1
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
2
|
Srinivas V, Varma S, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Dietary omega-3 fatty acid deficiency from pre-pregnancy to lactation affects expression of genes involved in hippocampal neurogenesis of the offspring. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102566. [PMID: 36924605 DOI: 10.1016/j.plefa.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Saikanth Varma
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Suryam Reddy Kona
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Ahamed Ibrahim
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India.
| |
Collapse
|
3
|
Ghotbeddin Z, Khazaeel K, Tabandeh MR, Aliheydari M, Yaghoubi H. Effects of omega-3 fatty acid supplementation during chronic maternal hypoxia on behavioral disorders in male rat offspring: the role of Trk family and oxidative stress. Metab Brain Dis 2022; 37:1959-1967. [PMID: 35622266 DOI: 10.1007/s11011-022-01012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Maternal hypoxia due to a lack of blood flow and insufficient oxygen supply in the brain leads to behavioral disorders in adult offspring. Fish oil includes docosahexaenoic acid (DHA), a significant component of membrane phospholipids of nerve cells, which improved cognition, and memory. Trk family receptors are activated by hypoxic induction factor (HIF), and are involved in the neurotrophin's protective effects at the cellular level. Here we studied the biochemical, and molecular mechanisms of the protective effect of fish oil during the chronic maternal hypoxia model on behavioral responses in male rat offspring. Pregnant female rats were randomly divided into 4 experimental groups: 1) ctr; Control rats were pregnant 2) Hyp; Pregnant female rats received hypoxia from 6 to 15th day of pregnancy, with 10% oxygen intensity, and 90% nitrogen; 3) FO; Pregnant female rats received fish oil (F8020 1 ml / day, for ten consecutive days Orally), and 4) FO / Hyp; Pregnant female rats received hypoxia plus fish oil in the same manner. Behavioral parameters were evaluated in 28-day-old male offspring. HIF-1α, TrkB, and P75 gene expression were measured in the offspring's brain. Maternal hypoxia impaired memory performance, and locomotor activity in offspring. Besides, Trk family gene expression, and oxidative stress indicators showed a significant increase in the offspring's brain exposed to maternal hypoxia compared to the control group. Overall, fish oil improved behavioral parameters by inhibiting oxidative stress, and the expression of Trk family receptors.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kaveh Khazaeel
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Anatomy, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad-Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Aliheydari
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hooshyar Yaghoubi
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
5
|
Zhou XH, Zhang CC, Wang L, Jin SL. Remimazolam induced cognitive dysfunction in mice via glutamate excitotoxicity. Transl Neurosci 2022; 13:104-115. [PMID: 35734308 PMCID: PMC9164290 DOI: 10.1515/tnsci-2022-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Several lines of evidence demonstrated the role of anesthetic drugs in cognitive functions. Some anesthetic agents have been confirmed to be associated with long-term spatial memory and learning in aged animal models. Methods C57BL/6 mice were divided into four different groups based on different concentrations of remimazolam treatments. Behavioral phenotype was observed by open field, rota rod, Morris water maze, and elevated plus maze test. Western blot was performed to see the expression pattern of different proteins. Confocal microscopy images were taken for neuronal and glial cells to see the effect of remimazolam on CNS cells. Results We showed that remimazolam, a new anesthetic drug, impaired cognitive behavior. Repetitive doses of remimazolam have been found to induce neuronal loss with a significant change in morphology. Here, we showed that a higher concentration of remimazolam had a significant effect on CNS cell activation. We showed that remimazolam caused memory dysfunction by inducing neuronal apoptosis via glutamate excitotoxicity. It also exhibited amyloid β plaque in the brain via abnormal phosphorylation of tau protein. Remimazolam-mediated regulation of glial cells in mouse cortex was observed and robust activation of astrocytes and microglial cells was found. Finally, we assessed the behavioral phenotype of mice and found that treatment with remimazolam induced significant behavioral changes and memory dysfunction. Conclusions This study provides insight into the mechanism of anesthetic drug-induced memory deficits and may help improve the therapeutic effects of anesthesia agents in clinical applications.
Collapse
Affiliation(s)
- Xin-hua Zhou
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| | - Cheng-cheng Zhang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Ling Wang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Shan-liang Jin
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| |
Collapse
|
6
|
Li G, Wang Y, Cao F, Wang D, Zhou L, Jin Y. Sevoflurane Promotes Neurodegeneration Through Inflammasome Formation in APP/PS1 Mice. Front Neurosci 2021; 15:647136. [PMID: 34924922 PMCID: PMC8678053 DOI: 10.3389/fnins.2021.647136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Sevoflurane (SEVO) is a highly fluorinated methyl isopropyl ether used as an inhalational anesthetic for general anesthesia. Previous studies have shown that SEVO may induce impaired memory and recognition ability and may be associated with neurodegenerative disease, e.g., Alzheimer’s disease (AD). However, the underlying mechanism remains unknown. Here, we used a mouse AD model, APP/PS1, to study the effects of SEVO on neurodegeneration occurring in AD. We found that SEVO exposure significantly impaired the spatial reference memory, sensorimotor, and cognitive function of the mice. Mechanistically, we found that SEVO induced formation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and its downstream caspase 1-mediated production of IL-1β and IL-18, which subsequently deactivated brain-derived neurotrophic factor (BDNF) to promote neurodegeneration. Together, these data suggest that NLRP3 inflammasome is essential for SEVO-induced AD.
Collapse
Affiliation(s)
- Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Dawei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Limin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yanwu Jin
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Manlapaz-Mann A, Cai CL, Bodkin D, Mustafa G, Aranda JV, Beharry KD. Effects of omega 3 polyunsaturated fatty acids, antioxidants, and/or non-steroidal inflammatory drugs in the brain of neonatal rats exposed to intermittent hypoxia. Int J Dev Neurosci 2021; 81:448-460. [PMID: 33969544 DOI: 10.1002/jdn.10120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Preterm infants experience frequent arterial oxygen desaturations during oxygen therapy, or intermittent hypoxia (IH). Neonatal IH increases oxidative distress which contributes to neuroinflammation and brain injury. We tested the hypotheses that exposure to neonatal IH is detrimental to the immature brain and that early supplementation with antioxidants and/or omega 3 polyunsaturated fatty acids (n-3 PUFAs) combined with non-steroidal anti-inflammatory drugs (NSAIDs) is protective. Newborn rats were exposed to brief hypoxia (12% O2 ) during hyperoxia (50% O2 ) from the first day of life (P0) until P14 during which they received daily oral supplementation with antioxidants, namely coenzyme Q10 (CoQ10) or glutathione nanoparticles (nGSH), n-3 PUFAs and/or topical ocular ketorolac. Placebo controls received daily oral olive oil and topical ocular saline. Room air (RA) littermates remained in 21% O2 from birth to P21 with all treatments identical. At P14 animals were allowed to recover in RA until P21 with no further treatment. Whole brains were harvested for histopathology and morphometric analyses, and assessed for biomarkers of oxidative stress and inflammation, as well as myelin injury. Neonatal IH resulted in higher brain/body weight ratios, an effect that was reversed with n-3 PUFAs and n-3 PUFAs+CoQ10 with or without ketorolac. Neonatal IH was also associated with hemorrhage, oxidative stress, and elevations in inflammatory prostanoids. Supplementation with n-3 PUFAs and nGSH with and without ketorolac were most beneficial for myelin growth and integrity when administered in RA. However, the benefit of n-3 PUFAs was significantly curtailed in neonatal IH. Neonatal IH during a critical time of brain development causes inflammation and oxidative injury. Loss of therapeutic benefits of n-3 PUFAs suggest its susceptibility to oxidation in neonatal IH and therefore indicate that co-administration with antioxidants may be necessary to sustain its efficacy.
Collapse
Affiliation(s)
- Alex Manlapaz-Mann
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Darren Bodkin
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Ghassan Mustafa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| |
Collapse
|
8
|
Wang Q, Luo J, Sun R, Liu J. MicroRNA-1297 suppressed the Akt/GSK3 β signaling pathway and stimulated neural apoptosis in an in vivo sevoflurane exposure model. J Int Med Res 2021; 49:300060520982104. [PMID: 33843359 PMCID: PMC8044581 DOI: 10.1177/0300060520982104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.
Collapse
Affiliation(s)
- Quan Wang
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingcong Luo
- Department of Anesthesiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Ruiqiang Sun
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
9
|
Larroya A, Pantoja J, Codoñer-Franch P, Cenit MC. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr 2021; 9:705859. [PMID: 34277527 PMCID: PMC8280474 DOI: 10.3389/fped.2021.705859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Mental health is determined by a complex interplay between the Neurological Exposome and the Human Genome. Multiple genetic and non-genetic (exposome) factors interact early in life, modulating the risk of developing the most common complex neurodevelopmental disorders (NDDs), with potential long-term consequences on health. To date, the understating of the precise etiology underpinning these neurological alterations, and their clinical management pose a challenge. The crucial role played by diet and gut microbiota in brain development and functioning would indicate that modulating the gut-brain axis may help protect against the onset and progression of mental-health disorders. Some nutritional deficiencies and gut microbiota alterations have been linked to NDDs, suggesting their potential pathogenic implications. In addition, certain dietary interventions have emerged as promising alternatives or adjuvant strategies for improving the management of particular NDDs, at least in particular subsets of subjects. The gut microbiota can be a key to mediating the effects of other exposome factors such as diet on mental health, and ongoing research in Psychiatry and Neuropediatrics is developing Precision Nutrition Models to classify subjects according to a diet response prediction based on specific individual features, including microbiome signatures. Here, we review current scientific evidence for the impact of early life environmental factors, including diet, on gut microbiota and neuro-development, emphasizing the potential long-term consequences on health; and also summarize the state of the art regarding the mechanisms underlying diet and gut microbiota influence on the brain-gut axis. Furthermore, we describe the evidence supporting the key role played by gut microbiota, diet and nutrition in neurodevelopment, as well as the effectiveness of certain dietary and microbiome-based interventions aimed at preventing or treating NDDs. Finally, we emphasize the need for further research to gain greater insight into the complex interplay between diet, gut microbiome and brain development. Such knowledge would help towards achieving tailored integrative treatments, including personalized nutrition.
Collapse
Affiliation(s)
- Ana Larroya
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Jorge Pantoja
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pilar Codoñer-Franch
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.,Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.,Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
10
|
High Maternal Omega-3 Supplementation Dysregulates Body Weight and Leptin in Newborn Male and Female Rats: Implications for Hypothalamic Developmental Programming. Nutrients 2020; 13:nu13010089. [PMID: 33396616 PMCID: PMC7823471 DOI: 10.3390/nu13010089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal diet is critical for offspring development and long-term health. Here we investigated the effects of a poor maternal diet pre-conception and during pregnancy on metabolic outcomes and the developing hypothalamus in male and female offspring at birth. We hypothesised that offspring born to dams fed a diet high in fat and sugar (HFSD) peri-pregnancy will have disrupted metabolic outcomes. We also determined if these HFSD-related effects could be reversed by a shift to a healthier diet post-conception, in particular to a diet high in omega-3 polyunsaturated fatty acids (ω3 PUFAs), since ω3 PUFAs are considered essential for normal neurodevelopment. Unexpectedly, our data show that there are minimal negative effects of maternal HFSD on newborn pups. On the other hand, consumption of an ω3-replete diet during pregnancy altered several developmental parameters. As such, pups born to high-ω3-fed dams weighed less for their length, had reduced circulating leptin, and also displayed sex-specific disruption in the expression of hypothalamic neuropeptides. Collectively, our study shows that maternal intake of a diet rich in ω3 PUFAs during pregnancy may be detrimental for some metabolic developmental outcomes in the offspring. These data indicate the importance of a balanced dietary intake in pregnancy and highlight the need for further research into the impact of maternal ω3 intake on offspring development and long-term health.
Collapse
|
11
|
Aldemir Şensoy D, Demirgan S, Akyol O, Gümüş Özcan F, Selcan A. Effect of Isoflurane Exposure with Administration of Polyunsaturated Fatty Acids on Cognition in Developing Rats. Turk J Anaesthesiol Reanim 2020; 48:477-483. [PMID: 33313587 PMCID: PMC7720831 DOI: 10.5152/tjar.2020.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
Objective The developing brain is vulnerable to the negative effects of anaesthetics. We aimed to investigate the effect of isoflurane and polyunsaturated fatty acids (PUFAs) on cognition. Methods A total of 64, ten days old rats were randomly divided into 4 groups: group O2 (oxygen group), group Iso (isoflurane group), group Iso-S (isoflurane+saline) and group Iso-PUFAs (isoflurane+intraperitoneal [IP] PUFAs emulsion). Rats in groups Iso, Iso-S and Iso-PUFAs were exposed to 1.5% isoflurane in 50% oxygen for 6 hours. Rats in group O2 breathed only 50% oxygen. Before anaesthesia, rats in group Iso-S were administered 0.5 mL isotonic and rats in group Iso-PUFAs were administered 5 mL kg-1 PUFAs emulsion by IP injection. The Morris water maze (MWM) test was performed on postnatal 28-33 days. Histological evaluation and immune histochemical staining (Bcl-2 antibody) were performed on postnatal day 11 on rat brains. Results As demonstrated by the reduction in the escape latency on days 3, 4 and 5 compared with day 1, all rats learned the task during the acquisition period. In contrast to others, rats in group Iso spent significantly lower time to find the platform on day 2 than on day 1 (p=0.034). No significant difference was found among the groups in terms of time spent in finding the platform. There were no significant differences in probe trials, histological features and Bcl-2 immunoreactivity among the groups. Conclusion Isoflurane did not cause cognitive dysfunction and neuronal death, and a single dose of PUFAs emulsion had no effect on cognition either.
Collapse
Affiliation(s)
- Didem Aldemir Şensoy
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Serdar Demirgan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Onat Akyol
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Funda Gümüş Özcan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Ayşin Selcan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
12
|
Neag MA, Mitre AO, Catinean A, Mitre CI. An Overview on the Mechanisms of Neuroprotection and Neurotoxicity of Isoflurane and Sevoflurane in Experimental Studies. Brain Res Bull 2020; 165:281-289. [DOI: 10.1016/j.brainresbull.2020.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
13
|
Li T, Huang Z, Wang X, Zou J, Tan S. Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure. Rev Neurosci 2020; 30:869-879. [PMID: 31145696 DOI: 10.1515/revneuro-2019-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric surgeries, which is considered reasonably safe and reversible upon withdrawal. However, recent preclinical studies suggested that peri-neonatal sevoflurane exposure may cause developmental abnormalities in the brain. The present review aimed to present and discuss the accumulating experimental data regarding the undesirable effects of sevoflurane on brain development as revealed by the laboratory studies. First, we summarized the long-lasting side effects of neonatal sevoflurane exposure on cognitive functions. Subsequently, we presented the structural changes, namely, neuroapoptosis, neurogenesis and synaptogenesis, following sevoflurane exposure in the immature brain. Finally, we also discussed the potential mechanisms underlying subsequent cognitive impairments later in life, which are induced by neonatal sevoflurane exposure and pointed out potential strategies for mitigating sevoflurane-induced long-term cognitive impairments. The type A gamma-amino butyric acid (GABAA) receptor, the main targets of sevoflurane, is excitatory rather than inhibitory in the immature neurons. The excitatory effects of the GABAA receptors have been linked to increased neuroapoptosis, elevated serum corticosterone levels and epigenetic modifications following neonatal sevoflurane exposure in rodents, which might contribute to sevoflurane-induced long-term cognitive abnormalities. We proposed that the excitatory GABAA receptor-mediated HPA axis activity might be a novel mechanism underlying sevoflurane-induced long-term cognitive impairments. More studies are needed to investigate the effectiveness and mechanisms by targeting the excitatory GABAA receptor as a prevention strategy to alleviate cognitive deficits induced by neonatal sevoflurane exposure in future.
Collapse
Affiliation(s)
- Tao Li
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Xianwen Wang
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
14
|
Walters JL, Chelonis JJ, Fogle CM, Ferguson SA, Sarkar S, Paule MG, Talpos JC. Acetyl-l-carnitine does not prevent neurodegeneration in a rodent model of prolonged neonatal anesthesia. Neurotoxicol Teratol 2020; 80:106891. [PMID: 32376384 DOI: 10.1016/j.ntt.2020.106891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Many studies have shown that prolonged or repeated use of general anesthesia early in life can cause an increase in neurodegeneration and lasting changes in behavior. While short periods of general anesthesia appear to be safe, there is a concern about the neurotoxic potential of prolonged or repeated general anesthesia in young children. Unfortunately, the use of general anesthesia in children cannot be avoided. It would be a great benefit to develop a strategy to reduce or reverse anesthesia mitigated neurotoxicity. The mechanisms behind anesthesia related neurotoxicity are unknown, but evidence suggests that mitochondrial dysfunction and abnormal energy utilization are involved. Recent research suggests that a class of compounds known as carnitines may be effective at preventing anesthesia related neurotoxicity by influencing fatty acid metabolism in the mitochondria. However, it is unknown if carnitines can provide protection against changes in behavior associated with early life exposure to anesthesia. Accordingly, we evaluated the neuroprotective potential of acetyl-l-carnitine in 7-day old rats. Rat pups were exposed to 6 h of general anesthesia with sevoflurane or a control condition, with and without acetyl-l-carnitine. The oxygenation level of animals was continuously monitored during sevoflurane exposure, and any animal showing signs of hypoxia was removed from the study. Animals exposed to sevoflurane showed clear signs of neurodegeneration 2 h after sevoflurane exposure. The hippocampus, cortex, thalamus, and caudate putamen all had elevated levels of Fluoro-Jade C staining. Despite the elevated levels of Fluoro-Jade C, few behavioral changes were observed in an independent cohort of animals treated with sevoflurane. Furthermore, acetyl-l-carnitine had little impact on levels of Fluoro-Jade C staining in animals treated with sevoflurane. These data suggest that acetyl-l-carnitine may offer little protection again anesthesia related neurotoxicity in fully oxygenated animals.
Collapse
|
15
|
Hypoxia, hypercarbia, and mortality reporting in studies of anaesthesia-related neonatal neurodevelopmental delay in rodent models. Eur J Anaesthesiol 2020; 37:70-84. [DOI: 10.1097/eja.0000000000001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Zhou R, Li X, Li L, Zhang H. Theaflavins alleviate sevoflurane-induced neurocytotoxicity via Nrf2 signaling pathway. Int J Neurosci 2019; 130:1-8. [PMID: 31518514 DOI: 10.1080/00207454.2019.1667788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aim: Sevoflurane could induce apoptosis of rat hippocampal neurons, while theaflavins (TFs) have antioxidant and anti-inflammatory properties. This study aims to explore whether TFs could alleviate sevoflurane-induced neuronal cell injury.Materials and methods: Cells were treated by concentration gradient of sevoflurane and TFs. Cell viability, level of reactive oxygen species (ROS) and apoptosis rate were determined by cell counting kit-8 (CCK-8) and flow cytometry, respectively. Quantitative PCR (qPCR) and western blot were performed to determine mRNA and protein expressions.Results: TFs promoted viability of cells under the treatment of sevoflurane, while it suppressed apoptosis and down-regulated ROS level in a concentration-dependent manner. TFs could also down-regulate expression levels of caspase-3 and caspase-9 and cytosol and intranuclear nuclear factor E2-related factor 2 (Nrf2) in rat hippocampal nerve cells, while it up-regulated those of heme oxygenase 1 (HO-1), NADPH quinine oxidoreductase 1 (NQO1), glutamate cysteine ligase (GCL) and peroxiredoxin 1 (Prx1).Conclusions: Our study suggests that TFs exert protective effects on sevoflurane-induced neurocytotoxicity and therefore could be used as a potential drug for treatment of neuronal injury.
Collapse
Affiliation(s)
- Rongsheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaogang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Li
- Department of the Second Anesthesia, The Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Zhang
- Department of the Second Anesthesia, The Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Liu B, Bai W, Ou G, Zhang J. Cdh1-Mediated Metabolic Switch from Pentose Phosphate Pathway to Glycolysis Contributes to Sevoflurane-Induced Neuronal Apoptosis in Developing Brain. ACS Chem Neurosci 2019; 10:2332-2344. [PMID: 30741526 DOI: 10.1021/acschemneuro.8b00644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cdh1 is a regulatory subunit of the anaphase promoting complex/cyclosome (APC/C), known to be involved in regulating neuronal survival. The role of Cdh1 in volatile anesthetics-induced neuronal apoptosis in the developing brain is unknown. In this study, we used postnatal day 7 (P7) and day 21 (P21) mice exposed to 2.3% sevoflurane for 6 h to investigate at which age and duration of exposure sevoflurane affects the expression of Cdh1 and glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and that of the pentose phosphate pathway (PPP) enzyme, glucose-6-phosphate dehydrogenase (G6PD). Furthermore, we tested whether the cyclin-dependent kinases (cdks) inhibitor roscovatine could counteract the effects caused by exposure to sevoflurane. Finally, we applied the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO), G6PD inhibitor dehydroepiandrosterone (DHEA), and exogenous reduced glutathione to examine the contribution of the glycolysis pathway and PPP to sevoflurane-induced neuroapoptosis. We found that prolonged sevoflurane anesthesia significantly reduces the Cdh1 level in P7 mice compared to in the P21 ones; moreover, the decrease in Cdh1 level results in a switch in glucose metabolism from the PPP to neuronal glycolysis. This leads to an imbalance between reactive oxygen species production and reduced glutathione level in the developing brain, which is more susceptible to oxidative stress. As a result, sevoflurane induces neuroapoptosis through Cdh1-mediated glucose metabolism reprogramming. Our study demonstrates a critical role of Cdh1 in sevoflurane-induced neuroapoptosis by shifting PPP to the glycolytic pathway in the developing brain. These findings suggest that Cdh1 may be a novel target for preventing volatile anesthetics-induced neurotoxicity and memory impairment.
Collapse
Affiliation(s)
- Bin Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China 200040
| | - Wenjie Bai
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China 200040
| | - Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China 200040
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China 200040
| |
Collapse
|
18
|
Yu Q, Feng N, Hu Y, Luo F, Zhao W, Zhao W, Liu Z, Li M, Xu L, Wu L, Liu Y. Suberoylanilide hydroxamic acid (SAHA) alleviates the learning and memory impairment in rat offspring caused by maternal sevoflurane exposure during late gestation. J Toxicol Sci 2019; 44:177-189. [PMID: 30842370 DOI: 10.2131/jts.44.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent studies have shown that sevoflurane can cause long-term neurotoxicity and learning and memory impairment in developing and progressively neurodegenerative brains. Sevoflurane is a widely used volatile anesthetic in clinical practice. Late gestation is a rapidly developing period in the fetal brain, but whether sevoflurane anesthesia during late gestation affects learning and memory of offspring is not fully elucidated. Histone deacetylase 2 (HDAC2) plays an important regulatory role in learning and memory. This study examined the effect of maternal sevoflurane exposure on learning and memory in offspring and the underlying role of HDAC2. The Morris water maze (MWM) test was used to evaluate learning and memory function. Q-PCR and immunofluorescence staining were used to measure the expression levels of genes related to learning and memory. The results showed that sevoflurane anesthesia during late gestation impaired learning and memory in offspring rats (e.g., showing increase of the escape latency and decrease of the platform-crossing times and target quadrant traveling time in behavior tests) and upregulated the expression of HDAC2, while downregulating the expression of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and protein in the hippocampus of offspring in a time-dependent manner. HDAC2 inhibitor suberoylanilide hydroxamic acid (SAHA) treatment alleviated all of these changes in offspring rats. Therefore, the present study indicates that sevoflurane exposure during late gestation impairs offspring rat's learning and memory via upregulation of the expression of HDAC2 and downregulation of the expression of CREB and NR2B. SAHA can alleviate these impairments.
Collapse
Affiliation(s)
- Qi Yu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Namin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Yan Hu
- Department of Anesthesiology, Jiangxi Province Traditional Chinese Medicine Hospital, China
| | - Foquan Luo
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Weihong Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Weilu Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Zhiyi Liu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Mengyuan Li
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Lin Xu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, China
| | - Liuqing Wu
- Department of Anesthesiology, Jiangxi Province Tumor Hospital, China
| | - Yulin Liu
- Department of Immunology, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
19
|
Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 2018; 71:22-31. [PMID: 30472095 DOI: 10.1016/j.ntt.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects including deficits in learning and memory. In recent years, the focus of many pre-clinical studies has been on identifying candidate pathways or potential therapeutic targets through intervention trials. These reports have shed light on the mechanisms underlying anesthesia induced neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal mouse models of anesthetic exposure and provide an overview of mechanisms proposed to mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and signaling, growth/nutrient signaling, or direct neuronal modulation.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America.
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Philip Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
20
|
Jin H, Wang M, Wang J, Cao H, Niu W, Du L. Paeonol attenuates isoflurane anesthesia-induced hippocampal neurotoxicity via modulation of JNK/ERK/P38MAPK pathway and regulates histone acetylation in neonatal rat. J Matern Fetal Neonatal Med 2018; 33:81-91. [PMID: 29886761 DOI: 10.1080/14767058.2018.1487396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Volatile anesthetic such as isoflurane causes widespread neurodegeneration in the developing animal brains and also induces cognitive impairments. Paeonol is a plant-derived phenolic compound possessing numerous bioactive properties. The study investigates the neuroprotective effects of paeonol against isoflurane-induced neurodegeneration and cognitive disturbances in neonatal rats.Methods: Paeonol (50, 100, and 150 mg/kg body weight/day) was given orally to separate groups of neonatal rats from postnatal day 3 (P3) to P21 and were exposed to isoflurane (0.75%; 6 h) on P7.Results: Neuroapoptosis following isoflurane exposure was remarkably reduced by paeonol. Isoflurane-induced elevated cleaved caspase-3, Bad, and Bax expression, were down-regulated on paeonol administration. Paeonol significantly enhanced expression of antiapoptotic proteins (Bcl-2, Bcl-xL, xIAP, c-IAP-1, c-IAP-2, and survivin) and improved acetylation of HK39 and HK412. The expression of histone deacetylases (HDACs)-HDAC2 and HDAC-3 were down-regulated. Isoflurane-induced activation of JNK/p38MAPK signaling and suppressed ERK signaling and were effectively regulated by paeonol. General behavior and freezing responses of the rats were improved. Results of the Morris Water Maze tests revealed improved learning and memory retention on paeonol treatment.Conclusions: Paeonol effectively inhibited neuroapoptosis and improved isoflurane-induced cognitive dysfunctions via regulating histone acetylation and JNK/ERK1/2/p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Haiyan Jin
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Minyan Wang
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiangmei Wang
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongmin Cao
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lizhong Du
- Department of Neonatology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Wang S, Zhou Y. Baicalein Inhibits Neuroapoptosis Via Pathways in Sevoflurane Induced Rats. Transl Neurosci 2018; 9:88-98. [PMID: 30042862 PMCID: PMC6057263 DOI: 10.1515/tnsci-2018-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
Abstract
Background Baicalein, a bioactive flavonoid was explored for its capability to attenuate sevoflurane induced neuronal apoptosis and to improve behavioural and cognitive impairments. Sevoflurane is a frequently used inhalation anesthetic in neonates and children. Neonatal sevoflurane exposure causes widespread neurodegeneration and cognitive impairments. Development of compounds that could effectively prevent/reduce the adverse effects is of tremendous medical value. Methods Isolated groups of neonatal rats were regulated with baicalein (25, 50 or 100 mg/kg b.wt) from postnatal day 3 (P3) to P21 and were exposed to sevoflurane (3%; 6 h) on P7. Results: Baicalein inhibited sevoflurane induced neuroapoptosis significantly as assessed by TUNEL assay. The raised levels of cleaved caspase-3, Bad and Bax were down-regulated by baicalein with enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, c-IAP-2 and survivin expression. Baicalein regulated JNK/ERK signalling and also activated the PI3K/Akt pathway effectively as evident from the increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β levels. Baicalein, also improved the behaviour of animals in open filed and olfactory tests. The freezing responses and the performance in Morris Water Maze tests were enhanced. Conclusion Baicalein reduced neurodegeneration and improved learning and memory retention of rats and as well modulated PI3/Akt/GSK-3β and JNK/ERK signalling pathways.
Collapse
Affiliation(s)
- Si Wang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China, 637000
| | - Yu Zhou
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China, 637000
| |
Collapse
|
22
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
23
|
Lv X, Yan J, Jiang J, Zhou X, Lu Y, Jiang H. MicroRNA-27a-3p suppression of peroxisome proliferator-activated receptor-γ contributes to cognitive impairments resulting from sevoflurane treatment. J Neurochem 2017; 143:306-319. [PMID: 28881034 DOI: 10.1111/jnc.14208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
Abstract
Sevoflurane is the most widely used anaesthetic administered by inhalation. Exposure to sevoflurane in neonatal mice can induce learning deficits and abnormal social behaviours. MicroRNA (miR)-27a-3p, a short, non-coding RNA that functions as a tumour suppressor, is up-regulated after inhalation of anaesthetic, and peroxisome proliferator-activated receptor γ (PPAR-γ) is one of its target genes. The objective of this study was to investigate how the miR-27a-3p-PPAR-γ interaction affects sevoflurane-induced neurotoxicity. A luciferase reporter assay was employed to identify the interaction between miR-27a-3p and PPAR-γ. Primary hippocampal neuron cultures prepared from embryonic day 0 C57BL/6 mice were treated with miR-27a-3p inhibitor or a PPAR-γ agonist to determine the effect of miR-27a-3p and PPAR-γ on sevoflurane-induced cellular damage. Cellular damage was assessed by a flow cytometry assay to detect apoptotic cells, immunofluorescence to detect reactive oxygen species, western blotting to detect NADPH oxidase 1/4 and ELISA to measure inflammatory cytokine levels. In vivo experiments were performed using a sevoflurane-induced anaesthetic mouse model to analyse the effects of miR-27a-3p on neurotoxicity by measuring the number of apoptotic neurons using the Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) method and learning and memory function by employing the Morris water maze test. Our results revealed that PPAR-γ expression was down-regulated by miR-27a-3p following sevoflurane treatment in hippocampal neurons. Down-regulation of miR-27a-3p expression decreased sevoflurane-induced hippocampal neuron apoptosis by decreasing inflammation and oxidative stress-related protein expression through the up-regulation of PPAR-γ. In vivo tests further confirmed that inhibition of miR-27a-3p expression attenuated sevoflurane-induced neuronal apoptosis and learning and memory impairment. Our findings suggest that down-regulation of miR-27a-3p expression ameliorated sevoflurane-induced neurotoxicity and learning and memory impairment through the PPAR-γ signalling pathway. MicroRNA-27a-3p may, therefore, be a potential therapeutic target for preventing or treating sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Lv
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Zhou
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Shan L, Ma D, Zhang C, Xiong W, Zhang Y. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction. Brain Res 2017; 1670:191-200. [DOI: 10.1016/j.brainres.2017.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
|
25
|
Ding ML, Ma H, Man YG, Lv HY. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 2017; 95:1396-1405. [PMID: 28679060 DOI: 10.1139/cjpp-2016-0333] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, is an effective antioxidant and possesses neuroprotective effects. Brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are crucial for neurogenesis and synaptic plasticity. In this study, we aimed to assess the protective effects of EGCG against sevoflurane-induced neurotoxicity in neonatal mice. Distinct groups of C57BL/6 mice were given EGCG (25, 50, or 75 mg/kg body weight) from postnatal day 3 (P3) to P21 and were subjected to sevoflurane (3%; 6 h) exposure on P7. EGCG significantly inhibited sevoflurane-induced neuroapoptosis as determined by Fluoro-Jade B staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Increased levels of cleaved caspase-3, downregulated Bad and Bax, and significantly enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, and survivin expression were observed. EGCG induced activation of the PI3K/Akt pathway as evidenced by increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and mTORc1 levels. Sevoflurane-mediated downregulation of cAMP/CREB and BDNF/TrkB signalling was inhibited by EGCG. Reverse transcription PCR analysis revealed enhanced BDNF and TrkB mRNA levels upon EGCG administration. Improved performance of mice in Morris water maze tests suggested enhanced learning and memory. The study indicates that EGCG was able to effectively inhibit sevoflurane-induced neurodegeneration and improve learning and memory retention of mice via activation of CREB/BDNF/TrkB-PI3K/Akt signalling.
Collapse
Affiliation(s)
- Mei-Li Ding
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hui Ma
- b Department of Neurosurgery, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Yi-Gang Man
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hong-Yan Lv
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| |
Collapse
|
26
|
Walters JL, Paule MG. Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicol Teratol 2017; 60:2-23. [DOI: 10.1016/j.ntt.2016.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
27
|
Chakraborty N, Muhie S, Kumar R, Gautam A, Srinivasan S, Sowe B, Dimitrov G, Miller SA, Jett M, Hammamieh R. Contributions of polyunsaturated fatty acids (PUFA) on cerebral neurobiology: an integrated omics approach with epigenomic focus. J Nutr Biochem 2017; 42:84-94. [PMID: 28152499 DOI: 10.1016/j.jnutbio.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 12/15/2016] [Indexed: 01/03/2023]
Abstract
The epigenetic landscape is vulnerable to diets. Here, we investigated the influence of different polyunsaturated fatty acids (PUFA) dietary supplements on rodents' nervous system development and functions and potential consequences to neurodegenerative disorders. Our previous nutrigenomics study showed significant impact of high n-3 PUFA-enriched diet (ERD) on synaptogenesis and various neuromodulators. The present study introduced a second equicaloric diet with n-6 PUFA balanced by n-3 PUFA (BLD). The typical lab diet with high n-6 PUFA was the baseline. Transcriptomic and epigenetic investigations, namely microRNA (miRNA) and DNA methylation assays, were carried out on the hemibrains of the C57BL/6j mice fed on any of these three diets from their neonatal age to midlife. Integrating the multiomics data, we focused on the genes encoding both hypermethylated CpG islands and suppressed transcripts. In addition, miRNA:mRNA pairs were screened to identify those overexpressed miRNAs that reduced transcriptional expressions. The majority of miRNAs overexpressed by BLD are associated with Alzheimer's and schizophrenia. BLD implicated long-term potentiation, memory, cognition and learning, primarily via hypermethylation of those genes that enrich the calcium-releasing neurotransmitters. ERD caused hypermethylation of those genes that enrich cytoskeletal development networks and promote the formation of neuronal precursors. We drew the present observations in light of our limited knowledge regarding the epigenetic influences on biofunctions. A more comprehensive study is essential to understand the broad influences of dietary supplements and to suggest optimal dietary solutions for neurological disorders.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Seid Muhie
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Raina Kumar
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA 21702
| | - Aarti Gautam
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010
| | - Seshamalini Srinivasan
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Bintu Sowe
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - George Dimitrov
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA 21702
| | - Stacy-Ann Miller
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010.
| |
Collapse
|
28
|
Pusceddu MM, Kelly P, Stanton C, Cryan JF, Dinan TG. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology. Int J Neuropsychopharmacol 2016; 19:pyw078. [PMID: 27608809 PMCID: PMC5203760 DOI: 10.1093/ijnp/pyw078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer's disease. DESIGN Relevant literature was identified through a search of MEDLINE via PubMed using the following words, "n-3 PUFAs," "EPA," and "DHA" in combination with "stress," "cognition," "ADHD," "anxiety," "depression," "bipolar disorder," "schizophrenia," and "Alzheimer." The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. RESULTS The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. CONCLUSIONS Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Philip Kelly
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
30
|
Fan C, Fu H, Dong H, Lu Y, Lu Y, Qi K. Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: associated with DNA methylation of brain-derived neurotrophic factor transcripts. Nutr Res 2016; 36:1013-1021. [PMID: 27632922 DOI: 10.1016/j.nutres.2016.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023]
Abstract
In this study, we hypothesized that n-3 polyunsaturated fatty acid (PUFA) deficiency during pregnancy and lactation will make a lasting impact on brain neurogenesis and apoptosis of the adult offspring and that these harmful effects cannot be reversed by n-3 PUFA supplementation after weaning. Moreover, the underlying mechanisms may be attributable to the epigenetic changes of brain-derived neurotrophic factor (BDNF). C57BL/6J female mice were fed with n-3 PUFA-deficient diet (n-3 def) or n-3 PUFA-adequate diet (n-3 adq) throughout pregnancy and lactation. At postnatal 21 days, equal numbers of male pups from both groups were fed the opposite diet, and the remaining male pups were fed with the same diets as their mothers until 3 months of age. Feeding the n-3 adq diet to pups from the maternal n-3 def group significantly increased the n-3 PUFA concentration but did not change expressions of calretinin, Bcl2, and Bax in the hippocampus. Feeding the n-3 def diet to pups from the maternal n-3 adq group significantly reduced the n-3 PUFA concentration but did not reduce expressions of calretinin and Bcl2. Similarly, BDNF levels, especially mRNA expressions of BDNF transcripts IV and IX, were also reduced by maternal n-3 def and not reversed by n-3 PUFA supplementation after weaning. The decrease in BDNF expression by maternal n-3 def diet was associated with greater DNA methylation at special CpG sites. These results suggested that the maternal n-3 PUFA deficiency during pregnancy and lactation imprints long-term changes of brain development in adult offspring.
Collapse
Affiliation(s)
- Chaonan Fan
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huicong Fu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hua Dong
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Lu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanfei Lu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kemin Qi
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Tang M, Zhang M, Cai H, Li H, Jiang P, Dang R, Liu Y, He X, Xue Y, Cao L, Wu Y. Maternal diet of polyunsaturated fatty acid altered the cell proliferation in the dentate gyrus of hippocampus and influenced glutamatergic and serotoninergic systems of neonatal female rats. Lipids Health Dis 2016; 15:71. [PMID: 27048382 PMCID: PMC4822267 DOI: 10.1186/s12944-016-0236-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Background Long-chain polyunsaturated fatty acids (PUFAs) are major components of the phospholipids that forming the cell membrane. Insufficient availability of PUFAs during prenatal period decreases accretion of docosahexaenoic acid (DHA) in the developing brain. DHA deficiency is associated with impaired attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies on the potential benefits of dietary DHA supplementation to neural development have yielded conflicting results. Methods To further investigate the neurochemical influence of maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of neonatal female rats by HPLC-MS/MS. Meanwhile, the cell proliferation of neonatal rats was investigated using immunefluorescence. Results Different maternal n-3 PUFAs dietary influenced the FA composition, cell proliferation in the dentate gyrus of hippocampus and the contents of γ-aminobutyric acid (GABA), glutamine (GLN), dopamine (DA) and its metabolites [3,4- dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA)], norepinephrine (NE), vanilmandelic acid (VMA) and 5-HT turnover in the brain of neonatal rats. However, the mRNA expression of key synthase of neurotransmitters remains stable. Conclusions Our study showed that maternal deficiency of n-3 PUFAs might play an important role in central nervous system of neonatal female rats mainly through impairing the normal neurogenesis and influencing glutamatergic system and 5-HT turnover. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0236-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lingjuan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
32
|
Lu Y, Huang Y, Jiang J, Hu R, Yang Y, Jiang H, Yan J. Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother 2016; 78:322-328. [PMID: 26898457 DOI: 10.1016/j.biopha.2016.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sevoflurane is an inhaled anesthetic commonly used in the pediatric. Recent animal studies suggest that early exposure to high concentration of sevoflurane for a long duration can induce neuroapoptosis and later cognitive dysfunction. However, the neurodevelopmental impact induced by lower concentration and shorter exposure duration of sevoflurane is unclear. To investigate whether early exposure to 2% concentration of sevoflurane for a short duration (clinically relevant usage of sevoflurane) can also induce neuroapoptosis and later cognitive dysfunction. METHODS Rat pups were subjected to control group, 2% sevoflurane for 3h and 3% sevoflurane for 6h. TUNEL assay and apoptotic enzyme cleaved caspase-3 measured by western blot were used for detection of neuronal apoptosis in frontal cortex and CA1 region of hippocampus 24 after sevoflurane treatment. Long-term cognitive function was evaluated by Morris water maze and passive avoidance test as the rats grew up. RESULTS The apoptotic levels in frontal cortex and CA1 region were significantly increased after rats exposed to 3% sevoflurane for 6h (P<0.05), but not 2% sevoflurane for 3h (P>0.05). Exposure to both 2% sevoflurane for 3h and 3% sevoflurane for 6h could cause long-term cognitive dysfunction and animals exposed to 3% sevoflurane for 6h exhibited worse neurodevelopmental outcomes (P<0.05). CONCLUSION It was suggested that neuronal apoptosis might not contribute to long-term cognitive dysfunction induced by 2% concentration and short exposure time of sevoflurane. Our findings also suggested that the mechanisms of sevoflurane-induced neurodevelopmental impact might be various, depending on the concentration and exposure duration.
Collapse
Affiliation(s)
- Yi Lu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Yan Huang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Yaqiong Yang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China.
| |
Collapse
|
33
|
Ramklass R, Hauser N, Levin AI. Anaesthesia associated developmental neurotoxicity (AADN) 2015. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2016. [DOI: 10.1080/22201181.2015.1126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Xiao H, Liu B, Chen Y, Zhang J. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Dev Neurosci 2015; 48:38-49. [PMID: 26612208 DOI: 10.1016/j.ijdevneu.2015.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/01/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Developmental exposure to volatile anesthetics has been associated with cognitive deficits at adulthood. Rodent studies have revealed impairments in performance in learning tasks involving the hippocampus. However, how the duration of anesthesia exposure impact on hippocampal synaptic plasticity, learning, and memory is as yet not fully elucidated. METHODS On postnatal day 7(P7), rat pups were divided into 3 groups: control group (n=30), 3% sevoflurane treatment for 1h (Sev 1h group, n=30) and 3% sevoflurane treatment for 6h (Sev 6h group, n=28). Following anesthesia, synaptic vesicle-associated proteins and dendrite spine density and synapse ultrastructure were measured using western blotting, Golgi staining, and transmission electron microscopy (TEM) on P21. In addition, the effects of sevoflurane treatment on long-term potentiation (LTP) and long-term depression (LTD), two molecular correlates of memory, were studied in CA1 subfields of the hippocampus, using electrophysiological recordings of field potentials in hippocampal slices on P35-42. Rats' neurocognitive performance was assessed at 2 months of age, using the Morris water maze and novel-object recognition tasks. RESULTS Our results showed that neonatal exposure to 3% sevoflurane for 6h results in reduced spine density of apical dendrites along with elevated expression of synaptic vesicle-associated proteins (SNAP-25 and syntaxin), and synaptic ultrastructure damage in the hippocampus. The electrophysiological evidence indicated that hippocampal LTP, but not LTD, was inhibited and that learning and memory performance were impaired in two behavioral tasks in the Sev 6h group. In contrast, lesser structural and functional damage in the hippocampus was observed in the Sev 1h group. CONCLUSION Our data showed that 6-h exposure of the developing brain to 3% sevoflurane could result in synaptic plasticity impairment in the hippocampus and spatial and nonspatial hippocampal-dependent learning and memory deficits. In contrast, shorter-duration exposure (1h) results in less damage. These results provide further evidences that duration of anesthesia exposure could have differential effects on neuronal plasticity and neurocognitive performance.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Bing Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yali Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Wang LY, Li X, Han YZ. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells. Int J Clin Exp Med 2015; 8:15065-15075. [PMID: 26628990 PMCID: PMC4658879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Bupivacaine, an amide type long-acting local anaesthetic is commonly employed for epidural anesthesia and as well for nerve blockades. However, studies have shown neurotoxicity following local administration of bupivacaine raising concerns over the use of the drug. Compounds that could minimize or inhibit toxic effects of bupivacaine are of high value in operative settings and in pain management. The present study aims to investigate if epigallo catechin gallate (EGCG) could inhibit or prevent bupivacaine toxicity in neuroblastoma cells (N2a and SH-SY5Y). The viability of N2a and SH-SY5Y cells following exposure to EGCG (10-50 µM) were assessed by MTT assay and Annexin V/PI staining. The influence of EGCG on ROS generation was determined. The expression of apoptotic cascade proteins (Caspases-3, -8 and -9, Bcl-xL, Bad, Bax, Bcl-2) and PI3/Akt pathway proteins (Akt, p-Akt, GSK-3β, p-GSK-3β, PTEN) were analyzed by western blotting. EGCG improved the viability of the cells and inhibited apoptosis by potentially decreasing the expression of caspases and pro-apoptotic proteins. Bupivacaine induced ROS generations were reduced on EGCG exposure. EGCG significantly promoted the phosphorylation of Akt and GSK-3β and down-regulated PTEN, thus activating PI3/Akt signalling. EGCG effectively improved the cell viability and inhibited apoptosis of N2a and SH-SY5Y cells via suppression of ROS generation and modulation of PI3K/Akt signalling cascade.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Xia Li
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Yu-Zeng Han
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| |
Collapse
|
36
|
Environmental Enrichment Attenuated Sevoflurane-Induced Neurotoxicity through the PPAR-γ Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:107149. [PMID: 26236713 PMCID: PMC4506847 DOI: 10.1155/2015/107149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
Sevoflurane is the most widely used inhaled anesthetic. Environmental enrichment (EE) can reverse sevoflurane-induced learning and memory impairment in young mice. However, the mechanism by which EE elicits this effect is unclear. The peroxisome proliferator-activated receptor (PPAR) regulatory pathway plays a critical role in the regulation of inflammation in central nervous system diseases. In this study, we investigated whether EE attenuates sevoflurane-induced learning and memory disability via the PPAR signaling pathway. Six-day-old mice were treated with 3% sevoflurane for 2 hours daily from postnatal day 6 (P6) to P8. Then, the mice were treated with EE. The effects of sevoflurane on learning and memory function, PPAR-γ expression in the brain, and the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and 5-bromodeoxyuridine-positive cells in the hippocampus were determined. Sevoflurane induced neuronal apoptosis and neurogenesis inhibition, which may impair learning and memory in young mice. Furthermore, sevoflurane downregulated PPAR-γ expression. Both EE and the PPAR-γ agonist, rosiglitazone, attenuated sevoflurane-induced neuronal apoptosis, neurogenesis inhibition, and learning and memory impairment. Our findings suggest that EE ameliorated sevoflurane-induced neurotoxicity and learning and memory impairment through the PPAR-γ signaling pathway. PPAR-γ may be a potential therapeutic target for preventing or treating sevoflurane-induced neurotoxicity.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The literature on the influence of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) on brain aging has grown exponentially during the last decade. Many avenues have been explored but no global picture or clear evidence has emerged. Experimental studies have shown that ω-3 PUFA is involved in many neurobiological processes that are involved in neurotransmission and neuroprotection, indicating that these PUFAs may prevent age-related brain damage. Human studies have revealed only a weak link between ω-3 PUFA status and cognitive aging, whereas interventional studies have yet to confirm it. The purpose of this review is to analyze the developments in the area during the last 2 years. RECENT FINDINGS Human brain MRI studies have confirmed previous findings that ω-3 PUFA can protect the brain during aging; two intervention studies obtained clear evidence. We also analyzed the experimental data clarifying the involvement of ω-3 PUFA in neurotransmission, neuroprotection (including prevention of peroxidation, inflammation, and excitotoxicity), and neurogenesis, thereby helping the brain cope with aging. SUMMARY These recent human and experimental studies provide support for and clarification of how ω-3 PUFA protect against brain aging and highlight the main lines for future research.
Collapse
Affiliation(s)
- Isabelle Denis
- aUnité de Neurobiologie de l'Olfaction, NBO U1197, INRA, Jouy-en-Josas bINSERM UMR 894, Centre de Psychiatrie et Neurosciences, Paris cUnité MICALIS, UMR 1319, INRA, Jouy-en-Josas dUnité NutriNeurO, UMR INRA 1286, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | |
Collapse
|
38
|
Altered metabolomic profiles may be associated with sevoflurane-induced neurotoxicity in neonatal rats. Neurochem Res 2015; 40:788-99. [PMID: 25663300 DOI: 10.1007/s11064-015-1529-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 12/25/2022]
Abstract
Experimental studies demonstrate that inhaled anesthetics can cause neurodegeneration and neurobehavioral dysfunctions. Evidence suggests changes in cerebral metabolism following inhaled anesthetics treatment can perturb cerebral homeostasis, which may be associated with their induced neurotoxicity. Seven-day-old rat pups were divided into two groups: control group (Group C) and sevoflurane group (Group S, 3 % sevoflurane exposure for 6 h). Gas chromatography-mass spectrometry (GC-MS) was used for analyzed differential metabolites of cerebral cortex in both groups, Also western blot, flow cytometry, enzymatic methods and electron microscopy were performed in various biochemical and anatomical assays. Sevoflurane exposure significantly elevated caspase-3 activation and ROS levels, decreased mitochondrial cardiolipin contents, and changed cellular ultrastructure in the cerebral cortex. Correspondingly, these results corroborated the GC-MS findings which showed altered metabolic pathways of glucose, amino acids, and lipids, as well as intracellular antioxidants and osmolyte systems in neonatal brain following prolonged exposure to high sevoflurane concentration. Our data indicate that sevoflurane anesthesia causes significant oxidative stress, neuroapoptosis, and cellular ultrastructure damage which is associated with altered brain metabotype in the neonatal rat. Our study also confirmed that GC-MS is a strategic and complementary platform for the metabolomic characterization of sevoflurane-induced neurotoxicity in the developing brain.
Collapse
|
39
|
Hoeijmakers L, Lucassen PJ, Korosi A. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function. Front Mol Neurosci 2015; 7:103. [PMID: 25620909 PMCID: PMC4288131 DOI: 10.3389/fnmol.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
40
|
Xu X, Tian Y, Wang G, Tian X. Inhibition of propofol on single neuron and neuronal ensemble activity in prefrontal cortex of rats during working memory task. Behav Brain Res 2014; 270:270-6. [DOI: 10.1016/j.bbr.2014.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 01/16/2023]
|
41
|
Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014; 2014:563160. [PMID: 24900924 PMCID: PMC4037119 DOI: 10.1155/2014/563160] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.
Collapse
Affiliation(s)
- Tytus Murphy
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandrine Thuret
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
42
|
Flores-Mancilla LE, Hernández-González M, Guevara MA, Benavides-Haro DE, Martínez-Arteaga P. Long-term fish oil supplementation attenuates seizure activity in the amygdala induced by 3-mercaptopropionic acid in adult male rats. Epilepsy Behav 2014; 33:126-34. [PMID: 24657504 DOI: 10.1016/j.yebeh.2014.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/28/2023]
Abstract
Several studies have provided evidence of significant effects of omega-3 fatty acids on brain functionality, including seizures and disorders such as epilepsy. Fish oil (FO) is a marine product rich in unsaturated omega-3 fatty acids. Considering that the amygdala is one of the brain structures most sensitive to seizure generation, we aimed to evaluate the effect of long-term chronic FO supplementation (from embryonic conception to adulthood) on the severity of seizures and amygdaloid electroencephalographic activity (EEG) in a 3-mercaptopropionic acid (3-MPA)-induced seizure model using adult rats. Female Wistar rats were fed a commercial diet supplemented daily with FO (300mg/kg) from puberty through mating, gestation, delivery, and weaning of the pups. Only the male pups were then fed daily with a commercial diet supplemented with the same treatment as the dam up to the age of 150days postpartum, when they were bilaterally implanted in the amygdala to record behavior and EEG activity before, during, and after seizures induced by administering 3-MPA. Results were compared with those obtained from rats supplemented with palm oil (PO) and rats treated with a vehicle (CTRL). The male rats treated with FO showed longer latency to seizure onset, fewer convulsive episodes, and attenuated severity compared those in the PO and CTRL groups according to the Racine scale. Moreover, long-term FO supplementation was associated with a reduction of the absolute power (AP) of the fast frequencies (12-25Hz) in the amygdala during the seizure periods. These findings support the idea that chronic supplementation with omega-3 of marine origin may have antiseizure properties as other studies have suggested.
Collapse
Affiliation(s)
- L E Flores-Mancilla
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico.
| | - M Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, CP 44130 Guadalajara, Jalisco, Mexico
| | - M A Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, CP 44130 Guadalajara, Jalisco, Mexico
| | - D E Benavides-Haro
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico
| | - P Martínez-Arteaga
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico
| |
Collapse
|
43
|
Hammamieh R, Chakraborty N, Gautam A, Miller SA, Muhie S, Meyerhoff J, Jett M. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS One 2014; 9:e90425. [PMID: 24632812 PMCID: PMC3954562 DOI: 10.1371/journal.pone.0090425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.
Collapse
Affiliation(s)
- Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Stacy-Ann Miller
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Seid Muhie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - James Meyerhoff
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Marti Jett
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| |
Collapse
|