabolic proteins were down-regulated, whereas proteins related to stress and to symbiont photosynthesis were up-regulated in the diseased soft corals. These results indicate that soft corals are responding to pathogenesis at the level of the proteome, and that this label-free approach can be used to identify and quantify protein biomarkers of sub-lethal stress in studies of marine disease.
Collapse
Affiliation(s)
- Deborah J Gochfeld
- National Center for Natural Products Research, and Department of BioMolecular Sciences, University of Mississippi, PO Box 1848, University, MS 38677-1848, USA
| | | | | |
Collapse
|
27
|
Séré MG, Tortosa P, Chabanet P, Quod JP, Sweet MJ, Schleyer MH. Identification of a bacterial pathogen associated withPoriteswhite patch syndrome in the Western Indian Ocean. Mol Ecol 2015; 24:4570-81. [DOI: 10.1111/mec.13326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Mathieu G. Séré
- Agence pour la Recherche et la Valorisation Marines (ARVAM); Ste Clotilde Reunion Island France
- Oceanographic Research Institute (ORI); Durban KwaZulu-Natal South Africa
- IRD - UMR ENTROPIE; Labex CORAIL; CS 41095 97495 Sainte Clotilde Cedex La Réunion
| | - Pablo Tortosa
- Unité Mixte de Recherche “Processus Infectieux en Milieu Insulaire Tropical” (UMR PIMIT); Université de La Réunion; Inserm1187; CNRS9192, IRD249; Plateforme de Recherche CYROI; 2 rue Maxime Rivière 97490 Ste Clotilde Saint Denis France
| | - Pascale Chabanet
- IRD - UMR ENTROPIE; Labex CORAIL; CS 41095 97495 Sainte Clotilde Cedex La Réunion
| | - Jean-Pascal Quod
- Agence pour la Recherche et la Valorisation Marines (ARVAM); Ste Clotilde Reunion Island France
| | - Michael J. Sweet
- Molecular Health and Disease Laboratory College of Life and Natural Sciences; University of Derby; Kedleston Road Derby UK
| | | |
Collapse
|
28
|
Seveso D, Montano S, Reggente MA, Orlandi I, Galli P, Vai M. Modulation of Hsp60 in response to coral brown band disease. DISEASES OF AQUATIC ORGANISMS 2015; 115:15-23. [PMID: 26119296 DOI: 10.3354/dao02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Brown band disease (BrB), a virulent coral disease characterized by a dense concentration of ciliates ingesting coral tissue, is responsible for ongoing coral losses on Indo-Pacific reefs. Although several efforts have been made to identify the microbial communities associated with BrB and study the disease ecology, less attention has been given to the effect of ciliate presence on coral physiology. Levels of the mitochondrial heat shock protein 60-kDa (Hsp60, a biomarker indicative of cellular stress) were analyzed in apparently healthy coral polyps located at different distances along the advancing front of infection in Acropora muricata colonies affected by BrB in a Maldivian reef. Different Hsp60 levels were found in different parts of the same colony. Starting from a basal protein level in the healthy control colonies, a down-regulation of Hsp60 expression was detected near the ciliate band, indicating that the Hsp60 defense activity was probably already compromised due to the rapid progression rate of the BrB ciliate on the diseased branches and/or to the etiology of the disease. Moving away from the band, the Hsp60 levels gradually returned to a state comparable to that found in the control, showing that cellular damage was confined to areas near the infection. In conclusion, we propose the analysis of Hsp60 modulation as a useful tool for examining physiological variations that are not detected at the morphological level in corals subjected to epizootic diseases, while providing new insights into the immune response of corals.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | | | | | | | | | | |
Collapse
|
29
|
van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH. The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 2015; 24:3390-404. [PMID: 26095670 DOI: 10.1111/mec.13257] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
Increasing physical damage on coral reefs from predation, storms and anthropogenic disturbances highlights the need to understand the impact of injury on the coral immune system. In this study, we examined the regulation of the coral immune response over 10 days following physical trauma artificially inflicted on in situ colonies of the coral Acropora aspera, simultaneously with bacterial colonization of the lesions. Corals responded to injury by increasing the expression of immune system-related genes involved in the Toll-like and NOD-like receptor signalling pathways and the lectin-complement system in three phases (<2, 4 and 10 days post-injury). Phenoloxidase activity was also significantly upregulated in two phases (<3 and 10 days post-injury), as were levels of non-fluorescent chromoprotein. In addition, green fluorescent protein expression was upregulated in response to injury from 4 days post-injury, while cyan fluorescent protein expression was reduced. No shifts in the composition of coral-associated bacterial communities were evident following injury based on 16S rRNA gene amplicon pyrosequencing. Bacteria-specific fluorescence in situ hybridization also showed no evidence of bacterial colonization of the wound or regenerating tissues. Coral tissues showed near-complete regeneration of lesions within 10 days. This study demonstrates that corals exhibit immune responses that support rapid recovery following physical injury, maintain coral microbial homeostasis and prevent bacterial infestation that may compromise coral fitness.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia
| | - William Leggat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - David G Bourne
- AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| |
Collapse
|
30
|
Wright RM, Aglyamova GV, Meyer E, Matz MV. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 2015; 16:371. [PMID: 25956907 PMCID: PMC4425862 DOI: 10.1186/s12864-015-1540-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corals are capable of launching diverse immune defenses at the site of direct contact with pathogens, but the molecular mechanisms of this activity and the colony-wide effects of such stressors remain poorly understood. Here we compared gene expression profiles in eight healthy Acropora hyacinthus colonies against eight colonies exhibiting tissue loss commonly associated with white syndromes, all collected from a natural reef environment near Palau. Two types of tissues were sampled from diseased corals: visibly affected and apparently healthy. RESULTS Tag-based RNA-Seq followed by weighted gene co-expression network analysis identified groups of co-regulated differentially expressed genes between all health states (disease lesion, apparently healthy tissues of diseased colonies, and fully healthy). Differences between healthy and diseased tissues indicate activation of several innate immunity and tissue repair pathways accompanied by reduced calcification and the switch towards metabolic reliance on stored lipids. Unaffected parts of diseased colonies, although displaying a trend towards these changes, were not significantly different from fully healthy samples. Still, network analysis identified a group of genes, suggestive of altered immunity state, that were specifically up-regulated in unaffected parts of diseased colonies. CONCLUSIONS Similarity of fully healthy samples to apparently healthy parts of diseased colonies indicates that systemic effects of white syndromes on A. hyacinthus are weak, which implies that the coral colony is largely able to sustain its physiological performance despite disease. The genes specifically up-regulated in unaffected parts of diseased colonies, instead of being the consequence of disease, might be related to the originally higher susceptibility of these colonies to naturally occurring white syndromes.
Collapse
Affiliation(s)
- Rachel M Wright
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, USA.
| | - Galina V Aglyamova
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| | - Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, USA.
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
31
|
Moya A, Huisman L, Forêt S, Gattuso JP, Hayward DC, Ball EE, Miller DJ. Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol Ecol 2015; 24:438-52. [DOI: 10.1111/mec.13021] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
Affiliation(s)
- A. Moya
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Laboratoire d'Océanographie de Villefranche; INSU-CNRS; 181 Chemin du Lazaret 06230 Villefranche-sur-mer France
- Sorbonne Universités; UPMC Univ. Paris 06; Observatoire Océanologique 06230 Villefranche-sur-mer France
| | - L. Huisman
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Section of Computational Science; Universiteit van Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - S. Forêt
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Evolution, Ecology and Genetics; Research School of Biology; Australian National University; Bldg. 46 Canberra ACT 0200 Australia
| | - J.-P. Gattuso
- Laboratoire d'Océanographie de Villefranche; INSU-CNRS; 181 Chemin du Lazaret 06230 Villefranche-sur-mer France
- Sorbonne Universités; UPMC Univ. Paris 06; Observatoire Océanologique 06230 Villefranche-sur-mer France
| | - D. C. Hayward
- Evolution, Ecology and Genetics; Research School of Biology; Australian National University; Bldg. 46 Canberra ACT 0200 Australia
| | - E. E. Ball
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Evolution, Ecology and Genetics; Research School of Biology; Australian National University; Bldg. 46 Canberra ACT 0200 Australia
| | - D. J. Miller
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- School of Pharmacy and Molecular Sciences; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
32
|
van de Water JAJM, Lamb JB, van Oppen MJH, Willis BL, Bourne DG. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. CONSERVATION PHYSIOLOGY 2015; 3:cov032. [PMID: 27293717 PMCID: PMC4778433 DOI: 10.1093/conphys/cov032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/15/2023]
Abstract
Unravelling the contributions of local anthropogenic and seasonal environmental factors in suppressing the coral immune system is important for prioritizing management actions at reefs exposed to high levels of human activities. Here, we monitor health of the model coral Acropora millepora adjacent to a high-use and an unused reef-based tourist platform, plus a nearby control site without a platform, over 7 months spanning a typical austral summer. Comparisons of temporal patterns in a range of biochemical and genetic immune parameters (Toll-like receptor signalling pathway, lectin-complement system, prophenoloxidase-activating system and green fluorescent protein-like proteins) among healthy, injured and diseased corals revealed that corals exhibit a diverse array of immune responses to environmental and anthropogenic stressors. In healthy corals at the control site, expression of genes involved in the Toll-like receptor signalling pathway (MAPK p38, MEKK1, cFos and ATF4/5) and complement system (C3 and Bf) was modulated by seasonal environmental factors in summer months. Corals at reef platform sites experienced additional stressors over the summer, as evidenced by increased expression of various immune genes, including MAPK p38 and MEKK1. Despite increased expression of immune genes, signs of white syndromes were detected in 31% of study corals near tourist platforms in the warmest summer month. Evidence that colonies developing disease showed reduced expression of genes involved in the complement pathway prior to disease onset suggests that their immune systems may have been compromised. Responses to disease and physical damage primarily involved the melanization cascade and GFP-like proteins, and appeared to be sufficient for recovery when summer heat stress subsided. Overall, seasonal and anthropogenic factors may have interacted synergistically to overwhelm the immune systems of corals near reef platforms, leading to increased disease prevalence in summer at these sites.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- Corresponding author: College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia.
| | - Joleah B Lamb
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Madeleine J H van Oppen
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bette L Willis
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
| | - David G Bourne
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
| |
Collapse
|
33
|
Traylor-Knowles N, Palumbi SR. Translational environmental biology: cell biology informing conservation. Trends Cell Biol 2014; 24:265-7. [PMID: 24766840 DOI: 10.1016/j.tcb.2014.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023]
Abstract
Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA.
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| |
Collapse
|
34
|
Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:430-438. [PMID: 24877658 DOI: 10.1016/j.dci.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The complement system is a fundamental effector mechanism of the innate immunity in both vertebrates and invertebrates. The comprehension of its roots in the evolution is a useful step to understand how the main complement-related proteins had changed in order to adapt to new environmental conditions and life-cycles or, in the case of vertebrates, to interact with the adaptive immunity. Data on organisms evolutionary close to vertebrates, such as tunicates, are of primary importance for a better understanding of the changes in immune responses associated with the invertebrate-vertebrate transition. Here we report on the characterization of C3 and Bf transcripts from the colonial ascidian Botryllus schlosseri (BsC3 and BsBf, respectively), a reliable model organism for immunobiological research, and present a comparative analysis of amino acid sequences of C3s and Bfs suggesting that, in deuterostomes, the structure of these proteins remained largely unchanged. We also present new data on the cells responsible of the expression of BsC3 and BsBf showing that cytotoxic immunocytes are the sole cells where the relative transcripts can be found. Finally, using the C3 specific inhibitor compstatin, we demonstrate the opsonic role of BsC3 in accordance with the idea that promotion of phagocytosis is one of the main function of C3 in metazoans.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy.
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy
| |
Collapse
|
35
|
Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol 2014; 80:2102-9. [PMID: 24463971 DOI: 10.1128/aem.03463-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Kāne'ohe Bay, Hawai'i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 10(7) and 10(8) CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain.
Collapse
|