1
|
Smith PO, Huang G, Devries K, Nazhat SN, Phillips JB. Automated production of nerve repair constructs containing endothelial cell tube-like structures. Biofabrication 2024; 17:015024. [PMID: 39500048 DOI: 10.1088/1758-5090/ad8efd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Engineered neural tissue (EngNT) is a stabilised aligned cellular hydrogel that offers a potential alternative to the nerve autograft for the treatment of severe peripheral nerve injury. This work aimed to automate the production of EngNT, to improve the feasibility of scalable manufacture for clinical translation. Endothelial cells were used as the cellular component of the EngNT, with the formation of endothelial cell tube-like structures mimicking the polarised vascular structures formed early on in the natural regenerative process. Gel aspiration-ejection for the production of EngNT was automated by integrating a syringe pump with a robotic positioning system, using software coded in Python to control both devices. Having established the production method and tested mechanical properties, the EngNT containing human umbilical vein endothelial cells (EngNT-HUVEC) was characterised in terms of viability and alignment, compatibility with neurite outgrowth from rat dorsal root ganglion neurons and formation of endothelial cell networksin vitro. EngNT-HUVEC manufactured using the automated system contained viable and aligned endothelial cells, which developed into a network of multinucleated endothelial cell tube-like structures inside the constructs and an outer layer of endothelialisation. The EngNT-HUVEC constructs were made in various sizes within minutes. Constructs provided support and guidance to regenerating neuritesin vitro. This work automated the formation of EngNT, facilitating high throughput manufacture at scale. The formation of endothelial cell tube-like structures within stabilised hydrogels provides an engineered tissue with potential for use in nerve repair.
Collapse
Affiliation(s)
- Poppy O Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Guanbingxue Huang
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - James B Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
2
|
Mirzazadeh J, Majidi MR, Norouzi P, Faridi-Majidi R, Asadpour-Zeynali K. Non-invasive and probeless rapid in-vitro monitoring and quantification of HUVECs counts based on FFT impedimetery. BIOIMPACTS : BI 2023; 14:28854. [PMID: 38938755 PMCID: PMC11199931 DOI: 10.34172/bi.2023.28854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 06/29/2024]
Abstract
Introduction The endothelial cells derived from the human vein cord (HUVECs) are used as in-vitro models for studying cellular and molecular pathophysiology, drug and hormones transport mechanisms, or pathways. In these studies, the proliferation and quantity of cells are important features that should be monitored and assessed regularly. So rapid, easy, noninvasive, and inexpensive methods are favorable for this purpose. Methods In this work, a novel method based on fast Fourier transform square-wave voltammetry (FFTSWV) combined with a 3D printed electrochemical cell including two inserted platinum electrodes was developed for non-invasive and probeless rapid in-vitro monitoring and quantification of human umbilical vein endothelial cells (HUVECs). The electrochemical cell configuration, along with inverted microscope images, provided the capability of easy use, online in-vitro monitoring, and quantification of the cells during proliferation. Results HUVECs were cultured and proliferated at defined experimental conditions, and standard cell counts in the initial range of 12 500 to 175 000 were prepared and calibrated by using a hemocytometer (Neubauer chamber) counting for electrochemical measurements. The optimum condition, for FFTSWV at a frequency of 100 Hz and 5 mV amplitude, were found to be a safe electrochemical measurement in the cell culture medium. In each run, the impedance or admittance measurement was measured in a 5 seconds time window. The total measurements were fulfilled at 5, 24, and 48 hours after the seeding of the cells, respectively. The recorded microscopic images before every electrochemical assay showed the conformity of morphology and objective counts of cells in every plate well. The proposed electrochemical method showed dynamic linearity in the range of 12 500-265 000 HUVECs 48 hours after the seeding of cells. Conclusion The proposed electrochemical method can be used as a simple, fast, and noninvasive technique for tracing and monitoring of HUVECs population in in-vitro studies. This method is highly cheap in comparison with other traditional tools. The introduced configuration has the versatility to develop electrodes for the study of various cells and the application of other electrochemical designations.
Collapse
Affiliation(s)
- Jalil Mirzazadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| |
Collapse
|
3
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
4
|
Wang W, Taufalele PV, Millet M, Homsy K, Smart K, Berestesky ED, Schunk CT, Rowe MM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates tumor cell intravasation through expression and ESRP1-mediated alternative splicing of MENA. Cell Rep 2023; 42:112338. [PMID: 37027295 PMCID: PMC10551051 DOI: 10.1016/j.celrep.2023.112338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; Département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | |
Collapse
|
5
|
Nevone A, Lattarulo F, Russo M, Panno G, Milani P, Basset M, Avanzini MA, Merlini G, Palladini G, Nuvolone M. A Strategy for the Selection of RT-qPCR Reference Genes Based on Publicly Available Transcriptomic Datasets. Biomedicines 2023; 11:1079. [PMID: 37189697 PMCID: PMC10135859 DOI: 10.3390/biomedicines11041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In the next-generation sequencing era, RT-qPCR is still widely employed to quantify levels of nucleic acids of interest due to its popularity, versatility, and limited costs. The measurement of transcriptional levels through RT-qPCR critically depends on reference genes used for normalization. Here, we devised a strategy to select appropriate reference genes for a specific clinical/experimental setting based on publicly available transcriptomic datasets and a pipeline for RT-qPCR assay design and validation. As a proof-of-principle, we applied this strategy to identify and validate reference genes for transcriptional studies of bone-marrow plasma cells from patients with AL amyloidosis. We performed a systematic review of published literature to compile a list of 163 candidate reference genes for RT-qPCR experiments employing human samples. Next, we interrogated the Gene Expression Omnibus to assess expression levels of these genes in published transcriptomic studies on bone-marrow plasma cells from patients with different plasma cell dyscrasias and identified the most stably expressed genes as candidate normalizing genes. Experimental validation on bone-marrow plasma cells showed the superiority of candidate reference genes identified through this strategy over commonly employed "housekeeping" genes. The strategy presented here may apply to other clinical and experimental settings for which publicly available transcriptomic datasets are available.
Collapse
Affiliation(s)
- Alice Nevone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Lattarulo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Russo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giada Panno
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology, Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
6
|
Schwarz AP, Nikitina VA, Krytskaya DU, Shcherbakova KP, Trofimov AN. Reference gene expression stability within the rat brain under mild intermittent ketosis induced by supplementation with medium-chain triglycerides. PLoS One 2023; 18:e0273224. [PMID: 36757952 PMCID: PMC9910642 DOI: 10.1371/journal.pone.0273224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/04/2022] [Indexed: 02/10/2023] Open
Abstract
Reverse transcription followed by quantitative (real-time) polymerase chain reaction (RT-qPCR) has become the gold standard in mRNA expression analysis. However, it requires an accurate choice of reference genes for adequate normalization. The aim of this study was to validate the reference genes for qPCR experiments in the brain of rats in the model of mild ketosis established through supplementation with medium-chain triglycerides (MCT) and intermittent fasting. This approach allows to reproduce certain neuroprotective effects of the classical ketogenic diet while avoiding its adverse effects. Ketogenic treatment targets multiple metabolic pathways, which may affect the reference gene expression. The standard chow of adult Wistar rats was supplemented with MCT (2 ml/kg orogastrically, during 6 h of fasting) or water (equivolume) for 1 month. The mRNA expression of 9 housekeeping genes (Actb, B2m, Gapdh, Hprt1, Pgk1, Ppia, Rpl13a, Sdha, Ywhaz) in the medial prefrontal cortex, dorsal and ventral hippocampus was measured by RT-qPCR. Using the RefFinder® online tool, we have found that the reference gene stability ranking strongly depended on the analyzed brain region. The most stably expressed reference genes were found to be Ppia, Actb, and Rpl13a in the medial prefrontal cortex; Rpl13a, Ywhaz, and Pgk1 in the dorsal hippocampus; Ywhaz, Sdha, and Ppia in the ventral hippocampus. The B2m was identified as an invalid reference gene in the ventral hippocampus, while Sdha, Actb, and Gapdh were unstable in the dorsal hippocampus. The stabilities of the examined reference genes were lower in the dorsal hippocampus compared to the ventral hippocampus and the medial prefrontal cortex. When normalized to the three most stably expressed reference genes, the Gapdh mRNA was upregulated, while the Sdha mRNA was downregulated in the medial prefrontal cortex of MCT-fed animals. Thus, the expression stability of reference genes strongly depends on the examined brain regions. The dorsal and ventral hippocampal areas differ in reference genes stability rankings, which should be taken into account in the RT-qPCR experimental design.
Collapse
Affiliation(s)
- Alexander P. Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail: (APS); (ANT)
| | - Veronika A. Nikitina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Darya U. Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Ksenia P. Shcherbakova
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander N. Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
- * E-mail: (APS); (ANT)
| |
Collapse
|
7
|
Abdelgawad IY, Agostinucci K, Ismail SG, Grant MKO, Zordoky BN. EA.hy926 Cells and HUVECs Share Similar Senescence Phenotypes but Respond Differently to the Senolytic Drug ABT-263. Cells 2022; 11:1992. [PMID: 35805077 PMCID: PMC9266052 DOI: 10.3390/cells11131992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) induces endothelial cell (EC) senescence, which contributes to endothelial dysfunction and cardiovascular complications. Senolytic drugs selectively eliminate senescent cells to ameliorate senescence-mediated pathologies. Previous studies have demonstrated differences between immortalized and primary EC models in some characteristics. However, the response of DOX-induced senescent ECs to senolytics has not been determined across these two models. In the present work, we first established a comparative characterization of DOX-induced senescence phenotypes in immortalized EA.hy926 endothelial-derived cells and primary human umbilical vein EC (HUVECs). Thereafter, we evaluated the senolytic activity of four senolytics across both ECs. Following the DOX treatment, both EA.hy926 and HUVECs shared similar senescence phenotypes characterized by upregulated senescence markers, increased SA-β-gal activity, cell cycle arrest, and elevated expression of the senescence-associated secretory phenotype (SASP). The potentially senolytic drugs dasatinib, quercetin, and fisetin demonstrated a lack of selectivity against DOX-induced senescent EA.hy926 cells and HUVECs. However, ABT-263 (Navitoclax) selectively induced the apoptosis of DOX-induced senescent HUVECs but not EA.hy926 cells. Mechanistically, DOX-treated EA.hy926 cells and HUVECs demonstrated differential expression levels of the BCL-2 family proteins. In conclusion, both EA.hy926 cells and HUVECs demonstrate similar DOX-induced senescence phenotypes but they respond differently to ABT-263, presumably due to the different expression levels of BCL-2 family proteins.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.A.); (K.A.); (S.G.I.); (M.K.O.G.)
| |
Collapse
|
8
|
Foquet B, Song H. There is no magic bullet: the importance of testing reference gene stability in RT-qPCR experiments across multiple closely related species. PeerJ 2020; 8:e9618. [PMID: 32832268 PMCID: PMC7409783 DOI: 10.7717/peerj.9618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) is the current gold standard tool for the study of gene expression. This technique is highly dependent on the validation of reference genes, which exhibit stable expression levels among experimental conditions. Often, reference genes are assumed to be stable a priori without a rigorous test of gene stability. However, such an oversight can easily lead to misinterpreting expression levels of target genes if the references genes are in fact not stable across experimental conditions. Even though most gene expression studies focus on just one species, comparative studies of gene expression among closely related species can be very informative from an evolutionary perspective. In our study, we have attempted to find stable reference genes for four closely related species of grasshoppers (Orthoptera: Acrididae) that together exhibit a spectrum of density-dependent phenotypic plasticity. Gene stability was assessed for eight reference genes in two tissues, two experimental conditions and all four species. We observed clear differences in the stability ranking of these reference genes, both between tissues and between species. Additionally, the choice of reference genes clearly influenced the results of a gene expression experiment. We offer suggestions for the use of reference genes in further studies using these four species, which should be taken as a cautionary tale for future studies involving RT-qPCR in a comparative framework.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
9
|
Schwarz AP, Kovalenko AA, Malygina DA, Postnikova TY, Zubareva OE, Zaitsev AV. Reference Gene Validation in the Brain Regions of Young Rats after Pentylenetetrazole-Induced Seizures. Biomedicines 2020; 8:biomedicines8080239. [PMID: 32717922 PMCID: PMC7460155 DOI: 10.3390/biomedicines8080239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Reverse transcription followed by quantitative polymerase chain reaction (qRT-PCR) is a powerful and commonly used tool for gene expression analysis. It requires the right choice of stably expressed reference genes for accurate normalization. In this work, we aimed to select the optimal reference genes for qRT-PCR normalization within different brain areas during the first week following pentylenetetrazole-induced seizures in immature (P20–22) Wistar rats. We have tested the expression stability of a panel of nine housekeeping genes: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on geometric averaging of ranks obtained by four common algorithms (geNorm, NormFinder, BestKeeper, Comparative Delta-Ct), we found that the stability of tested reference genes varied significantly between different brain regions. The expression of the tested panel of genes was very stable within the medial prefrontal and temporal cortex, and the dorsal hippocampus. However, within the ventral hippocampus, the entorhinal cortex and amygdala expression levels of most of the tested genes were not steady. The data revealed that in the pentylenetetrazole-induced seizure model in juvenile rats, Pgk1, Ppia, and B2m expression are the most stable within the medial prefrontal cortex; Ppia, Rpl13a, and Sdha within the temporal cortex; Pgk1, Ppia, and Rpl13a within the entorhinal cortex; Gapdh, Ppia, and Pgk1 within the dorsal hippocampus; Rpl13a, Sdha, and Ppia within the ventral hippocampus; and Sdha, Pgk1, and Ppia within the amygdala. Our data indicate the need for a differential selection of reference genes across brain regions, including the dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Alexander P. Schwarz
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Anna A. Kovalenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Daria A. Malygina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Tatiana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Olga E. Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Street, Saint Petersburg 197341, Russia
- Correspondence:
| |
Collapse
|
10
|
Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway. Acta Biomater 2019; 100:52-60. [PMID: 31606530 DOI: 10.1016/j.actbio.2019.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
Vascular stiffening is associated with the prognosis of cardiovascular disease (CVD). Endothelial dysfunction, as shown by reduced vasodilation and increased vasoconstriction, not only affects vascular tone, but also accelerates the progression of CVD. However, the precise effect of vascular stiffening on endothelial function and its mechanism is unclear and a possible underlying has not been determined. In this study, we found that increasing substrate stiffness promoted endothelin-1 (ET-1) expression and inhibited endothelial nitric oxide synthase expression in human umbilical vein endothelial cells. Additionally, miR-6740-5p was identified as a stiffness-sensitive microRNA, which was downregulated by a stiff substrate, resulting in increased ET-1 expression. Furthermore, we found that substrate stiffening reduced the expression and activity of the calcium channel TRPV4, which subsequently enhanced ET-1 expression by inhibiting miR-6740-5p. Finally, analysis of clinical plasma samples showed that plasma miR-6740-5p levels in patients with carotid atherosclerosis were significantly lower than those in healthy people. Taken together, our findings show a novel mechanically regulated TRPV4/miR-6740/ET-1 signaling axis by which substrate stiffness affects endothelial function. Our findings indicate that vascular stiffening induces endothelial dysfunction, thereby accelerating progression of CVD. Furthermore, this study indicates that endothelial dysfunction induced by improper biophysical cues from cardiovascular implants may be an important reason for complications arising from the use of cardiovascular implants. STATEMENT OF SIGNIFICANCE: Cardiovascular disease is the leading cause of morbidity and mortality worldwide. The incidence of cardiovascular disease is accompanied by increased vascular stiffness. Our work indicated that increased vascular stiffness accelerates the development of cardiovascular disease by inducing endothelial dysfunction, which is a key contributor to the pathogenesis of cardiovascular disease. In addition, we identified a novel underlying molecular pathophysiological mechanism by which increased stiffness induce endothelial dysfunction. Our work could help determine the pathogenesis of cardiovascular disease induced by biomechanical factors.
Collapse
|
11
|
Zhu Y, Zhang Q, Shi X, Han D. Hierarchical Hydrogel Composite Interfaces with Robust Mechanical Properties for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804950. [PMID: 30815920 DOI: 10.1002/adma.201804950] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Cells sense and respond to a wide range of external signals, including chemical signals, topography, and interface mechanics, via interactions with the extracellular matrix (ECM), triggering the regulation of behavior and function. The ECM can be considered a hierarchical multiphase porous matrix with various components. Highly porous hydrogel-based biomaterials can mimic the critical ECM properties, to provide mechanical support for tissues and to regulate cellular behaviors, such as adhesion, proliferation, and differentiation. Herein, based on micro/nanoscale-topography-coupled mechanical action, recent advances in the fabrication and application of hydrogel composites with tunable mechanical properties and topography in biomedicine are summarized. In particular, recent findings showing that hydrogels with specifically designed structures not only influence a range of cellular processes and fit the needs of engineered tissues but also have pharmacological effects are emphasized.
Collapse
Affiliation(s)
- Yuting Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Shen K, Kenche H, Zhao H, Li J, Stone J. The role of extracellular matrix stiffness in regulating cytoskeletal remodeling via vinculin in synthetic smooth muscle cells. Biochem Biophys Res Commun 2018; 508:302-307. [PMID: 30502091 DOI: 10.1016/j.bbrc.2018.11.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Vinculin is a key player in sensing and responding to external mechanical cues such as extracellular matrix stiffness. Increased matrix stiffness is often associated with certain pathological conditions including hypertension induced cellular cytoskeleton changes in vascular smooth muscle (VSM) cells. However, little is known on how stiffness affects cytoskeletal remodeling via vinculin in VSM cells. Thus, we utilized matrices with elastic moduli that simulate vascular stiffness in different stages of hypertension to investigate how matrix stiffness regulates cell cytoskeleton via vinculin in synthetic VSM cells. Through selecting a suitable reference gene, we found that an increase in physiologically relevant extracellular matrix stiffness (2-50 kPa) downregulates vinculin gene expression but upregulates vinculin protein expression. This discrepancy, which was not observed previously for non-muscle cells, suggests that the vinculin-mediated mecahnotransduction mechanism in synthetic VSM cells may be more complex than those proposed for non-muscle cells. Also adding to previous findings, we found that VSM cell growth may be impeded by substrates that are either too soft or too rigid.
Collapse
Affiliation(s)
- Kai Shen
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA.
| | - Harshavardhan Kenche
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Jasimine Stone
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA
| |
Collapse
|
13
|
Monte F, Cebe T, Ripperger D, Ighani F, Kojouharov HV, Chen BM, Kim HKW, Aswath PB, Varanasi VG. Ionic silicon improves endothelial cells' survival under toxic oxidative stress by overexpressing angiogenic markers and antioxidant enzymes. J Tissue Eng Regen Med 2018; 12:2203-2220. [PMID: 30062712 PMCID: PMC6508967 DOI: 10.1002/term.2744] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.
Collapse
Affiliation(s)
- Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
| | - Tugba Cebe
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | | | - Fareed Ighani
- Texas A&M University College of Dentistry, Dallas, Texas
| | | | - Benito M. Chen
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas
| | - Harry K. W. Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pranesh B. Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Venu G. Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Department of College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
14
|
Royer C, Bégin AAG, Plawinski L, Lévesque L, Durrieu MC, Laroche G. Validation of reference genes for real-time PCR of cord blood mononuclear cells, differentiating endothelial progenitor cells, and mature endothelial cells. Exp Cell Res 2018; 370:389-398. [PMID: 30146063 DOI: 10.1016/j.yexcr.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/06/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
In the last ten years, endothelial progenitor cells (EPCs) have gained interest as an attractive cell population in regenerative medicine for vascular applications. This population is defined as the precursor of endothelial mature cells (ECs) through a process of differentiation. To our knowledge, no single marker can be used to discriminate them from mature ECs. To effectively study their differentiation kinetics, gene expression must be assessed. Quantitative real-time PCR (RT-qPCR) is widely used to analyze gene expression. To minimize the impact of variances from RT-qPCR, a rigorous selection of reference genes must be performed prior to any experiments due to variations in experimental conditions. In this study, CD34+ mononuclear cells were extracted from human cord blood and differentiated into EPCs after seeding for a maximum period of 21 days. To choose the best combinations of reference genes, we compared the results of EPCs, CD34+ mononuclear cells, and mature endothelial cells to ensure that the differentiation kinetics did not affect the expression of our selected reference genes. The expression levels of seven genes, namely, YWHAZ, GAPDH, HPRT1, RPLP0, UBC, B2M, and TBP were thus compared. The algorithms geNorm, NormFinder, BestKeeper, and the Comparative ΔCt method were employed to assess the expression of each candidate gene. Overall results reveal that the expression stability of reference genes may differ depending on the statistical program used. YWHAZ, GAPDH, and UBC composed the optimal set of reference genes for the gene expression studies performed by RT-qPCR in our experimental conditions. This work can thus serve as a starting point for the selection of candidate reference genes to normalize the levels of gene expression in endothelial progenitor cell populations.
Collapse
Affiliation(s)
- Caroline Royer
- Univ. Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Pessac, France; CNRS, CBMN UMR5248, Pessac, France; Bordeaux INP, CBMN UMR5248, Pessac, France; Laboratoire d'Ingénierie de Surface, Centre de recherche du CHU de Québec - Université Laval, Hôpital Saint-François d'Assise, Québec, Canada; Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés, Université Laval, Québec, Canada
| | - Andrée-Anne Guay Bégin
- Laboratoire d'Ingénierie de Surface, Centre de recherche du CHU de Québec - Université Laval, Hôpital Saint-François d'Assise, Québec, Canada
| | - Laurent Plawinski
- Univ. Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Pessac, France; CNRS, CBMN UMR5248, Pessac, France; Bordeaux INP, CBMN UMR5248, Pessac, France
| | - Lucie Lévesque
- Laboratoire d'Ingénierie de Surface, Centre de recherche du CHU de Québec - Université Laval, Hôpital Saint-François d'Assise, Québec, Canada
| | - Marie-Christine Durrieu
- Univ. Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Pessac, France; CNRS, CBMN UMR5248, Pessac, France; Bordeaux INP, CBMN UMR5248, Pessac, France
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de recherche du CHU de Québec - Université Laval, Hôpital Saint-François d'Assise, Québec, Canada; Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés, Université Laval, Québec, Canada.
| |
Collapse
|
15
|
Xiang Q, Li J, Qin P, He M, Yu X, Zhao K, Zhang X, Ma M, Chen Q, Chen X, Zeng X, Gu Y. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes. PLoS One 2018; 13:e0190226. [PMID: 29293626 PMCID: PMC5749753 DOI: 10.1371/journal.pone.0190226] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Abstract
Lentinula edodes (shiitake mushroom) is a common edible mushroom with a number of potential therapeutic and nutritional applications. It contains various medically important molecules, such as polysaccharides, terpenoids, sterols, and lipids, were contained in this mushroom. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to analyze the mechanisms underlying the biosynthetic pathways of these substances. qRT-PCR is used for accurate analyses of transcript levels owing to its rapidity, sensitivity, and reliability. However, its accuracy and reliability for the quantification of transcripts rely on the expression stability of the reference genes used for data normalization. To ensure the reliability of gene expression analyses using qRT-PCR in L. edodes molecular biology research, it is necessary to systematically evaluate reference genes. In the current study, ten potential reference genes were selected from L. edodes genomic data and their expression levels were measured by qRT-PCR using various samples. The expression stability of each candidate gene was analyzed by three commonly used software packages: geNorm, NormFinder, and BestKeeper. Base on the results, Rpl4 was the most stable reference gene across all experimental conditions, and Atu was the most stable gene among strains. 18S was found to be the best reference gene for different development stages, and Rpl4 was the most stably expressed gene under various nutrient conditions. The present work will contribute to qRT-PCR studies in L. edodes.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- * E-mail: (YG); (QX)
| | - Jin Li
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Peng Qin
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Maolan He
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xianfu Zeng
- Horticulture Research Institute, Chengdu Academy of Agriculture and Forestry Science, Chengdu, Sichuan, P.R. China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- * E-mail: (YG); (QX)
| |
Collapse
|
16
|
Buravkova LB, Rudimov EG, Andreeva ER, Grigoriev AI. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. J Cell Biochem 2017; 119:2875-2885. [PMID: 29080356 DOI: 10.1002/jcb.26465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1+ -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1+ -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions.
Collapse
Affiliation(s)
- Ludmila B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Eugene G Rudimov
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anatoly I Grigoriev
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Appukuttan B, Ashander LM, Ma Y, Smith JR. Selection of Reference Genes for Studies of Human Retinal Endothelial Cell Gene Expression by Reverse Transcription-Quantitative Real-Time Polymerase Chain Reaction. GENE REPORTS 2017; 10:123-134. [PMID: 29881787 DOI: 10.1016/j.genrep.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Human retinal endothelial cells are employed increasingly for investigations of retinal vascular diseases. Analysis of gene expression response to disease-associated stimuli by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) is common. However, most reported work does not follow the minimum information for publication of qPCR experiments (MIQE) recommendation that multiple, stably expressed reference genes be used for normalization. Methods Two human retinal endothelial cell lines were treated with medium alone or containing stimuli that included: glucose at supraphysiological concentration, dimethyloxalyl-glycine, vascular endothelial growth factor, tumor necrosis factor-α, lipopolysaccharide and Toxoplasma gondii tachyzoites. Biological response of cells was confirmed by measuring significant increase in a stimulus-relevant transcript. Total RNA was reverse transcribed and analyzed by commercial PCR arrays designed to detect 28 reference genes. Stability of reference gene expression, for each and both cell lines, and for each and all conditions, was judged on gene-stability measure (M-value) less than 0.2 and coefficient of variation (CV-value) less than 0.1. Results Reference gene expression varied substantially across stimulations and between cell lines. Of 27 detectable reference genes, 11-21 (41-78%) maintained expression stability across stimuli and cell lines. Ranking indicated substantial diversity in the most stable reference genes under different conditions, and no reference gene was expressed stably under all conditions of stimulation and for both cell lines. Four reference genes were expressed stably under 5 conditions: HSP90AB1, IPO8, PSMC4 and RPLPO. Conclusions We observed variation in stability of reference gene expression with different stimuli and between human retinal endothelial cell lines. Our findings support adherence to MIQE recommendations regarding normalization in RT-qPCR studies of human retinal endothelial cells.
Collapse
Affiliation(s)
- Binoy Appukuttan
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Liam M Ashander
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Yuefang Ma
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Justine R Smith
- Eye & Vision Health, Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
18
|
Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H. Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation. Mol Cell Proteomics 2017. [PMID: 28637836 DOI: 10.1074/mcp.ra117.000001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K-means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular microenvironment to regulate cellular differentiation, and demonstrates, for the first time, the potential of Xellulin as versatile tool promoting an in vivo-like phenotype in primary and propagated cell culture.
Collapse
Affiliation(s)
- Gerhard Feil
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Ralf Horres
- §GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Julia Schulte
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Andreas F Mack
- ¶Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstraβe 3, 72074 Tübingen, Germany
| | - Svenja Petzoldt
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Caroline Arnold
- **Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Chen Meng
- ‡‡Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Lukas Jost
- §GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | | | | | - Ender Serbest
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Dominic Helm
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- ‡‡Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.,§§Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Isabel Hartmann
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Thomas Korff
- §§Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Hannes Hahne
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany;
| |
Collapse
|
19
|
Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, Qi R, Zhang TM. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci Rep 2016; 6:38513. [PMID: 27922100 PMCID: PMC5138604 DOI: 10.1038/srep38513] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) is a routine method for gene expression analysis, and reliable results depend on proper normalization by stable reference genes. Caloric restriction (CR) is a robust lifestyle intervention to slow aging and delay onset of age-associated diseases via inducing global changes in gene expression. Reliable normalization of RT-qPCR data becomes crucial in CR studies. In this study, the expression stability of 12 candidate reference genes were evaluated in inguinal white adipose tissue (iWAT), skeletal muscle (Sk.M) and liver of CR mice by using three algorithms, geNorm, NormFinder, and Bestkeeper. Our results showed β2m, Ppia and Hmbs as the most stable genes in iWAT, Sk.M and liver, respectively. Moreover, two reference genes were sufficient to normalize RT-qPCR data in each tissue and the suitable pair of reference genes was β2m-Hprt in iWAT, Ppia-Gusb in Sk.M and Hmbs-β2m in liver. By contrast, the least stable gene in iWAT or Sk.M was Gapdh, and in liver was Pgk1. Furthermore, the expression of Leptin and Ppar-γ were profiled in these tissues to validate the selected reference genes. Our data provided a basis for gene expression analysis in future CR studies.
Collapse
Affiliation(s)
- Huan Gong
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Liang Sun
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Beidong Chen
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Yiwen Han
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Jing Pang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Wei Wu
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Ruomei Qi
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Tie-Mei Zhang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| |
Collapse
|
20
|
Rueda-Martínez C, Fernández MC, Soto-Navarrete MT, Jiménez-Navarro M, Durán AC, Fernández B. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve. PLoS One 2016; 11:e0164070. [PMID: 27711171 PMCID: PMC5053431 DOI: 10.1371/journal.pone.0164070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40%) incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR) assays. A total of 51 adult (180-240 days old) and 56 old (300-440 days old) animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30), or to the affected strain of hamsters with TAV (n = 45) or BAV (n = 32). The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.
Collapse
Affiliation(s)
- Carmen Rueda-Martínez
- UGC del Corazón, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Red de Investigación Cardiovascular (RIC), Málaga, Spain
| | - M. Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | - Manuel Jiménez-Navarro
- UGC del Corazón, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Red de Investigación Cardiovascular (RIC), Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- * E-mail:
| |
Collapse
|
21
|
Strohbach A, Begunk R, Petersen S, Felix SB, Sternberg K, Busch R. Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells. Int J Mol Sci 2016; 17:E148. [PMID: 26805825 PMCID: PMC4783882 DOI: 10.3390/ijms17020148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 11/16/2022] Open
Abstract
Drug-eluting stents (DES) have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs). Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC) proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR) on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Robert Begunk
- Institute of Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Strasse 3, 17477 Greifswald, Germany.
| | - Svea Petersen
- Faculty of Engineering and Informatics, Osnabrück University of Applied Sciences, Albrechtstrasse 30, 49076 Osnabrück, Germany.
| | - Stephan B Felix
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Katrin Sternberg
- Research & Development, Aesculap AG, Am Aesculap Platz, 78532 Tuttlingen, Germany.
| | - Raila Busch
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany.
| |
Collapse
|
22
|
Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor. Sci Rep 2015; 5:15840. [PMID: 26527303 PMCID: PMC4630627 DOI: 10.1038/srep15840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
The lack of reliable reference genes (RGs) in the genus Streptomyces hampers effort to obtain the precise data of transcript levels. To address this issue, we aimed to identify reliable RGs in the model organism Streptomyces coelicolor. A pool of potential RGs containing 1,471 genes was first identified by determining the intersection of genes with stable transcript levels from four time-series transcriptome microarray datasets of S. coelicolor M145 cultivated in different conditions. Then, following a strict rational selection scheme including homology analysis, disturbance analysis, function analysis and transcript abundance analysis, 13 candidates were selected from the 1,471 genes. Based on real-time quantitative reverse transcription PCR assays, SCO0710, SCO6185, SCO1544, SCO3183 and SCO4758 were identified as the top five genes with the most stable transcript levels among the 13 candidates. Further analyses showed these five genes also maintained stable transcript levels in different S. coelicolor strains, as well as in Streptomyces avermitilis MA-4680 and Streptomyces clavuligerus NRRL 3585, suggesting they could fulfill the requirements of accurate data normalization in streptomycetes. Moreover, the systematic strategy employed in this work could be used for reference in other microorganism to select reliable RGs.
Collapse
|
23
|
Bennani-Baiti B, Toegel S, Viernstein H, Urban E, Noe CR, Bennani-Baiti IM. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells. PLoS One 2015; 10:e0139101. [PMID: 26406496 PMCID: PMC4583384 DOI: 10.1371/journal.pone.0139101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB) of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1), an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α) pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1), another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset uncovered herein should aid in future gene expression studies in inflammatory conditions of the BBB.
Collapse
Affiliation(s)
- Barbara Bennani-Baiti
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital (AKH), Medical University of Vienna, Waehringer-Guertel 18–20, 1090 Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Christian R. Noe
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | |
Collapse
|
24
|
Singh V, Kaul SC, Wadhwa R, Pati PK. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS One 2015; 10:e0118860. [PMID: 25769035 PMCID: PMC4359125 DOI: 10.1371/journal.pone.0118860] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease), abiotic (wounding, salt, drought, heat and cold) stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid). The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method) suggested that cyclophilin (CYP) is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA) treated samples, while 26S ribosomal RNA (26S), ubiquitin (UBQ) and beta-tubulin (TUB) were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA) treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Sunil C. Kaul
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki, 305 8562, Japan
| | - Renu Wadhwa
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki, 305 8562, Japan
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
- * E-mail:
| |
Collapse
|
25
|
Rauh J, Jacobi A, Stiehler M. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part C Methods 2014; 21:192-206. [PMID: 25000821 DOI: 10.1089/ten.tec.2014.0230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs.
Collapse
Affiliation(s)
- Juliane Rauh
- University Center for Orthopedics and Trauma Surgery, Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden , Dresden, Germany
| | | | | |
Collapse
|
26
|
C-type natriuretic peptide attenuates LPS-induced endothelial activation: involvement of p38, Akt, and NF-κB pathways. Amino Acids 2014; 46:2653-63. [PMID: 25096521 DOI: 10.1007/s00726-014-1816-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022]
|
27
|
Rueda-Martínez C, Lamas O, Mataró MJ, Robledo-Carmona J, Sánchez-Espín G, Jiménez-Navarro M, Such-Martínez M, Fernández B. Selection of reference genes for quantitative real time PCR (qPCR) assays in tissue from human ascending aorta. PLoS One 2014; 9:e97449. [PMID: 24841551 PMCID: PMC4026239 DOI: 10.1371/journal.pone.0097449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/21/2014] [Indexed: 11/18/2022] Open
Abstract
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples.
Collapse
Affiliation(s)
- Carmen Rueda-Martínez
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Oscar Lamas
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - María José Mataró
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Juan Robledo-Carmona
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Gemma Sánchez-Espín
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Manuel Jiménez-Navarro
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Such-Martínez
- UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
28
|
Development of an efficient qRT-PCR assay for quality control and cellular quantification of respiratory samples. J Clin Virol 2014; 60:270-5. [PMID: 24809729 DOI: 10.1016/j.jcv.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sample quality is a fundamental parameter for the successful diagnosis of respiratory viruses. This parameter depends upon the concentration of epithelial cells. Respiratory samples are usually heterogeneous, which makes relative quantification of the viral load, against the quantity of cells, the most suitable measurement. The quantification of viral load in the field of respiratory viruses is a vital piece of information. Quantification is required from RNA or DNA viral genomes extracted. OBJECTIVES To design (RT-)PCR assays for reference genes, which show stable expression during viral infection, to be used as cellular controls and cellular quantification tools. STUDY DESIGN Assays were designed for two reference genes: hypoxanthine phosphoribosyltransferase 1 (HPRT1) and ubiquitin C (UBC). The glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) was used as a reference for this study. The transcriptional activity of the three genes was studied during infection with respiratory syncytial virus and adenovirus. The HPRT1 q(RT-)PCR assay was used on clinical samples. RESULTS All the analysis methods concluded that the three reference genes were stably expressed during viral infection. The HPRT1 q(RT-)PCR assay indicated that the majority of clinical samples (n=301, 69%) had a cellular load of between 100 and 10,000 cells/PCR. The data showed that the concentration decreased as the age of patient increased. CONCLUSIONS A new tool has been developed and commercialized for quality control and evaluation of cellular concentration in respiratory samples.
Collapse
|