1
|
Shin SH, Tang Q, Carl M, Athertya JS, Suprana A, Ma Y. Spectrally selective and interleaved water imaging and fat imaging (siWIFI). Magn Reson Med 2025; 93:1556-1567. [PMID: 39533797 PMCID: PMC11785484 DOI: 10.1002/mrm.30366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To develop a novel imaging sequence that independently acquires water and fat images while being inherently insensitive to motion. METHODS The new sequence, termed spectrally selective and interleaved water imaging and fat imaging (siWIFI), uses a narrow bandwidth RF pulse for selective excitation of water and fat separately. The interleaved acquisition method ensures that the obtained water and fat images are inherently coregistered. A radial sampling strategy further reduces motion-induced artifacts. Phantoms with lipid concentrations ranging from 0% to 50% were scanned to measure fat fraction. Moreover, healthy volunteers were scanned to assess the in vivo feasibility of fat fraction measurement at the hip, knee, and liver. In vivo fat fraction measurements were compared with those from vendor-provided iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) scans. Furthermore, a magnetization transfer (MT) preparation module was incorporated to demonstrate the feasibility of simultaneous measurement of fat fraction and MT ratio utilizing the siWIFI framework. RESULTS The phantom fat fractions measured by siWIFI showed excellent correlation with lipid concentrations (R2 = 0.9995, p < 0.0001). In vivo studies demonstrated that the fat fractions obtained from siWIFI were comparable to those from IDEAL. Additionally, siWIFI demonstrates reduced motion artifacts from pulsatile flow in knee imaging compared to IDEAL scans and exhibits less sensitivity to respiratory motion in liver imaging compared to IDEAL scans without breath-hold. The knee imaging study demonstrated that MT-prepared siWIFI is capable of generating fat fraction and MT ratio maps simultaneously. CONCLUSION The proposed siWIFI sequence allows selective water-fat imaging and quantification with reduced motion artifacts.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Qingbo Tang
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
| | | | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chein-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Holm-Yildiz S, Krag T, Dysgaard T, Pedersen BS, Witting N, Kodal LS, Kannuberg L, Pedersen JJ, Lyu Z, Aagaard MM, Vissing J. Quantitative Muscle MRI to Monitor Disease Progression in Hypokalemic Period Paralysis. Neurol Genet 2024; 10:e200211. [PMID: 39633713 PMCID: PMC11616970 DOI: 10.1212/nxg.0000000000200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
Background and Objectives Primary hypokalemic periodic paralysis (HypoPP) is a muscle channelopathy that can cause periodic paralysis and permanent weakness. Currently, little is known about how progressive this myopathy is. Natural history data for HypoPP can potentially answer the question of progressiveness and form the basis for outcome measures to be used in follow-up and emerging treatment trials. We aimed to describe the natural history of HypoPP and assess whether quantitative fat imaging is a valuable biomarker to monitor disease progression. Methods In this prospective follow-up study, we examined disease progression using Dixon MRI to monitor changes in fat replacement of the muscle and stationary dynamometry to monitor changes in muscle strength. Results We included 37 persons (mean age 43 years, range 18-79 years) with HypoPP-causing variants in CACNA1S. Three participants were asymptomatic carriers, 22 had periodic paralysis, 3 had permanent weakness, and 9 had periodic paralysis in combination with permanent weakness. The median follow-up time was 20 months (range 12-25). We found that fat fraction increased in 10 of 21 examined muscles. An increase in the composite fat fraction of at least 1 muscle group was found in all symptomatic phenotypes. By contrast, we found no significant change in muscle strength. Discussion The results from this follow-up study support the use of quantitative muscle MRI to monitor subclinical disease progression in HypoPP in patients with and without attacks of paralysis.
Collapse
Affiliation(s)
- Sonja Holm-Yildiz
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Krag
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Tina Dysgaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Britt Stævnsbo Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Nanna Witting
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Louise Sloth Kodal
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Linda Kannuberg
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonas Jalili Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zhe Lyu
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Müller Aagaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Forsting J, Wächter M, Froeling M, Rohm M, Güttsches AK, De Lorenzo A, Südkamp N, Kocabas A, Vorgerd M, Enax-Krumova E, Rehmann R, Schlaffke L. Quantitative muscle magnetic resonance imaging in limb-girdle muscular dystrophy type R1 (LGMDR1): A prospective longitudinal cohort study. NMR IN BIOMEDICINE 2024; 37:e5172. [PMID: 38794994 DOI: 10.1002/nbm.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/27/2024]
Abstract
Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marian Wächter
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
4
|
De Wel B, Huysmans L, Peeters R, Ghysels S, Byloos K, Putzeys G, Maes F, Dupont P, Claeys KG. Test-retest reliability and follow-up of muscle magnetic resonance elastography in adults with and without muscle diseases. J Cachexia Sarcopenia Muscle 2024; 15:1761-1771. [PMID: 38923326 PMCID: PMC11446706 DOI: 10.1002/jcsm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We investigated the potential of magnetic resonance elastography (MRE) stiffness measurements in skeletal muscles as an outcome measure, by determining its test-retest reliability, as well as its sensitivity to change in a longitudinal follow-up study. METHODS We assessed test-retest reliability of muscle MRE in 20 subjects with (n = 5) and without (n = 15) muscle diseases and compared this to Dixon proton density fat fraction (PDFF) and volume measurements. Next, we measured MRE muscle stiffness in 21 adults with Becker muscular dystrophy (BMD) and 21 age-matched healthy controls at baseline, and after 9 and 18 months. We compared two different methods of analysing MRE data in this study: 'Method A' used the stiffness maps generated by the Philips MRE software, and 'Method B' applied a custom-made procedure based on wavelength measurements on the MRE images. RESULTS Intraclass correlation coefficients (ICC) of muscle stiffness ranged from good (0.83 for left vastus medialis, P < 0.001) to poor (0.19 for right rectus femoris, P = 0.212) for the examined thigh muscles with Method A, but we did not find a significant test-retest reliability with Method B (P > 0.050 for all). The ICC of muscle PDFF and volume measurements was excellent (>0.90; P < 0.001) for all muscles. At baseline, the average stiffness of all thigh muscles was significantly lower in adults with BMD than in controls for both Method A (-0.2 kPa, P = 0.025) and Method B (-0.6 kPa, P < 0.001). Regardless of which method was used, there was no significant difference in the evolution of muscle stiffness in patients and controls over 18 months. CONCLUSIONS Test-retest reliability of muscle MRE using a simple 2D technique was suboptimal, and did not reliably measure muscle stiffness changes in adults with BMD as compared with controls over 18 months. While the results provide motivation for testing more advanced 3D MRE methods, we conclude that the simple 2D MRE implementation used in this study is not suitable as an outcome measure for characterizing thigh muscle in clinical trials.
Collapse
Affiliation(s)
- Bram De Wel
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Lotte Huysmans
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Stefan Ghysels
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Kris Byloos
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Guido Putzeys
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik Maes
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Patrick Dupont
- Department of NeurosciencesLaboratory for Cognitive Neurology, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Kristl G. Claeys
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| |
Collapse
|
5
|
Attarian S, Beloribi-Djefaflia S, Bernard R, Nguyen K, Cances C, Gavazza C, Echaniz-Laguna A, Espil C, Evangelista T, Feasson L, Audic F, Zagorda B, Milhe De Bovis V, Stojkovic T, Sole G, Salort-Campana E, Sacconi S. French National Protocol for diagnosis and care of facioscapulohumeral muscular dystrophy (FSHD). J Neurol 2024; 271:5778-5803. [PMID: 38955828 DOI: 10.1007/s00415-024-12538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common genetically inherited myopathies in adults. It is characterized by incomplete penetrance and variable expressivity. Typically, FSHD patients display asymmetric weakness of facial, scapular, and humeral muscles that may progress to other muscle groups, particularly the abdominal and lower limb muscles. Early-onset patients display more severe muscle weakness and atrophy, resulting in a higher frequency of associated skeletal abnormalities. In these patients, multisystem involvement, including respiratory, ocular, and auditory, is more frequent and severe and may include the central nervous system. Adult-onset FSHD patients may also display some degree of multisystem involvement which mainly remains subclinical. In 95% of cases, FSHD patients carry a pathogenic contraction of the D4Z4 repeat units (RUs) in the subtelomeric region of chromosome 4 (4q35), which leads to the expression of DUX4 retrogene, toxic for muscles (FSHD1). Five percent of patients display the same clinical phenotype in association with a mutation in the SMCHD1 gene located in chromosome 18, inducing epigenetic modifications of the 4q D4Z4 repeated region and expression of DUX4 retrogene. This review highlights the complexities and challenges of diagnosing and managing FSHD, underscoring the importance of standardized approaches for optimal patient outcomes. It emphasizes the critical role of multidisciplinary care in addressing the diverse manifestations of FSHD across different age groups, from skeletal abnormalities in early-onset cases to the often-subclinical multisystem involvement in adults. With no current cure, the focus on alleviating symptoms and slowing disease progression through coordinated care is paramount.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France.
- FILNEMUS, European Reference Network for Rare Diseases (ERN-NMD), Marseille, France.
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France.
| | - Sadia Beloribi-Djefaflia
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Rafaelle Bernard
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Claude Cances
- Reference Center for Neuromuscular Disorders, Toulouse Children's Hospital, Toulouse, France
- Pediatric Neurology Department, Toulouse Children's Hospital, Toulouse, France
| | - Carole Gavazza
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France
- French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France
- Inserm U1195, University Paris Saclay, Le Kremlin Bicêtre, France
| | - Caroline Espil
- Reference Center for Neuromuscular Disorders AOC, Children's Hospital, CHU Bordeaux, Bordeaux, France
| | - Teresinha Evangelista
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Léonard Feasson
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
- Inter-University Laboratory of Human Movement Biology, EA 7424, Jean Monnet University, 42000, Saint-Etienne, France
| | - Frédérique Audic
- Reference Center for Neuromuscular Diseases in Children PACARARE, Neuropediatrics Department, Timone University Children's Hospital, Marseille, France
| | - Berenice Zagorda
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
| | - Virginie Milhe De Bovis
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Tanya Stojkovic
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires AOC, FILNEMUS, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Université Côte d'Azur, CHU Nice, Pasteur 2, Nice Hospital, France.
| |
Collapse
|
6
|
Lam P, Zygmunt DA, Ashbrook A, Bennett M, Vetter TA, Martin PT. Dual FKRP/FST gene therapy normalizes ambulation, increases strength, decreases pathology, and amplifies gene expression in LGMDR9 mice. Mol Ther 2024; 32:2604-2623. [PMID: 38910327 PMCID: PMC11405156 DOI: 10.1016/j.ymthe.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Recent clinical studies of single gene replacement therapy for neuromuscular disorders have shown they can slow or stop disease progression, but such therapies have had little impact on reversing muscle disease that was already present. To reverse disease in patients with muscular dystrophy, new muscle mass and strength must be rebuilt at the same time that gene replacement prevents subsequent disease. Here, we show that treatment of FKRPP448L mice with a dual FKRP/FST gene therapy packaged into a single adeno-associated virus (AAV) vector can build muscle strength and mass that exceed levels found in wild-type mice and can induce normal ambulation endurance in a 1-h walk test. Dual FKRP/FST therapy also showed more even increases in muscle mass and amplified muscle expression of both genes relative to either single gene therapy alone. These data suggest that treatment with single AAV-bearing dual FKRP/FST gene therapies can overcome loss of ambulation by improving muscle strength at the same time it prevents subsequent muscle damage. This design platform could be used to create therapies for other forms of muscular dystrophy that may improve patient outcomes.
Collapse
Affiliation(s)
- Patricia Lam
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Macey Bennett
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
7
|
Morena J, Tan ET, Campbell G, Bhatti P, Li Q, Geannette CS, Lin Y, Milani CJ, Sneag DB. MR Neurography and Quantitative Muscle MRI of Parsonage Turner Syndrome Involving the Long Thoracic Nerve. J Magn Reson Imaging 2024; 59:2180-2189. [PMID: 37702553 PMCID: PMC10932860 DOI: 10.1002/jmri.29007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Parsonage-Turner syndrome (PTS) is characterized by severe, acute upper extremity pain and subsequent paresis and most commonly involves the long thoracic nerve (LTN). While MR neurography (MRN) can detect LTN hourglass-like constrictions (HGCs), quantitative muscle MRI (qMRI) can quantify serratus anterior muscle (SAM) neurogenic changes. PURPOSE/HYPOTHESIS 1) To characterize qMRI findings in LTN-involved PTS. 2) To investigate associations between qMRI and clinical assessments of HGCs/electromyography (EMG). STUDY TYPE Prospective. POPULATION 30 PTS subjects (25 M/5 F, mean/range age = 39/15-67 years) with LTN involvement who underwent bilateral chest wall qMRI and unilateral brachial plexus MRN. FIELD STRENGTH/SEQUENCES 3.0 Tesla/multiecho spin-echo T2-mapping, diffusion-weighted echo-planar-imaging, multiecho gradient echo. ASSESSMENT qMRI was performed to obtain T2, muscle diameter fat fraction (FF), and cross-sectional area of the SAM. Clinical reports of MRN and EMG were obtained; from MRN, the number of HGCs; from EMG, SAM measurements of motor unit recruitment levels, fibrillations, and positive sharp waves. qMRI/MRN were performed within 90 days of EMG. EMG was performed on average 185 days from symptom onset (all ≥2 weeks from symptom onset) and 5 days preceding MRI. STATISTICAL TESTS Paired t-tests were used to compare qMRI measures in the affected SAM versus the contralateral, unaffected side (P < 0.05 deemed statistically significant). Kendall's tau was used to determine associations between qMRI against HGCs and EMG. RESULTS Relative to the unaffected SAM, the affected SAM had increased T2 (50.42 ± 6.62 vs. 39.09 ± 4.23 msec) and FF (8.45 ± 9.69 vs. 4.03% ± 1.97%), and decreased muscle diameter (74.26 ± 21.54 vs. 88.73 ± 17.61 μm) and cross-sectional area (9.21 ± 3.75 vs. 16.77 ± 6.40 mm2). There were weak to negligible associations (tau = -0.229 to <0.001, P = 0.054-1.00) between individual qMRI biomarkers and clinical assessments of HGCs and EMG. DATA CONCLUSION qMRI changes in the SAM were observed in subjects with PTS involving the LTN. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jonathan Morena
- Department of Neurology, Hospital for Special Surgery, New York, NY
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
| | - Gracyn Campbell
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
| | - Pravjit Bhatti
- Georgetown University School of Medicine, Washington, DC
| | - Qian Li
- Department of Biostatistics, Hospital for Special Surgery, New York, NY
| | | | - Yenpo Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Carlo J Milani
- Department of Physiatry, Hospital for Special Surgery, New York, NY
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
| |
Collapse
|
8
|
Doody A, Alfano L, Diaz-Manera J, Lowes L, Mozaffar T, Mathews KD, Weihl CC, Wicklund M, Hung M, Statland J, Johnson NE. Defining clinical endpoints in limb girdle muscular dystrophy: a GRASP-LGMD study. BMC Neurol 2024; 24:96. [PMID: 38491364 PMCID: PMC10941356 DOI: 10.1186/s12883-024-03588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Collapse
Affiliation(s)
- Amy Doody
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Linda Lowes
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | - Man Hung
- Roseman University, Salt Lake City, UT, USA
| | | | | |
Collapse
|
9
|
Kroon RHMJM, Kalf JG, de Swart BJM, Heskamp L, de Rooy JWJ, van Engelen BGM, Horlings CGC. Muscle MRI in Patients With Oculopharyngeal Muscular Dystrophy: A Longitudinal Study. Neurology 2024; 102:e207833. [PMID: 38165364 PMCID: PMC10834117 DOI: 10.1212/wnl.0000000000207833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Oculopharyngeal muscular dystrophy (OPMD) is a rare progressive neuromuscular disease. MRI is one of the techniques that is used in neuromuscular disorders to evaluate muscle alterations. The aim of this study was to describe the pattern of fatty infiltration of orofacial and leg muscles using quantitative muscle MRI in a large national cohort and to determine whether MRI can be used as an imaging biomarker of disease progression in OPMD. METHODS Patients with OPMD (18 years or older) were invited from the national neuromuscular database or by their treating physicians and were examined twice with an interval of 20 months, with quantitative MRI of orofacial and leg muscles to assess fatty infiltration which were compared with clinical measures. RESULTS In 43 patients with genetically confirmed OPMD, the muscles that were affected most severely were the tongue (mean fat fraction: 37.0%, SD 16.6), adductor magnus (31.9%; 27.1), and soleus (27.9%; 21.5) muscles. The rectus femoris and tibialis anterior muscles were least severely affected (mean fat fractions: 6.8%; SD 4.7, 7.5%; 5.9). Eleven of 14 significant correlations were found between fat fraction and a clinical task in the corresponding muscles (r = -0.312 to -0.769, CI = -0.874 to -0.005). At follow-up, fat fractions had increased significantly in 17 of the 26 muscles: mean 1.7% in the upper leg muscles (CI = 0.8-2.4), 1.7% (1.0-2.3) in the lower leg muscles, and 1.9% (0.6-3.3) in the orofacial muscles (p < 0.05). The largest increase was seen for the soleus (3.8%, CI = 2.5-5.1). Correlations were found between disease duration and repeat length vs increased fat fraction in 7 leg muscles (r = 0.323 to -0.412, p < 0.05). DISCUSSION According to quantitative muscle MRI, the tongue, adductor magnus and soleus show the largest fat infiltration levels in patients with OPMD. Fat fractions increased in several orofacial and leg muscles over 20 months, with the largest fat fraction increase seen in the soleus. This study supports that this technique is sensitive enough to show worsening in fat fractions of orofacial and leg muscles and therefore a responsive biomarker for future clinical trials.
Collapse
Affiliation(s)
- Rosemarie H M J M Kroon
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Johanna G Kalf
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Bert J M de Swart
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Linda Heskamp
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Jacky W J de Rooy
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Baziel G M van Engelen
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Corinne G C Horlings
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| |
Collapse
|
10
|
Schlaffke L, Rehmann R, Froeling M, Güttsches AK, Vorgerd M, Enax-Krumova E, Forsting J. Quantitative muscle MRI in sporadic inclusion body myositis (sIBM): A prospective cohort study. J Neuromuscul Dis 2024; 11:997-1009. [PMID: 39031378 PMCID: PMC11380292 DOI: 10.3233/jnd-240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Sporadic inclusion body myositis (sIBM) is the predominant idiopathic inflammatory myopathy (IIM) in older people. Limitations of classical clinical assessments have been discussed as possible explanations for failed clinical trials, underlining the need for more sensitive outcome measures. Quantitative muscle MRI (qMRI) is a promising candidate for evaluating and monitoring sIBM. Objective Longitudinal assessment of qMRI in sIBM patients. Methods We evaluated fifteen lower extremity muscles of 12 sIBM patients (5 females, mean age 69.6, BMI 27.8) and 12 healthy age- and gender-matched controls. Seven patients and matched controls underwent a follow-up evaluation after one year. Clinical assessment included testing for muscle strength with Quick Motor Function Measure (QMFM), IBM functional rating scale (IBM-FRS), and gait analysis (6-minute walking distance). 3T-MRI scans of the lower extremities were performed, including a Dixon-based sequence, T2 mapping and Diffusion Tensor Imaging. The qMRI-values fat-fraction (FF), water T2 relaxation time (wT2), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1), and radial diffusivity (RD) were analysed. Results Compared to healthy controls, significant differences for all qMRI parameters averaged over all muscles were found in sIBM using a MANOVA (p < 0.001). In low-fat muscles (FF < 10%), a significant increase of wT2 and FA with an accompanying decrease of MD, λ1, and RD was observed (p≤0.020). The highest correlation with clinical assessments was found for wT2 values in thigh muscles (r≤-0.634). Significant changes of FF (+3.0%), wT2 (+0.6 ms), MD (-0.04 10-3mm2/s), λ1 (-0.05 10-3mm2/s), and RD (-0.03 10-3mm2/s) were observed in the longitudinal evaluation of sIBM patients (p≤0.001). FA showed no significant change (p = 0.242). Conclusion qMRI metrics correlate with clinical findings and can reflect different ongoing pathophysiological mechanisms. While wT2 is an emerging marker of disease activity, the role of diffusion metrics, possibly reflecting changes in fibre size and intracellular deposits, remains subject to further investigations.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Esteller D, Schiava M, Verdú-Díaz J, Villar-Quiles RN, Dibowski B, Venturelli N, Laforet P, Alonso-Pérez J, Olive M, Domínguez-González C, Paradas C, Vélez B, Kostera-Pruszczyk A, Kierdaszuk B, Rodolico C, Claeys K, Pál E, Malfatti E, Souvannanorath S, Alonso-Jiménez A, de Ridder W, De Smet E, Papadimas G, Papadopoulos C, Xirou S, Luo S, Muelas N, Vilchez JJ, Ramos-Fransi A, Monforte M, Tasca G, Udd B, Palmio J, Sri S, Krause S, Schoser B, Fernández-Torrón R, López de Munain A, Pegoraro E, Farrugia ME, Vorgerd M, Manousakis G, Chanson JB, Nadaj-Pakleza A, Cetin H, Badrising U, Warman-Chardon J, Bevilacqua J, Earle N, Campero M, Díaz J, Ikenaga C, Lloyd TE, Nishino I, Nishimori Y, Saito Y, Oya Y, Takahashi Y, Nishikawa A, Sasaki R, Marini-Bettolo C, Guglieri M, Straub V, Stojkovic T, Carlier RY, Díaz-Manera J. Analysis of muscle magnetic resonance imaging of a large cohort of patient with VCP-mediated disease reveals characteristic features useful for diagnosis. J Neurol 2023; 270:5849-5865. [PMID: 37603075 PMCID: PMC10632218 DOI: 10.1007/s00415-023-11862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Rocío-Nur Villar-Quiles
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Dibowski
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Nadia Venturelli
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Pascal Laforet
- Département de Neurologie Hôpital Raymond-Poincaré Garches France Inserm U1179, Garches, France
| | - Jorge Alonso-Pérez
- Servicio de Neurología. Hospital Virgen de la Candelaria, Tenerife, Spain
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Montse Olive
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Paradas
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Beatriz Vélez
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Carmelo Rodolico
- UOC di Neurologia e Malattie Neuromuscolari, AOU Policlinico "G. Martino", Rome, Italy
| | - Kristl Claeys
- Neurologie, Neuromusculair Referentiecentrum, Universitaire Ziekenhuizen, Leuven, Belgium
| | - Endre Pál
- Neurology Department, University of Pécs, Pécs, Hungary
| | - Edoardo Malfatti
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | - Sarah Souvannanorath
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | | | - Willem de Ridder
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - Eline De Smet
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | | | - Sofia Xirou
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | - Sushan Luo
- Neurology Department, Huashan Hospital, Fudan University, Shangai, China
| | - Nuria Muelas
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Alba Ramos-Fransi
- Unitat de Malalties Neuromusculars, Servei de Neurologia, Hospital Germans Tries I Pujol, Badalona, Spain
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Srtuhi Sri
- Sree Chitra Tirunal Insitute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sabine Krause
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Roberto Fernández-Torrón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Mathias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil Ruhr, University Bochum, Bochum, Germany
| | | | - Jean Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hakan Cetin
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | | | | | - Jorge Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Nicholas Earle
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Mario Campero
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Jorge Díaz
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yukako Nishimori
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | | | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Robert Y Carlier
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom.
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Fionda L, Vanoli F, Di Pasquale A, Leonardi L, Morino S, Merlonghi G, Lauletta A, Alfieri G, Costanzo R, Tufano L, Rossini E, Bucci E, Grossi A, Tupler R, Salvetti M, Garibaldi M, Antonini G. Comparison of quantitative muscle ultrasound and whole-body muscle MRI in facioscapulohumeral muscular dystrophy type 1 patients. Neurol Sci 2023; 44:4057-4064. [PMID: 37311950 PMCID: PMC10570177 DOI: 10.1007/s10072-023-06842-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Muscle ultrasound is a fast, non-invasive and cost-effective examination that can identify structural muscular changes by assessing muscle thickness and echointensity (EI) with a quantitative analysis (QMUS). To assess applicability and repeatability of QMUS, we evaluated patients with genetically confirmed facioscapulohumeral muscular dystrophy type 1 (FSHD1), comparing their muscle ultrasound characteristics with healthy controls and with those detected by MRI. We also evaluated relationships between QMUS and demographic and clinical characteristics. MATERIALS AND METHODS Thirteen patients were included in the study. Clinical assessment included MRC sum score, FSHD score and The Comprehensive Clinical Evaluation Form (CCEF). QMUS was performed with a linear transducer scanning bilaterally pectoralis major, deltoid, rectus femoris, tibialis anterior and semimembranosus muscles in patients and healthy subjects. For each muscle, we acquired three images, which were analysed calculating muscle EI by computer-assisted grey-scale analysis. QMUS analysis was compared with semiquantitative 1.5 T muscle MRI scale. RESULTS All muscles in FSHD patients showed a significant increased echogenicity compared to the homologous muscles in healthy subjects. Older subjects and patients with higher FSHD score presented increased muscle EI. Tibialis anterior MRC showed a significant inverse correlation with EI. Higher median EI was found in muscles with more severe MRI fat replacement. CONCLUSIONS QMUS allows quantitative evaluation of muscle echogenicity, displaying a tight correlation with muscular alterations, clinical and MRI data. Although a confirmation on larger sample is needed, our research suggests a possible future application of QMUS in diagnosis and management of muscular disorders.
Collapse
Affiliation(s)
- Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | | | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rocco Costanzo
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Elena Rossini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Andrea Grossi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
13
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Madrid DA, Knapp RA, Lynch D, Clemens P, Weaver AA, Puwanant A. Associations between lower extremity muscle fat fraction and motor performance in myotonic dystrophy type 2: A pilot study. Muscle Nerve 2023; 67:506-514. [PMID: 36938823 PMCID: PMC10898809 DOI: 10.1002/mus.27821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION/AIMS Although muscle structure measures from magnetic resonance imaging (MRI) have been used to assess disease severity in muscular dystrophies, little is known about how these measures are affected in myotonic dystrophy type 2 (DM2). We aim to characterize lower extremity muscle fat fraction (MFF) as a potential biomarker of disease severity, and evaluate its relationship with motor performance in DM2. METHODS 3-Tesla MRIs were obtained from nine patients with DM2 and six controls using a T1W-Dixon protocol. To calculate MFF, muscle volumes were segmented from proximal, middle, and distal regions of the thigh and calf. Associations between MFF and motor performance were calculated using Spearman's correlations (ρ). RESULTS Mean age of DM2 participants was 62 ± 11 y (89% female), and mean symptom duration was 20 ± 12 y. Compared to controls, the DM2 group had significantly higher MFF in the thigh and the calf segments (p-value = .002). The highest MFF at the thigh in DM2 was located in the posterior compartment (39.7 ± 12.9%) and at the calf was the lateral compartment (31.5 ± 8.7%). In the DM2 group, we found a strong correlation between the posterior thigh MFF and the 6-min walk test (ρ = -.90, p-value = .001). The lateral calf MFF was also strongly correlated with the step test (ρ = -0.82, p-value = .006). DISCUSSION Our pilot data suggest a potential correlation between lower extremity MFF and some motor performance tests in DM2. Longitudinal studies with larger sample sizes are required to validate MFF as a marker of disease severity in DM2.
Collapse
Affiliation(s)
- Diana A Madrid
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Rebecca A Knapp
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - Delanie Lynch
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh School of Medicine and Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, 15213, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Araya Puwanant
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
15
|
Zubair AS, Salam S, Dimachkie MM, Machado PM, Roy B. Imaging biomarkers in the idiopathic inflammatory myopathies. Front Neurol 2023; 14:1146015. [PMID: 37181575 PMCID: PMC10166883 DOI: 10.3389/fneur.2023.1146015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of acquired muscle diseases with muscle inflammation, weakness, and other extra-muscular manifestations. IIMs can significantly impact the quality of life, and management of IIMs often requires a multi-disciplinary approach. Imaging biomarkers have become an integral part of the management of IIMs. Magnetic resonance imaging (MRI), muscle ultrasound, electrical impedance myography (EIM), and positron emission tomography (PET) are the most widely used imaging technologies in IIMs. They can help make the diagnosis and assess the burden of muscle damage and treatment response. MRI is the most widely used imaging biomarker of IIMs and can assess a large volume of muscle tissue but is limited by availability and cost. Muscle ultrasound and EIM are easy to administer and can even be performed in the clinical setting, but they need further validation. These technologies may complement muscle strength testing and laboratory studies and provide an objective assessment of muscle health in IIMs. Furthermore, this is a rapidly progressing field, and new advances are going to equip care providers with a better objective assessment of IIMS and eventually improve patient management. This review discusses the current state and future direction of imaging biomarkers in IIMs.
Collapse
Affiliation(s)
- Adeel S. Zubair
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Sharfaraz Salam
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mazen M. Dimachkie
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Pedro M. Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Bhaskar Roy
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Rehmann R, Enax-Krumova E, Meyer-Frießem CH, Schlaffke L. Quantitative muscle MRI displays clinically relevant myostructural abnormalities in long-term ICU-survivors: a case-control study. BMC Med Imaging 2023; 23:38. [PMID: 36934222 PMCID: PMC10024415 DOI: 10.1186/s12880-023-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Long-term data on ICU-survivors reveal persisting sequalae and a reduced quality-of-life even after years. Major complaints are neuromuscular dysfunction due to Intensive care unit acquired weakness (ICUAW). Quantitative MRI (qMRI) protocols can quantify muscle alterations in contrast to standard qualitative MRI-protocols. METHODS Using qMRI, the aim of this study was to analyse persisting myostructural abnormalities in former ICU patients compared to controls and relate them to clinical assessments. The study was conducted as a cohort/case-control study. Nine former ICU-patients and matched controls were recruited (7 males; 54.8y ± 16.9; controls: 54.3y ± 11.1). MRI scans were performed on a 3T-MRI including a mDTI, T2 mapping and a mDixonquant sequence. Water T2 times, fat-fraction and mean values of the eigenvalue (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) were obtained for six thigh and seven calf muscles bilaterally. Clinical assessment included strength testing, electrophysiologic studies and a questionnaire on quality-of-life (QoL). Study groups were compared using a multivariate general linear model. qMRI parameters were correlated to clinical assessments and QoL questionnaire using Pearson´s correlation. RESULTS qMRI parameters were significantly higher in the patients for fat-fraction (p < 0.001), water T2 time (p < 0.001), FA (p = 0.047), MD (p < 0.001) and RD (p < 0.001). Thighs and calves showed a different pattern with significantly higher water T2 times only in the calves. Correlation analysis showed a significant negative correlation of muscle strength (MRC sum score) with FA and T2-time. The results were related to impairment seen in QoL-questionnaires, clinical testing and electrophysiologic studies. CONCLUSION qMRI parameters show chronic next to active muscle degeneration in ICU survivors even years after ICU therapy with ongoing clinical relevance. Therefore, qMRI opens new doors to characterize and monitor muscle changes of patients with ICUAW. Further, better understanding on the underlying mechanisms of the persisting complaints could contribute the development of personalized rehabilitation programs.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany.
| | - E Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - C H Meyer-Frießem
- Department of Anaesthesiology, Intensive Care and Pain Medicine, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
17
|
Abstract
ABSTRACT This review summarizes the existing techniques and methods used to generate synthetic contrasts from magnetic resonance imaging data focusing on musculoskeletal magnetic resonance imaging. To that end, the different approaches were categorized into 3 different methodological groups: mathematical image transformation, physics-based, and data-driven approaches. Each group is characterized, followed by examples and a brief overview of their clinical validation, if present. Finally, we will discuss the advantages, disadvantages, and caveats of synthetic contrasts, focusing on the preservation of image information, validation, and aspects of the clinical workflow.
Collapse
|
18
|
Forsting J, Rohm M, Froeling M, Güttsches AK, Südkamp N, Roos A, Vorgerd M, Schlaffke L, Rehmann R. Quantitative muscle MRI captures early muscle degeneration in calpainopathy. Sci Rep 2022; 12:19676. [PMID: 36385624 PMCID: PMC9669006 DOI: 10.1038/s41598-022-23972-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate differences in qMRI parameters of muscle diffusion tensor imaging (mDTI), fat-fraction (FF) and water T2 time in leg muscles of calpainopathy patients (LGMD R1/D4) compared to healthy controls, to correlate those findings to clinical parameters and to evaluate if qMRI parameters show muscle degeneration in not-yet fatty infiltrated muscles. We evaluated eight thigh and seven calf muscles of 19 calpainopathy patients and 19 healthy matched controls. MRI scans were performed on a 3T MRI including a mDTI, T2 mapping and mDixonquant sequence. Clinical assessment was done with manual muscle testing, patient questionnaires (ACTIVLIM, NSS) as well as gait analysis. Average FF was significantly different in all muscles compared to controls (p < 0.001). In muscles with less than 8% FF a significant increase of FA (p < 0.005) and decrease of RD (p < 0.004) was found in high-risk muscles of calpainopathy patients. Water T2 times were increased within the low- and intermediate-risk muscles (p ≤ 0.045) but not in high-risk muscles (p = 0.062). Clinical assessments correlated significantly with qMRI values: QMFM vs. FF: r = - 0.881, p < 0.001; QMFM versus FA: r = - 0.747, p < 0.001; QMFM versus MD: r = 0.942, p < 0.001. A good correlation of FF and diffusion metrics to clinical assessments was found. Diffusion metrics and T2 values are promising candidates to serve as sensitive early and non-invasive methods to capture early muscle degeneration in non-fat-infiltrated muscles in calpainopathies.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Andreas Roos
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Essen, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
19
|
Kim YJ, Kim HS, Lee JH, Yoon YC, Choi BO. Magnetic resonance imaging-based lower limb muscle evaluation in Charcot-Marie-Tooth disease type 1A patients and its correlation with clinical data. Sci Rep 2022; 12:16622. [PMID: 36198750 PMCID: PMC9534835 DOI: 10.1038/s41598-022-21112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
We aimed to derive comprehensive MRI parameters that reflect intramuscular fat infiltration severity for designated lower extremity levels, based on semiquantitative analyses in Charcot-Marie-Tooth disease type 1A (CMT1A) patients. We reviewed lower extremity MRIs of 116 CMT1A patients. Intramuscular fat infiltration grading using the Mercuri scale was performed for the non-dominant lower extremity at three levels (proximal, mid, and distal) for the thigh and at two levels (proximal and distal) for the lower leg. Based on MRI results, the following parameters were calculated for each level and for entire muscles: fat infiltration proportion (FIP), significant fat infiltration proportion (SigFIP), and severe fat infiltration proportion (SevFIP). The relationships between the MRI parameters and clinical data were evaluated using Spearman’s correlation analysis. FIP, SigFIP, and SevFIP measured for entire muscles significantly correlated with Charcot-Marie-Tooth Neuropathy Score (p < 0.001), functional disability scale (p < 0.001), 10-m walk test time (p = 0.0003, 0.0010, and 0.0011), and disease duration (p < 0.001). Similar correlations were demonstrated for FIP, SigFIP, and SevFIP acquired from the lower leg. Our MRI parameters obtained through semiquantitative analyses of muscles significantly correlated with clinical parameters in CMT1A patients, suggesting their potential applicability as imaging markers for clinical severity.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Radiology, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| |
Collapse
|
20
|
De Wel B, Huysmans L, Peeters R, Goosens V, Ghysels S, Byloos K, Putzeys G, D'Hondt A, De Bleecker JL, Dupont P, Maes F, Claeys KG. Prospective Natural History Study in 24 Adult Patients With LGMDR12 Over 2 Years of Follow-up: Quantitative MRI and Clinical Outcome Measures. Neurology 2022; 99:e638-e649. [PMID: 35577579 DOI: 10.1212/wnl.0000000000200708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Limb-girdle muscular dystrophy autosomal recessive type 12 (LGMDR12) is a rare hereditary muscular dystrophy for which outcome measures are currently lacking. We evaluated quantitative MRI and clinical outcome measures to track disease progression to determine which tests could be useful in future clinical trials to evaluate potential therapies. METHODS We prospectively measured the following outcome measures in all participants at baseline and after 1 and 2 years: 6-minute walk distance (6MWD), 10-meter walk test (10MWT), the Medical Research Council (MRC) sum scores, Biodex isometric dynamometry, serum creatine kinase, and 6-point Dixon MRI of the thighs. RESULTS We included 24 genetically confirmed, adult patients with LGMDR12 and 24 age-matched and sex-matched healthy controls. Patients with intermediate-stage thigh muscle fat replacement at baseline (proton density fat fraction [PDFF] 20%-70%) already showed an increase in PDFF in 8 of the 14 evaluated thigh muscles after 1 year. The standardized response mean demonstrated a high responsiveness to change in PDFF for 6 individual muscles over 2 years in this group. However, in patients with early-stage (<20%) or end-stage (>70%) muscle fat replacement, PDFF did not increase significantly over 2 years of follow-up. Biodex isometric dynamometry showed a significant decrease in muscle strength in all patients in the right and left hamstrings (-6.2 Nm, p < 0.002 and -4.6 Nm, p < 0.009, respectively) and right quadriceps muscles (-9 Nm, p = 0.044) after 1 year of follow-up, whereas the 6MWD, 10MWT, and MRC sum scores were not able to detect a significant decrease in muscle function/strength even after 2 years. There was a moderately strong correlation between total thigh PDFF and clinical outcome measures at baseline. DISCUSSION Thigh muscle PDFF imaging is a sensitive outcome measure to track progressive muscle fat replacement in selected patients with LGMDR12 even after 1 year of follow-up and correlates with clinical outcome measures. Biodex isometric dynamometry can reliably capture the loss of muscle strength over the course of 1 year in patients with LGMDR12 and should be included as an outcome measure in future clinical trials as well.
Collapse
Affiliation(s)
- Bram De Wel
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Lotte Huysmans
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Ronald Peeters
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Veerle Goosens
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Stefan Ghysels
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Kris Byloos
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Guido Putzeys
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Ann D'Hondt
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Jan L De Bleecker
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Patrick Dupont
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Frederik Maes
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Kristl G Claeys
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium.
| |
Collapse
|
21
|
Albayda J, Demonceau G, Carlier PG. Muscle imaging in myositis: MRI, US, and PET. Best Pract Res Clin Rheumatol 2022; 36:101765. [PMID: 35760742 DOI: 10.1016/j.berh.2022.101765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Imaging is an important tool in the evaluation of idiopathic inflammatory myopathies. It plays a role in diagnosis, assessment of disease activity and follow-up, and as a non-invasive biomarker. Among the different modalities, nuclear magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) may have the most clinical utility in myositis. MRI is currently the best modality to evaluate skeletal muscle and provides excellent characterization of muscle edema and fat replacement through the use of T1-weighted and T2-weighted fat suppressed/STIR sequences. Although MRI can be read qualitatively for the presence of abnormalities, a more quantitative approach using Dixon sequences and the generation of water T2 parametric maps would be preferable for follow-up. Newer protocols such as diffusion-weighted imaging, functional imaging measures, and spectroscopy may be of interest to provide further insights into myositis. Despite the advantages of MRI, image acquisition is relatively time-consuming, expensive, and not accessible to all patients. The use of US to evaluate skeletal muscle in myositis is gaining interest, especially in chronic disease, where fat replacement and fibrosis are detected readily by this modality. Although easily deployed at the bedside, it is heavily dependent on operator experience to recognize disease states. Further, systematic characterization of muscle edema by US is still needed. PET provides valuable information on muscle function at a cellular level. Fluorodeoxyglucose (FDG-PET) has been the most common application in myositis to detect pathologic uptake indicative of inflammation. The use of neurodegenerative markers is now also being utilized for inclusion body myositis. These different modalities may prove to be complementary methods for myositis evaluation.
Collapse
Affiliation(s)
- Jemima Albayda
- Division of Rheumatology, Johns Hopkins University, Baltimore, USA.
| | | | - Pierre G Carlier
- Université Paris-Saclay, CEA, DRF, Service Hospitalier Frederic Joliot, Orsay, France
| |
Collapse
|
22
|
Mensch A, Nägel S, Zierz S, Kraya T, Stoevesandt D. Bildgebung der Muskulatur bei Neuromuskulären Erkrankungen
– von der Initialdiagnostik bis zur Verlaufsbeurteilung. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1738-5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie bildgebende Diagnostik hat sich zu einem integralen Element der Betreuung von
PatientInnen mit neuromuskulären Erkrankungen entwickelt. Als
wesentliches Diagnostikum ist hierbei die Magnetresonanztomografie als breit
verfügbares und vergleichsweise standardisiertes Untersuchungsverfahren
etabliert, wobei die Sonografie der Muskulatur bei hinreichend erfahrenem
Untersucher ebenfalls geeignet ist, wertvolle diagnostische Informationen zu
liefern. Das CT hingegen spielt eine untergeordnete Rolle und sollte nur bei
Kontraindikationen für eine MRT in Erwägung gezogen werden.
Zunächst wurde die Bildgebung bei Muskelerkrankungen primär in
der Initialdiagnostik unter vielfältigen Fragestellungen eingesetzt. Das
Aufkommen innovativer Therapiekonzepte bei verschiedenen neuromuskulären
Erkrankungen machen neben einer möglichst frühzeitigen
Diagnosestellung insbesondere auch eine multimodale Verlaufsbeurteilung zur
Evaluation des Therapieansprechens notwendig. Auch hier wird die Bildgebung der
Muskulatur als objektiver Parameter des Therapieerfolges intensiv diskutiert und
in Forschung wie Praxis zunehmend verwendet.
Collapse
Affiliation(s)
- Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg,
Leipzig
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
23
|
Revsbech KL, Rudolf K, Sheikh AM, Khawajazada T, de Stricker Borch J, Dahlqvist JR, Løkken N, Witting N, Vissing J. Axial muscle involvement in patients with Limb girdle muscular dystrophy type R9. Muscle Nerve 2022; 65:405-414. [PMID: 35020210 DOI: 10.1002/mus.27491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION/AIMS Limb girdle muscular dystrophy type R9 (LGMDR9) is characterized by progressive weakness of the shoulder and hip girdles. Involvement of proximal extremity muscles is well-described whereas information about axial muscle involvement is lacking. It is important to recognize the involvement of axial muscles to understand functional challenges for the patients. The aim of this study was to investigate the involvement of axial and leg muscles in patients with LGMDR9. METHODS This observational, cross-sectional study investigated fat replacement of axial and leg muscles in 14 patients with LGMDR9 and 13 matched, healthy controls using quantitative MRI (Dixon technique). We investigated paraspinal muscles at three levels, psoas major at the lumbar level, and leg muscles in the thigh and calf. Trunk strength was assessed with stationary dynamometry and manual muscle tests. RESULTS Patients with LGMDR9 had significantly increased fat replacement of all investigated axial muscles compared with healthy controls (p < 0.05). Trunk extension and flexion strength were significantly reduced in patients. Extension strength correlated negatively with mean fat fraction of paraspinal muscles. Fat fractions of all investigated leg muscles were significantly increased vs. controls, with the posterior thigh muscles being the most severely affected. DISCUSSION Patients with LGMDR9 have severe involvement of their axial muscles and correspondingly have reduced trunk extension and flexion strength. Our findings define the axial muscles as some of the most severely involved muscle groups in LGMDR9, which should be considered in the clinical management of the disorder and monitoring of disease progression.
Collapse
Affiliation(s)
- Karoline Lolk Revsbech
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Aisha Munawar Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Julia Rebecka Dahlqvist
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Prevalence of Pain within Limb Girdle Muscular Dystrophy R9 and Implications for Other Degenerative Diseases. J Clin Med 2021; 10:jcm10235517. [PMID: 34884219 PMCID: PMC8658459 DOI: 10.3390/jcm10235517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022] Open
Abstract
Our primary aim was to establish the prevalence of pain within limb girdle muscular dystrophy R9 (LGMDR9). As part of the Global FKRP Registry, patients are asked to complete the Short Form McGill Pain Questionnaire (SF-MPQ) annually. We used the results of this questionnaire to determine individuals’ maximum pain score and total pain score and examined overall pain intensity and associations between pain intensity and LGMDR9 genotypes, age, and ambulatory status. We also considered the pain descriptors used and pain progression over time. Of the 502 patients, 87% reported current pain and 25% reported severe current pain. We found no associations in pain severity between the different genotypes of LGMDR9. However, we did find statistically significant associations between pain severity and ambulatory status and between our paediatric and adult populations. We found pain descriptors to be more common words that one may associate with non-neural pain, and we found that a significant number of individuals (69%) reported a fluctuating pain pattern over time. We concluded that pain should be considered a significant issue among individuals with LGMDR9 requiring management. Implications regarding assessment of pain for other degenerative diseases are discussed.
Collapse
|
25
|
Garibaldi M, Nicoletti T, Bucci E, Fionda L, Leonardi L, Morino S, Tufano L, Alfieri G, Lauletta A, Merlonghi G, Perna A, Rossi S, Ricci E, Tartaglione T, Petrucci A, Pennisi EM, Salvetti M, Cutter G, Díaz-Manera J, Silvestri G, Antonini G. Muscle MRI in Myotonic Dystrophy type 1 (DM1): refining muscle involvement and implications for clinical trials. Eur J Neurol 2021; 29:843-854. [PMID: 34753219 PMCID: PMC9299773 DOI: 10.1111/ene.15174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only few studies reported muscle imaging data on small cohorts of patients with Myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients, to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness and to identify potential imaging biomarkers for disease activity and severity. METHODS 134 DM1 patients underwent a cross-sectional muscle MRI study. STIR and T1- sequences in lower and upper body were analysed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR positive signal in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless MRI signs of fat replacement. A subset of patients (20%) showed a "marbled" muscle appearance. CONCLUSIONS muscle MRI is a sensitive biomarker of disease severity also for the milder spectrum of disease. STIR hyperintensty seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and "marbled" appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutical targets for forthcoming clinical trials.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Tommaso Nicoletti
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Alessia Perna
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Enzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167, Rome, Italy
| | - Antonio Petrucci
- Neurology Unit, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Hospitals NHS Foundation Trust, NE1 3BZ, Newcastle upon Tyne, United Kingdom.,Neuromuscular Disorders Unit. Neurology Department, Universitat Autònoma de Barcelona. Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, UK.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 08041, Spain
| | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| |
Collapse
|
26
|
Veeger TTJ, van Zwet EW, al Mohamad D, Naarding KJ, van de Velde NM, Hooijmans MT, Webb AG, Niks EH, de Groot JH, Kan HE. Muscle architecture is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies. Muscle Nerve 2021; 64:576-584. [PMID: 34383334 PMCID: PMC9290788 DOI: 10.1002/mus.27399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/AIMS Duchenne and Becker muscular dystrophies (DMD and BMD, respectively) are characterized by fat replacement of different skeletal muscles in a specific temporal order. Given the structural role of dystrophin in skeletal muscle mechanics, muscle architecture could be important in the progressive pathophysiology of muscle degeneration. Therefore, the aim of this study was to assess the role of muscle architecture in the progression of fat replacement in DMD and BMD. METHODS We assessed the association between literature-based leg muscle architectural characteristics and muscle fat fraction from 22 DMD and 24 BMD patients. Dixon-based magnetic resonance imaging estimates of fat fractions at baseline and 12 (only DMD) and 24 months were related to fiber length and physiological cross-sectional area (PCSA) using age-controlled linear mixed modeling. RESULTS DMD and BMD muscles with long fibers and BMD muscles with large PCSAs were associated with increased fat fraction. The effect of fiber length was stronger in muscles with larger PCSA. DISCUSSION Muscle architecture may explain the pathophysiology of muscle degeneration in dystrophinopathies, in which proximal muscles with a larger mass (fiber length × PCSA) are more susceptible, confirming the clinical observation of a temporal proximal-to-distal progression. These results give more insight into the mechanical role in the pathophysiology of muscular dystrophies. Ultimately, this new information can be used to help support the selection of current and the development of future therapies.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik W. van Zwet
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Diaa al Mohamad
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Karin J. Naarding
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik H. Niks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
27
|
Sakr HM, Fahmy N, Elsayed NS, Abdulhady H, El-Sobky TA, Saadawy AM, Beroud C, Udd B. Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscul Disord 2021; 31:814-823. [PMID: 34481707 DOI: 10.1016/j.nmd.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Merosin-deficient or LAMA2-related congenital muscular dystrophy (CMD) belongs to a group of muscle diseases with an overlapping diagnostic spectrum. MRI plays an important role in the diagnosis and disease-tracking of muscle diseases. Whole-body MRI is ideal for describing patterns of muscle involvement. We intended to analyze the pattern of muscle involvement in merosin-deficient CMD children employing whole-body muscle MRI. Ten children with merosin-deficient CMD underwent whole-body muscle MRI. Eight of which were genetically-confirmed. We used a control group of other hereditary muscle diseases, which included 13 children (mean age was 13 SD +/- 5.5 years), (8 boys and 5 girls) for comparative analysis. Overall, 37 muscles were graded for fatty infiltration using Mercuri scale modified by Fischer et al. The results showed a fairly consistent pattern of muscle fatty infiltration in index group, which differs from that in control group. There was a statistically significant difference between the two groups in regard to the fatty infiltration of the neck, serratus anterior, intercostal, rotator cuff, deltoid, triceps, forearm, gluteus maximus, gluteus medius, gastrocnemius and soleus muscles. Additionally, the results showed relative sparing of the brachialis, biceps brachii, gracilis, sartorius, semitendinosus and extensor muscles of the ankle in index group, and specific texture abnormalities in other muscles. There is evidence to suggest that whole-body muscle MRI can become a useful contributor to the differential diagnosis of children with merosin deficient CMD. The presence of a fairly characteristic pattern of involvement was demonstrated. MRI findings should be interpreted in view of the clinical and molecular context to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Hossam M Sakr
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagia Fahmy
- Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermine S Elsayed
- Centre of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Abdulhady
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M Saadawy
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
28
|
Guglieri M, Díaz-Manera J, Straub V. TREAT-NMD stakeholder meeting for natural history studies in limb girdle muscular dystrophy 18th June 2019, Amsterdam, The Netherlands. Neuromuscul Disord 2021; 31:899-906. [PMID: 34426054 DOI: 10.1016/j.nmd.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Michela Guglieri
- The John Walton Muscular Dystrophy Research Center, Newcastle University and Newcastle Hospitals NHS Foundation Trust, The International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Center, Newcastle University and Newcastle Hospitals NHS Foundation Trust, The International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, de Barcelona, Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Center, Newcastle University and Newcastle Hospitals NHS Foundation Trust, The International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
29
|
Marty B, Reyngoudt H, Boisserie JM, Le Louër J, C A Araujo E, Fromes Y, Carlier PG. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology 2021; 300:652-660. [PMID: 34254855 DOI: 10.1148/radiol.2021204028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Marty
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Harmen Reyngoudt
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Jean-Marc Boisserie
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Julien Le Louër
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Ericky C A Araujo
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Yves Fromes
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Pierre G Carlier
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| |
Collapse
|
30
|
van de Velde NM, Hooijmans MT, Sardjoe Mishre ASD, Keene KR, Koeks Z, Veeger TTJ, Alleman I, van Zwet EW, Beenakker JWM, Verschuuren JJGM, Kan HE, Niks EH. Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology 2021; 97:e513-e522. [PMID: 34162720 PMCID: PMC8356376 DOI: 10.1212/wnl.0000000000012233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To identify the best quantitative fat–water MRI biomarker for disease progression of leg muscles in Becker muscular dystrophy (BMD) by applying a stepwise approach based on standardized response mean (SRM) over 24 months, correlations with baseline ambulatory tests, and reproducibility. Methods Dixon fat–water imaging was performed at baseline (n = 24) and 24 months (n = 20). Fat fractions (FF) were calculated for 3 center slices and the whole muscles for 19 muscles and 6 muscle groups. Contractile cross-sectional area (cCSA) was obtained from the center slice. Functional assessments included knee extension and flexion force and 3 ambulatory tests (North Star Ambulatory Assessment [NSAA], 10-meter run, 6-minute walking test). MRI measures were selected using SRM (≥0.8) and correlation with all ambulatory tests (ρ ≤ −0.8). Measures were evaluated based on intraclass correlation coefficient (ICC) and SD of the difference. Sample sizes were calculated assuming 50% reduction in disease progression over 24 months in a clinical trial with 1:1 randomization. Results Median whole muscle FF increased between 0.2% and 2.6% without consistent cCSA changes. High SRMs and strong functional correlations were found for 8 FF but no cCSA measures. All measures showed excellent ICC (≥0.999) and similar SD of the interrater difference. Whole thigh 3 center slices FF was the best biomarker (SRM 1.04, correlations ρ ≤ −0.81, ICC 1.00, SD 0.23%, sample size 59) based on low SD and acquisition and analysis time. Conclusion In BMD, median FF of all muscles increased over 24 months. Whole thigh 3 center slices FF reduced the sample size by approximately 40% compared to NSAA.
Collapse
Affiliation(s)
- Nienke M van de Velde
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Melissa T Hooijmans
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Aashley S D Sardjoe Mishre
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Kevin R Keene
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Zaïda Koeks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Thom T J Veeger
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Iris Alleman
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan-Willem M Beenakker
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik H Niks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands.
| |
Collapse
|
31
|
Greve T, Burian E, Zoffl A, Feuerriegel G, Schlaeger S, Dieckmeyer M, Sollmann N, Klupp E, Weidlich D, Inhuber S, Löffler M, Montagnese F, Deschauer M, Schoser B, Bublitz S, Zimmer C, Karampinos DC, Kirschke JS, Baum T. Regional variation of thigh muscle fat infiltration in patients with neuromuscular diseases compared to healthy controls. Quant Imaging Med Surg 2021; 11:2610-2621. [PMID: 34079727 DOI: 10.21037/qims-20-1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Chemical shift encoding-based water-fat magnetic resonance imaging (CSE-MRI) measures a quantitative biomarker: the proton density fat fraction (PDFF). The aim was to assess regional and proximo-distal PDFF variations at the thigh in patients with myotonic dystrophy type 2 (DM2), limb-girdle muscular dystrophy type 2A (LGMD2A), and late-onset Pompe disease (LOPD) as compared to healthy controls. Methods Seven patients (n=2 DM2, n=2 LGMD2A, n=3 LOPD) and 20 controls were recruited. A 3D-spoiled gradient echo sequence was used to scan the thigh musculature. Muscles were manually segmented to generate mean muscle PDFF. Results In all three disease entities, there was an increase in muscle fat replacement compared to healthy controls. However, within each disease group, there were patients with a shorter time since symptom onset that only showed mild PDFF elevation (range, 10% to 20%) compared to controls (P≤0.05), whereas patients with a longer period since symptom onset showed a more severe grade of fat replacement with a range of 50% to 70% (P<0.01). Increased PDFF of around 5% was observed for vastus medialis, semimembranosus and gracilis muscles in advanced compared to early DM2. LGMD2A_1 showed an early disease stage with predominantly mild PDFF elevations over all muscles and levels (10.9%±7.1%) compared to controls. The quadriceps, gracilis and biceps femoris muscles showed the highest difference between LGMD2A_1 with 5 years since symptom onset (average PDFF 11.1%±6.9%) compared to LGMD2A_2 with 32 years since symptom onset (average PDFF 66.3%±6.3%). For LOPD patients, overall PDFF elevations were observed in all major hip flexors and extensors (range, 25.8% to 30.8%) compared to controls (range, 1.7% to 2.3%, P<0.05). Proximal-to-distal PDFF highly varied within and between diseases and within controls. The intra-reader reliability was high (reproducibility coefficient ≤2.19%). Conclusions By quantitatively measuring muscle fat infiltration at the thigh, we identified candidate muscles for disease monitoring due to their gradual PDFF elevation with longer disease duration. Regional variation between proximal, central, and distal muscle PDFF was high and is important to consider when performing longitudinal MRI follow-ups in the clinical setting or in longitudinal studies.
Collapse
Affiliation(s)
- Tobias Greve
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agnes Zoffl
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Feuerriegel
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephanie Inhuber
- Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Maximilian Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Montagnese
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Sarah Bublitz
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
32
|
Leung DG, Bocchieri AE, Ahlawat S, Jacobs MA, Parekh VS, Braverman V, Summerton K, Mansour J, Stinson N, Bibat G, Morris C, Marraffino S, Wagner KR. A phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab in fukutin-related protein limb-girdle muscular dystrophy. Muscle Nerve 2021; 64:172-179. [PMID: 33961310 DOI: 10.1002/mus.27259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS In this study we report the results of a phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab, a myostatin inhibitor, in patients with fukutin-related protein (FKRP)-associated limb-girdle muscular dystrophy. METHODS Nineteen patients were enrolled and assigned to one of three dosing arms (5, 20, or 40 mg/kg every 4 weeks). After 32 weeks of treatment, participants receiving the lowest dose were switched to the highest dose (40 mg/kg) for an additional 32 weeks. An extension study was also conducted. The primary endpoints were safety and tolerability. Secondary endpoints included muscle strength, timed function testing, pulmonary function, lean body mass, pharmacokinetics, and pharmacodynamics. As an exploratory outcome, muscle fat fractions were derived from whole-body magnetic resonance images. RESULTS Serum concentrations of domagrozumab increased in a dose-dependent manner and modest levels of myostatin inhibition were observed in both serum and muscle tissue. The most frequently occurring adverse events were injuries secondary to falls. There were no significant between-group differences in the strength, functional, or imaging outcomes studied. DISCUSSION We conclude that, although domagrozumab was safe in patients in limb-girdle muscular dystrophy type 2I/R9, there was no clear evidence supporting its efficacy in improving muscle strength or function.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alex E Bocchieri
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Jacobs
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vishwa S Parekh
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vladimir Braverman
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Katherine Summerton
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer Mansour
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Nikia Stinson
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Genila Bibat
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Carl Morris
- Solid Biosciences, Cambridge, Massachusetts, USA
| | | | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Sheikh AM, Rudolf K, de Stricker Borch J, Khawajazada T, Witting N, Vissing J. Patients With Becker Muscular Dystrophy Have Severe Paraspinal Muscle Involvement. Front Neurol 2021; 12:613483. [PMID: 34093388 PMCID: PMC8177107 DOI: 10.3389/fneur.2021.613483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/27/2021] [Indexed: 01/26/2023] Open
Abstract
Introduction: Paraspinal muscles are important for gross motor functions. Impairment of these muscles can lead to poor postural control and ambulation difficulty. Little knowledge exists about the involvement of paraspinal muscles in Becker muscular dystrophy. Objective: In this cross-sectional study, we investigated the involvement of paraspinal muscles with quantitative trunk strength measure and quantitative muscle MRI. Methods and Materials: Eighteen patients with Becker muscular dystrophy underwent trunk, hip, and thigh strength assessment using a Biodex dynamometer and an MRI Dixon scan. Fourteen age- and body mass index-matched healthy men were included for comparison. Results: Muscle fat fraction (FF) of the paraspinal muscles (multifidus and erector spinae) was higher in participants with Becker muscular dystrophy vs. healthy controls at all three examined spinal levels (C6, Th12, and L4/L5) (p < 0.05). There was a strong and inverse correlation between paraspinal muscle FF and trunk extension strength (ρ = −0.829, p < 0.001), gluteus maximus FF and hip extension strength (ρ = −0.701, p = 0.005), FF of the knee extensor muscles (quadriceps and sartorius) and knee extension strength (ρ = −0.842, p < 0.001), and FF of the knee flexor muscles (hamstring muscles) and knee flexion strength (ρ = −0.864, p < 0.001). Fat fraction of the paraspinal muscles also correlated with muscle FF of the thigh muscles and lower leg muscles. Conclusion: In conclusion, patients with Becker muscular dystrophy demonstrate severe paraspinal muscular involvement indicated by low back extension strength and high levels of fat replacement, which parallel involvement of lower limb muscles. Assessment of paraspinal muscle strength and fat replacement may serve as a possible biomarker for both the clinical management and further study of the disease.
Collapse
Affiliation(s)
- Aisha M Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Vaeggemose M, Mencagli RA, Hansen JS, Dräger B, Ringgaard S, Vissing J, Andersen H. Function, structure and quality of striated muscles in the lower extremities in patients with late onset Pompe Disease-an MRI study. PeerJ 2021; 9:e10928. [PMID: 33996274 PMCID: PMC8106912 DOI: 10.7717/peerj.10928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Pompe Disease (PD) is a rare inherited metabolic myopathy, caused by lysosomal-α-glucosidase (GAA) deficiency, which leads to glycogen accumulation within the lysosomes, resulting in cellular and tissue damage. Due to the emergence of a disease modifying treatment with recombinant GAA there has been a large increase in studies of late onset Pompe Disease (LOPD) during the last decade. Methods The present study evaluates muscle quality in 10 patients with LOPD receiving treatment with enzyme replacement therapy and in 10 age and gender matched healthy controls applying T1-weighted Dixon MR imaging and isokinetic dynamometry. Muscle quality was determined by muscle strength in relation to muscle size (contractile cross-sectional area, CSA) and to muscle quality (fat fraction). A follow-up evaluation of the patients was performed after 8–12 months. Patient evaluations also included: six-minute walking test (6MWT), forced vital capacity, manual muscle testing and SF-36 questionnaire. Results Fat fraction of knee flexors (0.15 vs 0.07, p < 0.05) and hip muscles (0.11 vs 0.07, p < 0.05) were higher in patients than controls. In patients, contractile CSA correlated with muscle strength (knee flexors: r = 0.86, knee extensors: r = 0.88, hip extensors: r = 0.83, p < 0.05). No correlation was found between fat fraction and muscle strength. The fat fraction of thigh muscles did not correlate with scores from the clinical tests nor did it correlate with the 6MWT. During follow-up, the contractile CSA of the knee extensors increased by 2%. No other statistically significant change was observed. Quantitative MRI reflects muscle function in patients with LOPD, but larger long-term studies are needed to evaluate its utility in detecting changes over time.
Collapse
Affiliation(s)
| | | | | | - Bianca Dräger
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Münster, Germany
| | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
35
|
Güttsches AK, Rehmann R, Schreiner A, Rohm M, Forsting J, Froeling M, Tegenthoff M, Vorgerd M, Schlaffke L. Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J Neuromuscul Dis 2021; 8:669-678. [PMID: 33814461 DOI: 10.3233/jnd-210641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle biopsy is one of the gold standards in the diagnostic workup of muscle disorders. By histopathologic analysis, characteristic features like inflammatory cellular infiltrations, fat and collagen replacement of muscle tissue or structural defects of the myofibers can be detected. In the past years, novel quantitative MRI (qMRI) techniques have been developed to quantify tissue parameters, thus providing a non-invasive diagnostic tool in several myopathies. OBJECTIVE This proof-of-principle study was performed to validate the qMRI-techniques to skeletal muscle biopsy results. METHODS Ten patients who underwent skeletal muscle biopsy for diagnostic purposes were examined by qMRI. Fat fraction, water T2-time and diffusion parameters were measured in the muscle from which the biopsy was taken. The proportion of fat tissue, the severity of degenerative and inflammatory parameters and the amount of type 1- and type 2- muscle fibers were determined in all biopsy samples. The qMRI-data were then correlated to the histopathological findings. RESULTS The amount of fat tissue in skeletal muscle biopsy correlated significantly with the fat fraction derived from the Dixon sequence. The water T2-time, a parameter for tissue edema, correlated with the amount of vacuolar changes of myofibers and endomysial macrophages in the histopathologic analysis. No significant correlations were found for diffusion parameters. CONCLUSION In this proof-of-principle study, qMRI techniques were related to characteristic histopathologic features in neuromuscular disorders. The study provides the basis for further development of qMRI methods in the follow-up of patients with neuromuscular disorders, especially in the context of emerging treatment strategies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Otto LA, Froeling M, van Eijk RP, Asselman F, Wadman R, Cuppen I, Hendrikse J, van der Pol W. Quantification of disease progression in spinal muscular atrophy with muscle MRI-a pilot study. NMR IN BIOMEDICINE 2021; 34:e4473. [PMID: 33480130 PMCID: PMC7988555 DOI: 10.1002/nbm.4473] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
OBJECTIVES Quantitative MRI (qMRI) of muscles is a promising tool to measure disease progression or to assess therapeutic effects in neuromuscular diseases. Longitudinal imaging studies are needed to show sensitivity of qMRI in detecting disease progression in spinal muscular atrophy (SMA). In this pilot study we therefore studied one-year changes in quantitative MR parameters in relation to clinical scores. METHODS We repeated quantitative 3 T MR analysis of thigh muscles and clinical testing one year after baseline in 10 treatment-naïve patients with SMA, 5 with Type 2 (21.6 ± 7.0 years) and 5 with Type 3 (33.4 ± 11.9 years). MR protocol consisted of Dixon, T2 mapping and diffusion tensor imaging (DTI). The temporal relation of parameters was examined with a mixed model. RESULTS We detected a significant increase in fat fraction (baseline, 38.2% SE 0.6; follow-up, 39.5% SE 0.6; +1.3%, p = 0.001) in all muscles. Muscles with moderate to high fat infiltration at baseline show a larger increase over time (+1.6%, p < 0.001). We did not find any changes in DTI parameters except for low fat-infiltration muscles (m. adductor longus and m. biceps femoris (short head)). The T2 of muscles decreased from 28.2 ms to 28.0 ms (p = 0.07). Muscle strength and motor function scores were not significantly different between follow-up and baseline. CONCLUSION Longitudinal imaging data show slow disease progression in skeletal muscle of the thigh of (young-) adult patients with SMA despite stable strength and motor function scores. Quantitative muscle imaging demonstrates potential as a biomarker for disease activity and monitoring of therapy response.
Collapse
Affiliation(s)
- Louise A.M. Otto
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Ruben P.A. van Eijk
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Fay‐Lynn Asselman
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Renske Wadman
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Inge Cuppen
- Department of Neurology and Child Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - W‐Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
37
|
Dieckmeyer M, Inhuber S, Schläger S, Weidlich D, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, Baum T. Association of Thigh Muscle Strength with Texture Features Based on Proton Density Fat Fraction Maps Derived from Chemical Shift Encoding-Based Water-Fat MRI. Diagnostics (Basel) 2021; 11:diagnostics11020302. [PMID: 33668624 PMCID: PMC7918768 DOI: 10.3390/diagnostics11020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Based on conventional and quantitative magnetic resonance imaging (MRI), texture analysis (TA) has shown encouraging results as a biomarker for tissue structure. Chemical shift encoding-based water–fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) of thigh muscles has been associated with musculoskeletal, metabolic, and neuromuscular disorders and was demonstrated to predict muscle strength. The purpose of this study was to investigate PDFF-based TA of thigh muscles as a predictor of thigh muscle strength in comparison to mean PDFF. Methods: 30 healthy subjects (age = 30 ± 6 years; 15 females) underwent CSE-MRI of the lumbar spine at 3T, using a six-echo 3D spoiled gradient echo sequence. Quadriceps (EXT) and ischiocrural (FLEX) muscles were segmented to extract mean PDFF and texture features. Muscle flexion and extension strength were measured with an isokinetic dynamometer. Results: Of the eleven extracted texture features, Variance(global) showed the highest significant correlation with extension strength (p < 0.001, R2adj = 0.712), and Correlation showed the highest significant correlation with flexion strength (p = 0.016, R2adj = 0.658). Multivariate linear regression models identified Variance(global) and sex, but not PDFF, as significant predictors of extension strength (R2adj = 0.709; p < 0.001), while mean PDFF, sex, and BMI, but none of the texture features, were identified as significant predictors of flexion strength (R2adj = 0.674; p < 0.001). Conclusions: Prediction of quadriceps muscle strength can be improved beyond mean PDFF by means of TA, indicating the capability to quantify muscular fat infiltration patterns.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
- Correspondence: ; Tel.: +49-89-4140-4561; Fax: +49-89-4140-4563
| | - Stephanie Inhuber
- Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany;
| | - Sarah Schläger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (D.W.); (D.C.K.)
| | - Muthu R. K. Mookiah
- VAMPIRE Project, Computing (SSEN), University of Dundee, Nethergate, Dundee DD1 4HN, UK;
| | - Karupppasamy Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (D.W.); (D.C.K.)
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (D.W.); (D.C.K.)
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (S.S.); (E.B.); (N.S.); (J.S.K.); (T.B.)
| |
Collapse
|
38
|
Steenkjaer CH, Mencagli RA, Vaeggemose M, Andersen H. Isokinetic strength and degeneration of lower extremity muscles in patients with myotonic dystrophy; an MRI study. Neuromuscul Disord 2021; 31:198-211. [PMID: 33568272 DOI: 10.1016/j.nmd.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023]
Abstract
Our aim was to determine isokinetic strength and degeneration of lower extremity muscles in patients with Myotonic Dystrophy (DM1). In 19 patients with DM1 and 19 matched controls, strength measured by isokinetic dynamometry was expressed as percentage of expected strength (ePct), adjusted for age, height, weight and gender. MRI of the hip, thigh and calf muscles were obtained. Fat fraction (FF), mean contractile cross-sectional area (cCSA) and specific strength (Nm/cm2) were calculated. Patients' ankle plantar flexors, knee flexors and extensors had higher FF (Δ: 0.08 - 0.42) and lower cCSA (Δ: 3.2 -17.1 cm2) compared to controls (p ≤ 0.005). EPct (Δ: 19.5 - 41.6%) and specific strength (Δ: 0.27 - 0.96 Nm/cm2) were lower in the majority of patients muscle groups (p˂0.05). Close correlations were found for patients when relating ePct to; FF for plantar flexors (R2=0.742, p<0.001) and knee extensors (R2=0.732, p<0.001), cCSA for plantar flexors (R2=0.696, p<0.001) and knee extensors (R2=0.633, p<0.001), and specific strength for dorsal flexors (ρ=0.855, p = 0.008). In conclusion, patients had weaker lower extremity muscles with higher FF, lower cCSA and specific strength compared to controls. Muscle degeneration determined by quantitative MRI strongly correlated to strength supporting its feasibility to quantify muscle dysfunction in DM1.
Collapse
Affiliation(s)
- C H Steenkjaer
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - R A Mencagli
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - M Vaeggemose
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - H Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Bähr FS, Gess B, Müller M, Romanzetti S, Gadermayr M, Kuhl C, Nebelung S, Schulz JB, Dohrn MF. Semi-Automatic MRI Muscle Volumetry to Diagnose and Monitor Hereditary and Acquired Polyneuropathies. Brain Sci 2021; 11:brainsci11020202. [PMID: 33562055 PMCID: PMC7914808 DOI: 10.3390/brainsci11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
With emerging treatment approaches, it is crucial to correctly diagnose and monitor hereditary and acquired polyneuropathies. This study aimed to assess the validity and accuracy of magnet resonance imaging (MRI)-based muscle volumetry.Using semi-automatic segmentations of upper- and lower leg muscles based on whole-body MRI and axial T1-weighted turbo spin-echo sequences, we compared and correlated muscle volumes, and clinical and neurophysiological parameters in demyelinating Charcot-Marie-Tooth disease (CMT) (n = 13), chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 27), and other neuropathy (n = 17) patients.The muscle volumes of lower legs correlated with foot dorsiflexion strength (p < 0.0001), CMT Neuropathy Score 2 (p < 0.0001), early gait disorders (p = 0.0486), and in CIDP patients with tibial nerve conduction velocities (p = 0.0092). Lower (p = 0.0218) and upper (p = 0.0342) leg muscles were significantly larger in CIDP compared to CMT patients. At one-year follow-up (n = 15), leg muscle volumes showed no significant decrease.MRI muscle volumetry is a promising method to differentiate and characterize neuropathies in clinical practice.
Collapse
Affiliation(s)
- Friederike S. Bähr
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Burkhard Gess
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Madlaine Müller
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- Department of Neurology, Inselspital Bern, CH-3010 Bern, Switzerland
| | - Sandro Romanzetti
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Michael Gadermayr
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany;
- Salzburg University of Applied Sciences, 5020 Salzburg, Austria
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (C.K.); (S.N.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (C.K.); (S.N.)
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg B. Schulz
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, ForschungszentrumJülich GmbH and RWTH Aachen University, 52425 Jülich, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
40
|
Sheikh AM, Rudolf K, Witting N, Vissing J. Quantitative Muscle MRI as Outcome Measure in Patients With Becker Muscular Dystrophy-A 1-Year Follow-Up Study. Front Neurol 2021; 11:613489. [PMID: 33469442 PMCID: PMC7813752 DOI: 10.3389/fneur.2020.613489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: With the advent of emerging molecular therapies for muscular dystrophies, the need for knowledge about natural history course of such diseases is of utmost importance in the preparation for future trials. However, for Becker muscular dystrophy such knowledge is scarce. Objective: In this 1-year follow-up study, we examined disease progression in Becker muscular dystrophy by monitoring changes in MRI-assessed muscle fat fraction (FF) in axial and lower limb muscles and quantitative muscle strength of axial muscles. Methods and Materials: Sixteen patients with Becker muscular dystrophy were investigated by (1) muscle strength of the trunk using a Biodex dynamometer and (2) Dixon muscle MRI of paraspinal and lower limb muscles. Quantitative MRI data was analyzed in two parts: The first part consisted of all participants (N = 16). The second analysis assessed two separate groups comprising lesser affected participants (N = 5) and more severely affected patients (n = 11). Results: Trunk extension and flexion strength remained stable from baseline to follow-up. MRI did not show any significant increase in muscle FF % from baseline to follow-up in all patients, except for multifidus at the spinal level T12 (p = 0.01). However, when we analyzed the two subgroups, according to disease severity, FF% increased in the lesser severely affected group at L4/L5 erector spinae (p = 0.047), sartorius (p = 0.028), gracilis (p = 0.009), tibialis anterior (p = 0.047), peroneals (p = 0.028), and gastrocnemius medialis (p = 0.009), while the severely affected group only increased significantly at T12 multifidus (p = 0.028) and T12 erector spinae (p = 0.011). No difference in muscle strength was observed in the two subgroups. Conclusion: Our results add to the existing knowledge about the natural rate of disease progression in BMD. As quantitative MRI was able to identify changes where strength assessment was not, MRI could be a strong biomarker for change in BMD. However, our findings show that it is important to stratify patients with BMD according to phenotype for future clinical trials.
Collapse
Affiliation(s)
- Aisha M Sheikh
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Ding J, Cao P, Chang HC, Gao Y, Chan SHS, Vardhanabhuti V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI. Insights Imaging 2020; 11:128. [PMID: 33252711 PMCID: PMC7704819 DOI: 10.1186/s13244-020-00946-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Time-efficient and accurate whole volume thigh muscle segmentation is a major challenge in moving from qualitative assessment of thigh muscle MRI to more quantitative methods. This study developed an automated whole thigh muscle segmentation method using deep learning for reproducible fat fraction quantification on fat-water decomposition MRI. RESULTS This study was performed using a public reference database (Dataset 1, 25 scans) and a local clinical dataset (Dataset 2, 21 scans). A U-net was trained using 23 scans (16 from Dataset 1, seven from Dataset 2) to automatically segment four functional muscle groups: quadriceps femoris, sartorius, gracilis and hamstring. The segmentation accuracy was evaluated on an independent testing set (3 × 3 repeated scans in Dataset 1 and four scans in Dataset 2). The average Dice coefficients between manual and automated segmentation were > 0.85. The average percent difference (absolute) in volume was 7.57%, and the average difference (absolute) in mean fat fraction (meanFF) was 0.17%. The reproducibility in meanFF was calculated using intraclass correlation coefficients (ICCs) for the repeated scans, and automated segmentation produced overall higher ICCs than manual segmentation (0.921 vs. 0.902). A preliminary quantitative analysis was performed using two-sample t test to detect possible differences in meanFF between 14 normal and 14 abnormal (with fat infiltration) thighs in Dataset 2 using automated segmentation, and significantly higher meanFF was detected in abnormal thighs. CONCLUSIONS This automated thigh muscle segmentation exhibits excellent accuracy and higher reproducibility in fat fraction estimation compared to manual segmentation, which can be further used for quantifying fat infiltration in thigh muscles.
Collapse
Affiliation(s)
- Jie Ding
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.,Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Peng Cao
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Hing-Chiu Chang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Yuan Gao
- Division of Neurology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Sophelia Hoi Shan Chan
- Division of Paediatric Neurology, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
42
|
Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases. Eur Radiol 2020; 31:4264-4276. [PMID: 33219846 DOI: 10.1007/s00330-020-07487-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) constitutes a powerful outcome measure in neuromuscular disorders, yet there is a broad diversity of approaches in data acquisition and analysis. Since each neuromuscular disease presents a specific pattern of muscle involvement, the recommended analysis is assumed to be the muscle-by-muscle approach. We, therefore, performed a comparative analysis of different segmentation approaches, including global muscle segmentation, to determine the best strategy for evaluating disease progression. METHODS In 102 patients (21 immune-mediated necrotizing myopathy/IMNM, 21 inclusion body myositis/IBM, 10 GNE myopathy/GNEM, 19 Duchenne muscular dystrophy/DMD, 12 dysferlinopathy/DYSF, 7 limb-girdle muscular dystrophy/LGMD2I, 7 Pompe disease, 5 spinal muscular atrophy/SMA), two MRI scans were obtained at a 1-year interval in thighs and lower legs. Regions of interest (ROIs) were drawn in individual muscles, muscle groups, and the global muscle segment. Standardized response means (SRMs) were determined to assess sensitivity to change in fat fraction (ΔFat%) in individual muscles, muscle groups, weighted combinations of muscles and muscle groups, and in the global muscle segment. RESULTS Global muscle segmentation gave high SRMs for ΔFat% in thigh and lower leg for IMNM, DYSF, LGMD2I, DMD, SMA, and Pompe disease, and only in lower leg for GNEM and thigh for IBM. CONCLUSIONS Global muscle segment Fat% showed to be sensitive to change in most investigated neuromuscular disorders. As compared to individual muscle drawing, it is a faster and an easier approach to assess disease progression. The use of individual muscle ROIs, however, is still of interest for exploring selective muscle involvement. KEY POINTS • MRI-based evaluation of fatty replacement in muscles is used as an outcome measure in the assessment of 1-year disease progression in 8 different neuromuscular diseases. • Different segmentation approaches, including global muscle segmentation, were evaluated for determining 1-year fat fraction changes in lower limb skeletal muscles. • Global muscle segment fat fraction has shown to be sensitive to change in lower leg and thigh in most of the investigated neuromuscular diseases.
Collapse
|
43
|
Lee JH, Yoon YC, Kim HS, Kim JH, Choi BO. Texture analysis using T1-weighted images for muscles in Charcot-Marie-Tooth disease patients and volunteers. Eur Radiol 2020; 31:3508-3517. [PMID: 33125561 DOI: 10.1007/s00330-020-07435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To explore whether texture features using T1-weighted images correlate with fat fraction, and whether they differ between Charcot-Marie-Tooth (CMT) disease patients and volunteers. METHODS The institutional review board approved this retrospective study, and the requirement for informed consent was waived; data of eighteen CMT patients and eighteen healthy volunteers from a previous study was used. Texture features of the muscles including mean, standard deviation (SD), skewness, kurtosis, and entropy of the signal intensity were derived from T1-weighted images. Spearman's correlation analysis was used to assess the relationship between texture features and fat fraction measured by 3D multiple gradient echo Dixon-based sequence. Mann-Whitney U test was used to compare the texture features between CMT patients and volunteers. Intraobserver and interobserver agreements for the texture features were assessed using the intraclass correlation coefficient. RESULTS The SD (ρ = 0.256, p < 0.001) and entropy (ρ = 0.263, p < 0.001) were significantly and positively correlated with fat fraction; skewness (ρ = - 0.110, p = 0.027) and kurtosis (ρ = - 0.149, p = 0.003) were significantly and inversely correlated with fat fraction. The CMT patients showed a significantly higher SD (63.45 vs. 49.26; p < 0.001), skewness (1.06 vs. 0.56; p < 0.001), kurtosis (4.00 vs. 1.81; p < 0.001), and entropy (3.20 vs. 3.02; p < 0.001) than did the volunteers. Intraobserver and interobserver agreements were almost perfect for mean, SD, and entropy. CONCLUSIONS Texture features using T1-weighted images correlated with fat fraction and differed between CMT patients and volunteers. KEY POINTS • Standard deviation and entropy of muscles derived from T1-weighted images were significantly and positively correlated with the muscle fat fraction. • Mean, standard deviation, and entropy were considered highly reliable in muscle analyses. • Texture features may have the potential to diagnose early stage of intramuscular fatty infiltration.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| |
Collapse
|
44
|
Warman-Chardon J, Diaz-Manera J, Tasca G, Straub V. 247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscul Disord 2020; 30:938-947. [PMID: 33004285 DOI: 10.1016/j.nmd.2020.08.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Jodi Warman Chardon, Neurology/Genetics, The Ottawa Hospital/Research Institute, Canada; Children's Hospital of Eastern Ontario/Research Institute, Canada
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology department, Hospital Universitari de la Santa Creu i Sant Pau, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|
45
|
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Ann Neurol 2020; 88:669-681. [PMID: 32495452 DOI: 10.1002/ana.25804] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
There is an unmet need to identify biomarkers sensitive to change in rare, slowly progressive neuromuscular diseases. Quantitative magnetic resonance imaging (MRI) of muscle may offer this opportunity, as it is noninvasive and can be carried out almost independent of patient cooperation and disease severity. Muscle fat content correlates with muscle function in neuromuscular diseases, and changes in fat content precede changes in function, which suggests that muscle MRI is a strong biomarker candidate to predict prognosis and treatment efficacy. In this paper, we review the evidence suggesting that muscle MRI may be an important biomarker for diagnosis and to monitor change in disease severity. ANN NEUROL 2020;88:669-681.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Per Widholm
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
46
|
Otto LA, van der Pol W, Schlaffke L, Wijngaarde CA, Stam M, Wadman RI, Cuppen I, van Eijk RP, Asselman F, Bartels B, van der Woude D, Hendrikse J, Froeling M. Quantitative MRI of skeletal muscle in a cross-sectional cohort of patients with spinal muscular atrophy types 2 and 3. NMR IN BIOMEDICINE 2020; 33:e4357. [PMID: 32681555 PMCID: PMC7507182 DOI: 10.1002/nbm.4357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
The aim of this study was to document upper leg involvement in spinal muscular atrophy (SMA) with quantitative MRI (qMRI) in a cross-sectional cohort of patients of varying type, disease severity and age. Thirty-one patients with SMA types 2 and 3 (aged 29.6 [7.6-73.9] years) and 20 healthy controls (aged 37.9 [17.7-71.6] years) were evaluated in a 3 T MRI with a protocol consisting of DIXON, T2 mapping and diffusion tensor imaging (DTI). qMRI measures were compared with clinical scores of motor function (Hammersmith Functional Motor Scale Expanded [HFMSE]) and muscle strength. Patients exhibited an increased fat fraction and fractional anisotropy (FA), and decreased mean diffusivity (MD) and T2 compared with controls (all P < .001). DTI parameters FA and MD manifest stronger effects than can be accounted for the effect of fatty replacement. Fat fraction, FA and MD show moderate correlation with muscle strength and motor function: FA is negatively associated with HFMSE and Medical Research Council sum score (τ = -0.56 and -0.59; both P < .001) whereas for fat fraction values are τ = -0.50 and -0.58, respectively (both P < .001). This study shows that DTI parameters correlate with muscle strength and motor function. DTI findings indirectly indicate cell atrophy and act as a measure independently of fat fraction. Combined these data suggest the potential of muscle DTI in monitoring disease progression and to study SMA pathogenesis in muscle.
Collapse
Affiliation(s)
- Louise A.M. Otto
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - W‐Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - Lara Schlaffke
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Camiel A. Wijngaarde
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - Marloes Stam
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - Inge Cuppen
- Department of Neurology and Child Neurology, UMC Utrecht Brain CenterUniversity Medical Center Utrecht, Utrecht Universitythe Netherlands
| | - Ruben P.A. van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Fay‐Lynn Asselman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht Universitythe Netherlands
| | - Bart Bartels
- Department of Child Development and Exercise CenterUniversity Medical Center Utrecht, Utrecht Universitythe Netherlands
| | - Danny van der Woude
- Department of Child Development and Exercise CenterUniversity Medical Center Utrecht, Utrecht Universitythe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht Universitythe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht Universitythe Netherlands
| |
Collapse
|
47
|
Heskamp L, Okkersen K, van Nimwegen M, Ploegmakers MJ, Bassez G, Deux JF, van Engelen BG, Heerschap A. Quantitative Muscle MRI Depicts Increased Muscle Mass after a Behavioral Change in Myotonic Dystrophy Type 1. Radiology 2020; 297:132-142. [PMID: 32808888 DOI: 10.1148/radiol.2020192518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Patients with myotonic dystrophy type 1 (DM1) increased their physical activity and exercise capacity following a behavioral intervention. However, it is unknown what is altered in muscles of patients with DM1 as a result of this intervention. The increased exercise capacity suggests that decelerated fat infiltration or increased muscle cross-sectional area (CSA) could be involved. Purpose To assess the effect of this activity-stimulating behavioral intervention on the lower extremity muscles of patients with DM1 with longitudinal quantitative muscle MRI. Materials and Methods In this prospective trial, participants with DM1 were randomized to a behavioral intervention (n = 14) or continued regular care (standard care; n = 13); no age-matched pairing was performed. Participants underwent MRI of the lower extremities at baseline and 10-month follow-up (January 2015 to March 2016). Fat fraction (FF), muscle CSA, and muscle water T2 (T2water) as markers for fat infiltration, muscle mass, and alteration in tissue water distribution (edema), respectively, were assessed with a chemical shift-encoded Dixon sequence and multiecho spin-echo sequence. Longitudinal within-group and between-group changes were assessed with paired-samples t tests and multivariable regression models. Results A total of 27 patients with DM1 (15 men) were evaluated. Patient age was comparable between groups (intervention, 45 years ± 13 [standard deviation]; standard care, 5 years ± 12; P = .96). Muscle CSA increased 5.9 cm2 ± 7.8 in the intervention group during the 10-month follow-up (P = .03) and decreased 3.6 cm2 ± 7.2 in the standard care group (P = .13). After 10 months, the mean difference between the groups was 9.5 cm2 (P = .01). This effect was stronger in muscles with baseline FF below the mean ± standard deviation of unaffected volunteers (-0.4 cm2 ± 0.15; P < .001). FF increased 0.9% ± 1.0 in the intervention group (P = .02) and 1.2% ± 1.2 for standard care (P = .02), with no between-group difference (P = .56). T2water did not change significantly in either group (intervention, P = .08; standard care, P = .88). Conclusion A behavioral intervention targeting physical activity increased lower extremity muscle cross-sectional area in patients with myotonic dystrophy, preferentially in healthy-appearing muscle. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Linda Heskamp
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Kees Okkersen
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Marlies van Nimwegen
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Marieke J Ploegmakers
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Guillaume Bassez
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Jean-Francois Deux
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Baziel G van Engelen
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | - Arend Heerschap
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| | -
- From the Department of Radiology and Nuclear Medicine, Radboud Institute for Molecular Life Sciences (L.H., M.J.P., A.H.), and Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (K.O., M.v.N., B.G.v.E.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Neuromuscular Reference Center, Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital, Paris, France (G.B.); and Department of Radiology, Henri Mondor University Hospital, Paris, France (J.F.D.)
| |
Collapse
|
48
|
Gedlinske AM, Stephan CM, Mockler SRH, Laubscher KM, Laubenthal KS, Crockett CD, Zimmerman MB, Mathews KD. Motor outcome measures in patients with FKRP mutations: A longitudinal follow-up. Neurology 2020; 95:e2131-e2139. [PMID: 32764098 DOI: 10.1212/wnl.0000000000010604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/06/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that we will be able to detect change in motor outcome measures over time in a cohort with mutations in FKRP. METHODS Individuals with documented FKRP mutations were evaluated annually with a battery of established motor outcome measures including limited quantitative myometry and timed function measures. Results were analyzed using random coefficient regression to determine annual change in each measure. Due to the nonlinear progression through the lifespan of the study participants, pediatric (<19 years) and adult (≥19 years) cohorts were analyzed separately. Effect of genotype was evaluated in each cohort. RESULTS Sixty-nine participants (30 pediatric, 44 adult) with at least 2 evaluations were included. There was a small but statistically significant decline in timed motor function measures in both pediatric and adult cohorts. Genotype significantly affected rate of decline in the pediatric but not the adult cohort. Some pediatric patients who are homozygous for the c.826C>A mutation showed improving motor performance in adolescence. Performance on the 10-meter walk/run was highly correlated with other timed function tests. CONCLUSIONS There is a slow annual decline in motor function in adults with FKRP mutations that can be detected with standard motor outcome measures, while the results in the pediatric population were more variable and affected by genotype. Overall, these analyses provide a framework for development of future clinical trials. The dystroglycanopathies natural history study (Clinical Trial Readiness for the Dystroglycanopathies) may be found on clinicaltrials.gov (NCT00313677).
Collapse
Affiliation(s)
- Amber M Gedlinske
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Carrie M Stephan
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Shelley R H Mockler
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Katie M Laubscher
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Karla S Laubenthal
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Cameron D Crockett
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - M Bridget Zimmerman
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO
| | - Katherine D Mathews
- From the Department of Pediatrics (A.M.G., C.M.S., C.D.C., K.D.M.) and Center for Disabilities and Development (S.R.H.M., K.M.L., K.S.L.), University of Iowa Hospitals and Clinics; and Department of Biostatistics (M.B.Z.), University of Iowa College of Public Health, Iowa City. C.D.C. is now affiliated with Washington University, St. Louis, MO.
| |
Collapse
|
49
|
Sarkozy A, Foley AR, Zambon AA, Bönnemann CG, Muntoni F. LAMA2-Related Dystrophies: Clinical Phenotypes, Disease Biomarkers, and Clinical Trial Readiness. Front Mol Neurosci 2020; 13:123. [PMID: 32848593 PMCID: PMC7419697 DOI: 10.3389/fnmol.2020.00123] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the LAMA2 gene affect the production of the α2 subunit of laminin-211 (= merosin) and result in either partial or complete laminin-211 deficiency. Complete merosin deficiency is typically associated with a more severe congenital muscular dystrophy (CMD), clinically manifested by hypotonia and weakness at birth, the development of contractures of large joints, and progressive respiratory involvement. Muscle atrophy and severe weakness typically prevent independent ambulation. Partial merosin deficiency is mostly manifested by later onset limb-girdle weakness and joint contractures so that independent ambulation is typically achieved. Collectively, complete and partial merosin deficiency is referred to as LAMA2-related dystrophies (LAMA2-RDs) and represents one of the most common forms of congenital muscular dystrophies worldwide. LAMA2-RDs are classically characterized by both central and peripheral nervous system involvement with abnormal appearing white matter (WM) on brain MRI and dystrophic appearing muscle on muscle biopsy as well as creatine kinase (CK) levels commonly elevated to >1,000 IU/L. Next-generation sequencing (NGS) has greatly improved diagnostic abilities for LAMA2-RD, and the majority of patients with merosin deficiency carry recessive pathogenic variants in the LAMA2 gene. The existence of multiple animal models for LAMA2-RDs has helped to advance our understanding of laminin-211 and has been instrumental in preclinical research progress and translation to clinical trials. The first clinical trial for the LAMA2-RDs was a phase 1 pharmacokinetic and safety study of the anti-apoptotic compound omigapil, based on preclinical studies performed in the dy W/dy W and dy 2J/dy 2J mouse models. This phase 1 study enabled the collection of pulmonary and motor outcome measures and also provided the opportunity for investigating exploratory outcome measures including muscle ultrasound, muscle MRI and serum, and urine biomarker collection. Natural history studies, including a five-year prospective natural history and comparative outcome measures study in patients with LAMA2-RD, have helped to better delineate the natural history and identify viable outcome measures. Plans for further clinical trials for LAMA2-RDs are presently in progress, highlighting the necessity of identifying adequate, disease-relevant biomarkers, capable of reflecting potential therapeutic changes, in addition to refining the clinical outcome measures and time-to-event trajectory analysis of affected patients.
Collapse
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alberto A Zambon
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
50
|
Nuñez‐Peralta C, Alonso‐Pérez J, Llauger J, Segovia S, Montesinos P, Belmonte I, Pedrosa I, Montiel E, Alonso‐Jiménez A, Sánchez‐González J, Martínez‐Noguera A, Illa I, Díaz‐Manera J. Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles. J Cachexia Sarcopenia Muscle 2020; 11:1032-1046. [PMID: 32129012 PMCID: PMC7432562 DOI: 10.1002/jcsm.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Late-onset Pompe disease (LOPD) is a genetic disorder characterized by progressive degeneration of the skeletal muscles produced by a deficiency of the enzyme acid alpha-glucosidase. Enzymatic replacement therapy with recombinant human alpha-glucosidase seems to reduce the progression of the disease; although at the moment, it is not completely clear to what extent. Quantitative muscle magnetic resonance imaging (qMRI) is a good biomarker for the follow-up of fat replacement in neuromuscular disorders. The aim of this study was to describe the changes observed in fat replacement in skeletal muscles using qMRI in a cohort of LOPD patients followed prospectively. METHODS A total of 36 LOPD patients were seen once every year for 4 years. qMRI, several muscle function tests, spirometry, activities of daily living scales, and quality-of-life scales were performed on each visit. Muscle MRI consisted of two-point Dixon studies of the trunk and thigh muscles. Computer analysis of the images provided the percentage of muscle degenerated and replaced by fat in every muscle (known as fat fraction). Longitudinal analysis of the measures was performed using linear mixed models applying the Greenhouse-Geisser test. RESULTS We detected a statistically significant and continuous increase in mean thigh fat fraction both in treated (+5.8% in 3 years) and in pre-symptomatic patients (+2.6% in 3years) (Greenhouse-Geisser p < 0.05). As an average, fat fraction increased by 1.9% per year in treated patients, compared with 0.8% in pre-symptomatic patients. Fat fraction significantly increased in every muscle of the thighs. We observed a significant correlation between changes observed in fat fraction in qMRI and changes observed in the results of the muscle function tests performed. Moreover, we identified that muscle performance and mean thigh fat fraction at baseline visit were independent parameters influencing fat fraction progression over 4 years (analysis of covariance, p < 0.05). CONCLUSIONS Our study identifies that skeletal muscle fat fraction continues to increase in patients with LOPD despite the treatment with enzymatic replacement therapy. These results suggest that the process of muscle degeneration is not stopped by the treatment and could impact muscle function over the years. Hereby, we show that fat fraction along with muscle function tests can be considered a good outcome measures for clinical trials in LOPD patients.
Collapse
Affiliation(s)
- Claudia Nuñez‐Peralta
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Jorge Alonso‐Pérez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
| | - Jaume Llauger
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
| | | | - Izaskun Belmonte
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Irene Pedrosa
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Elena Montiel
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alicia Alonso‐Jiménez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
| | | | - Antonio Martínez‐Noguera
- Radiology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
| | - Jordi Díaz‐Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaSpain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
- John Walton Muscular Dystrophy Research CenterUniversity of NewcastleUK
| |
Collapse
|