1
|
Mo J, Segovia K, Chrzastek K, Briggs K, Kapczynski DR. Morphologic characterization and cytokine response of chicken bone-marrow derived dendritic cells to infection with high and low pathogenic avian influenza virus. Front Immunol 2024; 15:1374838. [PMID: 39281683 PMCID: PMC11401072 DOI: 10.3389/fimmu.2024.1374838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are key components of the immune system and involved in early immune responses. DCs are specialized in capturing, processing, and presenting antigens to facilitate immune interactions. Chickens infected with avian influenza virus (AIV) demonstrate a wide range of clinical symptoms, based on pathogenicity of the virus. Low pathogenic avian influenza (LPAI) viruses typically induce mild clinical signs, whereas high pathogenic avian influenza (HPAI) induce more severe disease, which can lead to death. For this study, chicken bone marrow-derived DC (ckBM-DC)s were produced and infected with high and low pathogenic avian influenza viruses of H5N2 or H7N3 subtypes to characterize innate immune responses, study effect on cell morphologies, and evaluate virus replication. A strong proinflammatory response was observed at 8 hours post infection, via upregulation of chicken interleukin-1β and stimulation of the interferon response pathway. Microscopically, the DCs underwent morphological changes from classic elongated dendrites to a more general rounded shape that eventually led to cell death with the presence of scattered cellular debris. Differences in onset of morphologic changes were observed between H5 and H7 subtypes. Increases in viral titers demonstrated that both HPAI and LPAI are capable of infecting and replicating in DCs. The increase in activation of infected DCs may be indicative of a dysregulated immune response typically seen with HPAI infections.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | | | - Klaudia Chrzastek
- Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Kelsey Briggs
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| |
Collapse
|
2
|
Alam SR, Vinayak S, Shah A, Doolub G, Kimeu R, Horn KP, Bowen SR, Jeilan M, Lee KK, Gachoka S, Riunga F, Adam RD, Vesselle H, Joshi N, Obino M, Makhdomi K, Ombati K, Nganga E, Gitau S, Chung MH, Shah ASV. Assessment of Cardiac, Vascular, and Pulmonary Pathobiology In Vivo During Acute COVID‐19. J Am Heart Assoc 2022; 11:e026399. [DOI: 10.1161/jaha.122.026399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background
Acute COVID‐19–related myocardial, pulmonary, and vascular pathology and how these relate to each other remain unclear. To our knowledge, no studies have used complementary imaging techniques, including molecular imaging, to elucidate this. We used multimodality imaging and biochemical sampling in vivo to identify the pathobiology of acute COVID‐19. Specifically, we investigated the presence of myocardial inflammation and its association with coronary artery disease, systemic vasculitis, and pneumonitis.
Methods and Results
Consecutive patients presenting with acute COVID‐19 were prospectively recruited during hospital admission in this cross‐sectional study. Imaging involved computed tomography coronary angiography (identified coronary disease), cardiac 2‐deoxy‐2‐[fluorine‐18]fluoro‐D‐glucose positron emission tomography/computed tomography (identified vascular, cardiac, and pulmonary inflammatory cell infiltration), and cardiac magnetic resonance (identified myocardial disease) alongside biomarker sampling. Of 33 patients (median age 51 years, 94% men), 24 (73%) had respiratory symptoms, with the remainder having nonspecific viral symptoms. A total of 9 patients (35%, n=9/25) had cardiac magnetic resonance–defined myocarditis. Of these patients, 53% (n=5/8) had myocardial inflammatory cell infiltration. A total of 2 patients (5%) had elevated troponin levels. Cardiac troponin concentrations were not significantly higher in patients with and without myocarditis (8.4 ng/L [interquartile range, IQR: 4.0–55.3] versus 3.5 ng/L [IQR: 2.5–5.5];
P
=0.07) or myocardial cell infiltration (4.4 ng/L [IQR: 3.4–8.3] versus 3.5 ng/L [IQR: 2.8–7.2];
P
=0.89). No patients had obstructive coronary artery disease or vasculitis. Pulmonary inflammation and consolidation (percentage of total lung volume) was 17% (IQR: 5%–31%) and 11% (IQR: 7%–18%), respectively. Neither were associated with the presence of myocarditis.
Conclusions
Myocarditis was present in a third patients with acute COVID‐19, and the majority had inflammatory cell infiltration. Pneumonitis was ubiquitous, but this inflammation was not associated with myocarditis. The mechanism of cardiac pathology is nonischemic and not attributable to a vasculitic process.
Registration
URL:
https://www.isrctn.com
; Unique identifier: ISRCTN12154994.
Collapse
Affiliation(s)
- Shirjel R. Alam
- Department of Cardiology Manchester University Manchester United Kingdom
- Department of Cardiology North Bristol Trust Bristol United Kingdom
- Non‐communicable Disease Epidemiology London School of Hygiene and Tropical Medicine London United Kingdom
| | - Sudhir Vinayak
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Adeel Shah
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Gemina Doolub
- Department of Cardiology University of Bristol Bristol United Kingdom
| | - Redemptar Kimeu
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Kevin P. Horn
- Department of Radiology University of Washington Seattle WA
| | | | - Mohamed Jeilan
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Kuan Ken Lee
- Department of Cardiology University of Edinburgh Edinburgh UK
| | - Sylvia Gachoka
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Felix Riunga
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Rodney D. Adam
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | | | - Nikhil Joshi
- Department of Cardiology University of Bristol Bristol United Kingdom
| | - Mariah Obino
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Khalid Makhdomi
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Kevin Ombati
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Edward Nganga
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Samuel Gitau
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| | - Michael H. Chung
- Division of Infectious Diseases of the Department of Medicine Emory University Atlanta Georgia
| | - Anoop S. V. Shah
- Department of Radiology and Department of Medicine Aga Khan University Nairobi Kenya
| |
Collapse
|
3
|
Wang Q, Wang Z, Zhang J, Zhang Q, Zheng M, Wen J, Zhao G, Li Q. Dual RNA-Seq of H5N1 Avian Influenza Virus and Host Cell Transcriptomes Reveals Novel Insights Into Host-Pathogen Cross Talk. Front Microbiol 2022; 13:828277. [PMID: 35495687 PMCID: PMC9039741 DOI: 10.3389/fmicb.2022.828277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
H5N1 avian influenza virus (AIV) is a highly pathogenic influenza virus that poses a substantial threat to poultry production and public health. A comprehensive understanding of host-pathogen interactions for AIV requires knowledge of gene expression changes in both the pathogen and the host upon infection. We report the use of dual RNA sequencing technology to uncover trends in gene expression in H5N1 AIV and chickens (DF1 cells) during the course of infection. The expression of all viral genes increased continuously from 0 to 20 h post infection. We also identified 2,762 differentially expressed host genes during infection. Pathway analysis found that genes related to the signaling pathways of DNA replication, T cell activation, NF-kappa B signaling pathway, and RNA degradation were significantly enriched. We demonstrated that the cis-acting lncRNA MSTRG.14019.1 targeted CSE1L and may affect virus replication. This study provides a more comprehensive and detailed understanding of host-virus interactions at the RNA level during the course of H5N1 AIV infection.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Perlas A, Argilaguet J, Bertran K, Sánchez-González R, Nofrarías M, Valle R, Ramis A, Cortey M, Majó N. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly Pathogenic Avian Influenza Virus Infection. Front Immunol 2022; 12:800188. [PMID: 35003125 PMCID: PMC8727699 DOI: 10.3389/fimmu.2021.800188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.
Collapse
Affiliation(s)
- Albert Perlas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Argilaguet
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kateri Bertran
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raúl Sánchez-González
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Miquel Nofrarías
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Rosa Valle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Antonio Ramis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Natàlia Majó
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
5
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
6
|
Zhao B, Li H, Cao S, Zhong W, Li B, Jia W, Ning Z. Negative Regulators of Inflammation Response to the Dynamic Expression of Cytokines in DF-1 and MDCK Cells Infected by Avian Influenza Viruses. Inflammation 2021; 45:573-589. [PMID: 34581936 DOI: 10.1007/s10753-021-01568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
The H5N1 and H9N2 avian influenza viruses (AIVs) seriously endanger the poultry industry and threaten human health. Characteristic inflammatory responses caused by H5N1 and H9N2 AIVs in birds and mammals result in unique clinical manifestations. The role of anti-inflammatory regulators, PTX3, Del-1, and GDF-15, in H5N1 and H9N2-AIV-mediated inflammation in birds and mammals has not yet been verified. Here, the expression of PTX3, Del-1, and GDF-15 in DF-1 and MDCK cells infected with H5N1 and H9N2 AIVs and their effect on inflammatory cytokines were analyzed. Infection with both AIVs increased PTX3, Del-1, and GDF-15 expression in DF-1 and MDCK cells. Infection with H9N2 or H5N1 AIV in DF-1 and MDCK cells with overexpression of all three factors, either alone or in combination, inhibited the expression of tested inflammatory cytokines. Furthermore, co-expression of PTX3, Del-1, and GDF-15 enhanced the inhibition, irrespective of the cell line. The findings from this study offer insight into the pathogenic differences between H5N1 and H9N2 AIVs in varied hosts. Moreover, our findings can be used to help screen for host-specific anti-inflammatory agents.
Collapse
Affiliation(s)
- Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Suilan Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
7
|
Darzianiazizi M, Allison KE, Kulkarni RR, Sharif S, Karimi K, Bridle BW. Disruption of type I interferon signaling causes sexually dimorphic dysregulation of anti-viral cytokines. Cytokine X 2021; 3:100053. [PMID: 34189454 PMCID: PMC8215187 DOI: 10.1016/j.cytox.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.
Collapse
Affiliation(s)
- Maedeh Darzianiazizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Munuswamy P, Ramakrishnan S, Latheef SK, Kappala D, Mariappan AK, Kaore M, Anbazhagan K, Puvvala B, Singh KP, Dhama K. First description of natural concomitant infection of avian nephritis virus and infectious bronchitis virus reveals exacerbated inflammatory response and renal damage in broiler chicks. Microb Pathog 2021; 154:104830. [PMID: 33691178 DOI: 10.1016/j.micpath.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
We describe the first report on spontaneous Avian Nephritis Virus (ANV) and Infectious Bronchitis Virus (IBV) concurrent infection in broiler chicks. On necropsy, the kidneys were found swollen with its parenchyma and ureters stuffed with urate flakes. Histopathologically, the renal tubular damage and inflammatory response were severe in concurrently infected birds compared to the cases infected only with ANV, which had direct correlation with significantly (p < 0.001) increased expression of IL-1 β, IL-4, IL-12, IL-13, iNOS and IFN-γ transcripts in the kidneys of concurrently infected birds. Relative decrease in IFN-β transcript levels in the concurrently infected birds indicates suppression of antiviral response; the iNOS level was manifold increased which can be attributed to the enhanced macrophage response. Nucleotide sequencing of S1-spike glycoprotein gene of IBV and RNA dependent RNA polymerase gene of ANV confirmed etiologies as Igacovirus of Gammacoronavirus and ANV-2 of Avastrovirus 2, respectively. Both ANV and IBV virus affect kidneys. Our findings suggested that concurrent infections of these two viruses might have enhanced the transcripts of Th1, Th2 and proinflammatory cytokines with reduced IFN-β transcripts resulting in decreased host innate antiviral mechanisms leading to exacerbated renal lesions. Future experimental co-infection studies could throw more lights on pathology and pathogenesis during concurrent infections of ANV and IBV in poultry.
Collapse
Affiliation(s)
- Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Deepthi Kappala
- Department of Veterinary Microbiology, Banaras Hindu University, Varanasi, U.P, 221005, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Megha Kaore
- Department of Veterinary Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur, Maharashtra, 440006, India
| | - Karthikeyan Anbazhagan
- Department of Animal Genetic and Breeding, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - Bhavani Puvvala
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| |
Collapse
|
9
|
Sánchez-González R, Ramis A, Nofrarías M, Wali N, Valle R, Pérez M, Perlas A, Majó N. Pathobiology of the highly pathogenic avian influenza viruses H7N1 and H5N8 in different chicken breeds and role of Mx 2032 G/A polymorphism in infection outcome. Vet Res 2020; 51:113. [PMID: 32912265 PMCID: PMC7488313 DOI: 10.1186/s13567-020-00835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/27/2020] [Indexed: 11/10/2022] Open
Abstract
Chickens are highly susceptible to highly pathogenic avian influenza viruses (HPAIVs). However, the severity of infection varies depending of the viral strain and the genetic background of the host. In this study, we evaluated the pathogenesis of two HPAIVs (H7N1 and H5N8) and assessed the susceptibility to the infection of local and commercial chicken breeds from Spain. Eight chicken breeds were intranasally inoculated with 105 ELD50 of A/Chicken/Italy/5093/1999 (H7N1) or A/Goose/Spain/IA17CR02699/2017 (H5N8 clade 2.3.4.4. B) and monitored during 10 days. Chickens were highly susceptible to both HPAIVs, but H7N1 was considerably more virulent than H5N8 as demonstrated by the highest mortality rates and shortest mean death times (MDT). Both HPAIVs produced severe necrosis and intense viral replication in the central nervous system, heart and pancreas; however, the lesions and replication in other tissues were virus-dependent. High levels of viral RNA were detected by the oral route with both viruses. In contrast, a low number of H5N8-inoculated chickens shed by the cloacal route, demonstrating a different pattern of viral shedding dependent of the HPAIV. We found a high variation in the susceptibility to HPAIVs between the different chicken breeds. The birds carrying the genotype AA and AG at position 2032 in chicken Mx gene presented a slightly higher, but not significant, percentage of survival and a statistically significant longer MDT than GG individuals. Our study demonstrated that the severity of HPAI infection is largely dependent of the viral isolate and host factors, underlining the complexity of HPAI infections.
Collapse
Affiliation(s)
- Raúl Sánchez-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España. .,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.
| | - Antonio Ramis
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Miquel Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Nabil Wali
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Rosa Valle
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Albert Perlas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Natàlia Majó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
10
|
Chothe SK, Nissly RH, Lim L, Bhushan G, Bird I, Radzio-Basu J, Jayarao BM, Kuchipudi SV. NLRC5 Serves as a Pro-viral Factor During Influenza Virus Infection in Chicken Macrophages. Front Cell Infect Microbiol 2020; 10:230. [PMID: 32509599 PMCID: PMC7248199 DOI: 10.3389/fcimb.2020.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
Avian influenza viruses (AIVs) cause major economic losses to the global poultry industry. Many host factors have been identified that act as regulators of the inflammatory response and virus replication in influenza A virus (IAV) infected cells including nucleotide-binding oligomerization domain (NOD) like receptor (NLR) family proteins. Evidence is emerging that NLRC5, the largest NLR member, is a regulator of host immune responses against invading pathogens including viruses; however, its role in the avian immune system and AIV pathogenesis has not been fully explored. In this study, we found that NLRC5 is activated by a range of low and highly pathogenic AIVs in primary chicken lung cells and a chicken macrophage cell line. Further, siRNA mediated NLRC5 knockdown in chicken macrophages resulted in a significant reduction in AIV replication which was associated with the upregulation of genes associated with activated NFκB signaling pathway. The knockdown of NLRC5 enhanced the expression of genes known to be associated with viral defense and decreased innate cytokine gene expression following AIV infection. Overall, our investigation strongly suggests that NLRC5 is a pro-viral factor during IAV infection in chicken and may contribute to pathogenesis through innate cytokine regulation. Further studies are warranted to investigate the IAV protein(s) that may regulate activation of NLRC5.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jessica Radzio-Basu
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
11
|
Bertran K, Pantin-Jackwood MJ, Criado MF, Lee DH, Balzli CL, Spackman E, Suarez DL, Swayne DE. Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection. Vet Res 2019; 50:89. [PMID: 31675983 PMCID: PMC6824115 DOI: 10.1186/s13567-019-0704-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles L Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, 8300 Research PI, Fort Detrick, MD, 21702, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.
| |
Collapse
|
12
|
Luo C, Liu J, Qi W, Ren X, Lu R, Liao M, Ning Z. Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells. Microbiol Immunol 2018; 62:327-340. [PMID: 29577370 DOI: 10.1111/1348-0421.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/02/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022]
Abstract
H5N1 and H9N2 are the most important causes of avian influenza in China. Chemokines and cytokines play important roles in inflammatory response that clearly differ between H5N1 and H9N2 infection. To investigate whether chemokines and cytokines are differentially regulated following H5N1 and H9N2 AIVs infection, dynamic expression of chemokines and cytokines, including IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, XLC1, CCLi10, CCL19, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α, were analyzed by real-time quantitative RT-PCR in DF-1 cells. It was found that IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α increased significantly after induction of H5N1 or H9N2 AIV infection, whereas no expression of XCL1, CCLi10 or CCL19 was detected. H9N2 AIV infection was associated with much stronger chemokine responses than infection with H5N1, whereas the cytokines showed opposite results. It was found that K203 is a constant chemotactic factor independent of subtype of AIVs and infectious dose, CCL20 and IL-1β are constant regardless of the infectious dose but depend on the subtype of AIV, chemotactic factors IL8L1, IL8L2 and CCL5 are dependent both on subtype of AIVs and infectious dose, and K203, CX3CL1, SCYA4, CCL20, IFN-α, IL-1β and TNF-α are specific to responses to H5N1 AIV infection whereas K203, CCL20, IFN-β, IL-1β and IL-6 are specific to H9N2 infection. These results provide basic data for explaining differences in inflammation and phenotypes of histopathological changes caused by H5N1 and H9N2 and add new information on the roles of chemokines and cytokines in virulence of AIVs.
Collapse
Affiliation(s)
- Chang Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xujiao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
13
|
Jegede A, Fu Q, Berhane Y, Lin M, Kumar A, Guan J. H9N2 avian influenza virus retained low pathogenicity after serial passage in chickens. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2018; 82:131-138. [PMID: 29755193 PMCID: PMC5914077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/27/2017] [Indexed: 06/08/2023]
Abstract
The H9N2 strains of avian influenza viruses (AIVs) circulate worldwide in poultry and cause sporadic infection in humans. To better understand the evolution of these viruses while circulating in poultry, an H9N2 chicken isolate was passaged 19 times in chickens via aerosol inoculation. Whole-genome sequencing showed that the viruses from the initial stock and those after the 8th and 19th passages (P0, P8, and P19) all had the same monobasic cleavage site in the hemagglutinin (HA), typical for viruses of low pathogenicity. However, at position 226 of the HA protein the ratio of glutamine (which favors avian-type receptor binding) to leucine (which favors mammalian-type receptor binding) decreased from 54:46 in P0, to 87:13 in P8, and then 0:100 in P19. In chickens exposed to aerosols of P0, P8, or P19, replication of the viruses was similar and mainly limited to the respiratory tract. None of the infected chickens showed any clinical signs. Over the 19 passages the viruses maintained relatively stable infectivity but gradually lost lethality to chicken embryos. According to the hemagglutination inactivation assay, P8 was slightly and P19 significantly (P < 0.05) less thermostable than P0. Collectively, after 19 passages in chickens the H9N2 AIVs retained low pathogenicity with a positive selection of L226 in the HA. These findings suggest that H9N2 viruses might acquire mammalian specificity after asymptomatic circulation in avian species.
Collapse
Affiliation(s)
- Akinlolu Jegede
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| | - Qigao Fu
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| | - Yohannes Berhane
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| | - Min Lin
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| | - Ashok Kumar
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| | - Jiewen Guan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario (Jegede, Fu, Lin, Guan); National Centre for Foreign Animal Disease (Winnipeg Laboratory - Arlington), 1015 Arlington Street, Winnipeg, Manitoba (Berhane); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario (Lin, Kumar)
| |
Collapse
|
14
|
Induction profiles of mRNA of toll like receptors and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza H5N1 virus. Microb Pathog 2018; 117:200-205. [PMID: 29476788 DOI: 10.1016/j.micpath.2018.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
Abstract
Herein, the induction of TLRs and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza (HPAI) H5N1 virus was studied. Four groups (1-4) of chickens inoculated with 106 EID50 of H9N2 virus were challenged with 106 EID50 of H5N1 virus on days 1, 3, 7 and 14 post H9N2 inoculation, respectively. In groups (1-4) TLRs and cytokines induction was studied in chicken PBMCs on day 3 post H5N1 challenge. In H5N1 control group TLRs (1, 2, 5 and 7) cytokines (IFNα, IFNβ, IFNγ, IL1β, IL2, IL4, IL8 and TGF β3) were down regulated. In group 1 down regulation of cytokines and TLRs was similar to H5N1 control birds. Down regulation of TLRs and cytokines in H5N1 control and group 1 resulted death of all the chickens. In group 2, up-regulation of TLRs (3, 7 and 15) and induction of TNFα, IFNα, IFNβ, IFNγ aided virus clearance leading to survival of all the chickens. In group 3 significant up-regulation of TLRs (3, 4 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL4, IL6, IL8, IL10 and TGF β3) was detected. In group 4 significant up-regulation of TLRs (2, 3, 7 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL2, IL6, IL8 and IL10) was detected. In groups 3 and 4 simultaneous and significant induction of pro-inflammatory, antiviral and anti-inflammatory cytokine resulted cytokine dysregulation leading to death of (2/6) and (3/6) chickens respectively. Hence, the study revealed TLRs and cytokines role in modulating the H5N1 infection outcome in chickens pre-exposed to H9N2 virus.
Collapse
|
15
|
Saito LB, Diaz-Satizabal L, Evseev D, Fleming-Canepa X, Mao S, Webster RG, Magor KE. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018; 99:464-474. [PMID: 29458524 DOI: 10.1099/jgv.0.001015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.
Collapse
Affiliation(s)
- Leina B Saito
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Danyel Evseev
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ximena Fleming-Canepa
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sai Mao
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Institute of Preventative Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, PR China
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Lion A, Richard M, Esnault E, Kut E, Soubieux D, Guillory V, Germond M, Blondeau C, Guabiraba R, Short KR, Marc D, Quéré P, Trapp S. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology 2017; 513:29-42. [PMID: 29031164 DOI: 10.1016/j.virol.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC.
Collapse
Affiliation(s)
- Adrien Lion
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mathilde Richard
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Evelyne Esnault
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Emmanuel Kut
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Denis Soubieux
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Vanaïque Guillory
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mélody Germond
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Caroline Blondeau
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Rodrigo Guabiraba
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Kirsty R Short
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands; University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Daniel Marc
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascale Quéré
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sascha Trapp
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.
| |
Collapse
|
17
|
Vidaña B, Dolz R, Busquets N, Ramis A, Sánchez R, Rivas R, Valle R, Cordón I, Solanes D, Martínez J, Majó N. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species. Zoonoses Public Health 2017; 65:312-321. [PMID: 28905526 DOI: 10.1111/zph.12393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/30/2022]
Abstract
H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 105 embryo infectious dose (EID)50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection.
Collapse
Affiliation(s)
- B Vidaña
- Pathology Department, Animal and Plant Health Agency (APHA), KT15 3NB, Pathology, Addlestone, UK
| | - R Dolz
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Ramis
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Sánchez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Rivas
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I Cordón
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - D Solanes
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - J Martínez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
18
|
Pasick J, Diederich S, Berhane Y, Embury-Hyatt C, Xu W. Imbalance between innate antiviral and pro-inflammatory immune responses may contribute to different outcomes involving low- and highly pathogenic avian influenza H5N3 infections in chickens. J Gen Virol 2017. [PMID: 28635590 DOI: 10.1099/jgv.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to gain further insight into the early virus-host interactions associated with highly pathogenic avian influenza virus infections in chickens, genome-wide expression profiling of chicken lung and brain was carried out at 24 and 72 h post-inoculation (h p.i.). For this purpose two recombinant H5N3 viruses were utilized, each possessing a polybasic HA0 cleavage site but differing in pathogenicity. The original rH5N3 P0 virus, which has a low-pathogenic phenotype, was passaged six times through chickens to give rise to the derivative rH5N3 P6 virus, which is highly pathogenic (Diederich S, Berhane Y, Embury-Hyatt C, Hisanaga T, Handel K et al.J Virol 2015;89:10724-10734). The gene-expression profiles in lung were similar for both viruses, although they varied in magnitude. While both viruses produced systemic infections, differences in clinical disease progression and viral tissue loads, particularly in brain, where loads of rH5N3 P6 were three orders of magnitude higher than rH5N3 P0 at 72 .p.i., were observed. Although genes associated with gene ontology (GO) categories INFα and INFβ biosynthesis, regulation of innate immune response, response to exogenous dsRNA, defence response to virus, positive regulation of NF-κB import into the nucleus and positive regulation of immune response were up-regulated in rH5N3 P0 and rH5N3 P6 brains, fold changes were higher for rH5N3 P6. The additional up-regulation of genes associated with cytokine production, inflammasome and leukocyte activation, and cell-cell adhesion detected in rH5N3 P6 versus rH5N3 P0 brains, suggested that the balance between antiviral and pro-inflammatory innate immune responses leading to acute CNS inflammation might explain the observed differences in pathogenicity.
Collapse
Affiliation(s)
- John Pasick
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada.,Present address: 174 Stone Road, Guelph, Ontario, N1G 4S9, Canada
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Wanhong Xu
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| |
Collapse
|
19
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
20
|
Initiation and regulation of immune responses to immunization with whole inactivated vaccines prepared from two genetically and antigenically distinct lineages of Egyptian influenza A virus subtype H5N1. Arch Virol 2016; 161:2797-806. [DOI: 10.1007/s00705-016-2989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
|
21
|
Kidane FA, Bilic I, Mitra T, Wernsdorf P, Hess M, Liebhart D. In situ hybridization to detect and localize signature cytokines of T-helper (Th) 1 and Th2 immune responses in chicken tissues. Vet Immunol Immunopathol 2016; 175:51-6. [PMID: 27269792 DOI: 10.1016/j.vetimm.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 11/15/2022]
Abstract
The avian immune system has been shown to possess a repertoire of cytokines directing T-helper (Th) 1 and Th2 types of immune responses similar to that in mammals. The objective of this study was to establish in situ hybridization (ISH) for the localization of mRNA of selected signal cytokines, chicken interferon-γ (ChIFN-γ), chicken interleukin (ChIL)-4 and ChIL-13 in fixed tissues. RNA probes were generated to hybridize to 488, 318, and 417bp of the respective target mRNA. Probe concentrations ranging from 100ng/ml to 400ng/ml were shown to be suitable to label cells that expressed these cytokines. The specificity of every probe was verified using the respective sense probe. ChIFN-γ, ChIL-4 and ChIL-13 positive cells were observed in the lymphocytic infiltrations of liver and in the periarteriolar lymphatic sheaths of spleen collected from specific-pathogen-free chickens. ISH of these cytokines in a severely inflamed liver due to infiltration with the parasite Histomonas meleagridis revealed the expression of both ChIFN-γ and ChIL-13 mRNA in the mononuclear infiltrates. In conclusion, ChIFN-γ, ChIL-4 and ChIL-13 mRNA were efficiently localized by ISH, which supplies a valid technique to characterize immune responses in fixed tissues.
Collapse
Affiliation(s)
- Fana Alem Kidane
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Taniya Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Patricia Wernsdorf
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| |
Collapse
|
22
|
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 2016; 11:e0153671. [PMID: 27071061 PMCID: PMC4829244 DOI: 10.1371/journal.pone.0153671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.
Collapse
|
23
|
Shichinohe S, Itoh Y, Nakayama M, Ozaki H, Soda K, Ishigaki H, Okamatsu M, Sakoda Y, Kida H, Ogasawara K. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques. Virology 2016; 493:31-8. [PMID: 26994587 DOI: 10.1016/j.virol.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans.
Collapse
Affiliation(s)
- Shintaro Shichinohe
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Misako Nakayama
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroichi Ozaki
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; Laboratory of Veterinary Infectious Diseases, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hirohito Ishigaki
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0815, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
24
|
Yang Z, Lu M, Li J, Tan Z, Dai H, Jiao X, Hu X. Nitrogen-doped graphene-chitosan matrix based efficient chemiluminescent immunosensor for detection of chicken interleukin-4. Biosens Bioelectron 2016; 89:558-564. [PMID: 26920112 DOI: 10.1016/j.bios.2016.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/29/2023]
Abstract
Chicken interleukin-4 (ChIL-4), which is released by activated type 2 helper (Th2) cells following their stimulation in vitro, is an important indicator for the study of cell-mediated immunity in chickens after infection or vaccination. In this work, the first ChIL-4 chemiluminescent (CL) immunosensor was developed via the immobilization of monoclonal ChIL-4 antibodies on a nitrogen-doped graphene (NG)-chitosan nanocomposite matrix. NG nanosheets were used for the first time in the CL immunoassay to provide a biocompatible microenvironment for the immobilized capture antibody. The ChIL-4 immunosensor was characterized systematically. The proposed immunosensor displayed a wide linear range from 0.05 to 70ngmL-1 and a low detection limit of 0.02ngmL-1 at a signal-to-noise ratio of 3. Compared to traditional assay methods, this system was more flexible, simple, rapid, and sensitive. Moreover, this CL immunoassay system had an excellent detection and fabrication reproducibility, a high specificity, an acceptable accuracy, and a high stability. This work enables the specific detection of ChIL-4 and the further study of its role in the immune responses of poultry.
Collapse
Affiliation(s)
- Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Mimi Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Zining Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hua Dai
- School of Medicine; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225002, PR China.
| | - Xin'an Jiao
- School of Medicine; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
25
|
Kotani O, Naeem A, Suzuki T, Iwata-Yoshikawa N, Sato Y, Nakajima N, Hosomi T, Tsukagoshi H, Kozawa K, Hasegawa H, Taguchi F, Shimizu H, Nagata N. Neuropathogenicity of Two Saffold Virus Type 3 Isolates in Mouse Models. PLoS One 2016; 11:e0148184. [PMID: 26828718 PMCID: PMC4734772 DOI: 10.1371/journal.pone.0148184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Objective Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. Methods The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. Results The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. Conclusions Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3.
Collapse
Affiliation(s)
- Osamu Kotani
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Asif Naeem
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takushi Hosomi
- The Public Health Institute of Kochi Prefecture, Kochi, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Gunma, Japan
| | - Kunihisa Kozawa
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Gunma, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiro Taguchi
- Department of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Samy AA, El-Enbaawy MI, El-Sanousi AA, Nasef SA, Naguib MM, Abdelwhab EM, Hikono H, Saito T. Different counteracting host immune responses to clade 2.2.1.1 and 2.2.1.2 Egyptian H5N1 highly pathogenic avian influenza viruses in naïve and vaccinated chickens. Vet Microbiol 2015; 183:103-9. [PMID: 26790942 DOI: 10.1016/j.vetmic.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
In Egypt, two distinct lineages of H5N1 highly pathogenic avian influenza (HPAI) viruses, "classic 2.2.1.2" and "variant 2.2.1.1" strains, have evolved. The underlying host immune responses counteracting these viruses in chickens remain not well understood. In the present study, the cytokine responses to a classic strain (C121) and those to a variant strain (V1063) were compared in naïve and vaccinated chickens. In naïve chickens, the C121 replicated more efficiently than the V1063. Both the C121 and the V1063 increased interferon (IFN)-γ and interleukin (IL)-10 gene expression at 48 h post inoculation (hpi) in the lung and spleen but the levels of these cytokines were lower in chickens infected with the C121 than those infected with the V1063. In contrast, in chickens vaccinated with inactivated C121-based vaccine, the C121 replicated less than the V1063. Both challenge with the C121 and that with the V1063 did not increase IFN-γ gene expression at 48 hpi; rather, the C121 increased IL-4 gene expression in the lung accompanied with lower viral titer and higher HI titers. These results suggested that the pathogenicity of HPAI viruses correlated with IFN-γ-producing helper and/or cytotoxic T cell responses in naïve chickens, whereas vaccine efficacy to HPAI viruses correlated with IL-4 producing helper T cell responses in the lung in vaccinated chickens. It implies that IL-4 in the lung, in addition to the traditional serum HI titers, could be used to screen novel vaccine strategies, such as strains, adjuvant, prime/boost protocols, against HPAI in chickens.
Collapse
Affiliation(s)
- Ahmed A Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Mona I El-Enbaawy
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed A El-Sanousi
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Soad A Nasef
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - E M Abdelwhab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; The Federal Research Institute for Animal Health, Friedrich-Loeffler Institute, Suedufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Hirokazu Hikono
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan; Department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Takehiko Saito
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
27
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
28
|
Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev Med Virol 2015; 25:406-30. [PMID: 26467906 PMCID: PMC5057330 DOI: 10.1002/rmv.1846] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/22/2022]
Abstract
The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Peter A Durr
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - Wojtek P Michalski
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - John Bingham
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| |
Collapse
|
29
|
Abdallah F, Hassanin O. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens. Vet Res Commun 2015; 39:211-6. [PMID: 26329833 DOI: 10.1007/s11259-015-9644-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
Abstract
Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.
Collapse
Affiliation(s)
- Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 445119, Egypt.
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|