1
|
Ammazzalorso A, Tacconelli S, Contursi A, Hofling U, Cerchia C, Di Berardino S, De Michele A, Amoroso R, Lavecchia A, Patrignani P. A sulfonimide derivative of bezafibrate as a dual inhibitor of cyclooxygenase-2 and PPARα. Front Pharmacol 2024; 15:1488722. [PMID: 39660001 PMCID: PMC11628281 DOI: 10.3389/fphar.2024.1488722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Background PPARα and cyclooxygenase (COX)-2 are overexpressed in certain types of cancer. Thus, developing a dual inhibitor that targets both could be more effective as an anticancer agent than single inhibitors. We have previously shown that an analog of the bezafibrate named AA520 is a PPARα antagonist. Herein, we report the identification of AA520 as a potent COX-2 inhibitor using in silico approaches. In addition, we performed a thorough pharmacological characterization of AA520 towards COX-1 and COX-2 in different in vitro models. Methods AA520 was characterized for inhibiting platelet COX-1 and monocyte COX-2 activity in human whole blood (HWB) and for effects on lipidomics of eicosanoids using LC-MS/MS. The kinetics of the interaction of AA520 with COX-2 was assessed in the human colon cancer cell line, HCA-7, expressing only COX-2, by testing the COX-2 activity after extensive washing of the cells. The impact of AA520 on cancer cell viability, metabolic activity, and cytotoxicity was tested using the MTT reagent. Results In HWB, AA520 inhibited in a concentration-dependent fashion LPS-stimulated leukocyte prostaglandin (PG) E2 generation with an IC50 of 0.10 (95% CI: 0.05-0.263) μM while platelet COX-1 was not affected up to 300 μM. AA520 did not affect LPS-induced monocyte COX-2 expression, and other eicosanoids generated by enzymatic and nonenzymatic pathways. AA520 inhibited COX-2-dependent PGE2 generation in the colon cancer cell line HCA7. Comparison of the inhibition of COX-2 and its reversibility by AA520, indomethacin (a time-dependent inhibitor), acetylsalicylic acid (ASA) (an irreversible inhibitor), and ibuprofen (a reversible inhibitor) showed that the compound is acting by forming a tightly bound COX-2 interaction. This was confirmed by docking and molecular dynamics studies. Moreover, AA520 (1 μM) significantly reduced MTT in HCA7 cells. Conclusion We have identified a highly selective COX-2 inhibitor with a unique scaffold. This inhibitor retains PPARα antagonism at the same concentration range. It has the potential to be effective in treating certain types of cancer, such as hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC), where COX-2 and PPARα are overexpressed.
Collapse
Affiliation(s)
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Ulrika Hofling
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Carmen Cerchia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Sara Di Berardino
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Alessandra De Michele
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, “G. d’Annunzio” University, Chieti, Italy
| | - Antonio Lavecchia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
2
|
Lee SY, Shin MJ, Choi SM, Kim DK, Choi MG, Kim JS, Suh DS, Kim JH, Kim SJ. Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells. Int J Mol Sci 2024; 25:11760. [PMID: 39519311 PMCID: PMC11546303 DOI: 10.3390/ijms252111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), including PPAR-α, PPAR-β/δ, and PPAR-γ, are involved in various cellular responses, including metabolism and cell proliferation. Increasing evidence suggests that PPARs are closely associated with tumorigenesis and metastasis. However, the exact role of PPARs in energy metabolism and cancer stem cell (CSC) proliferation remains unclear. This study investigated the role of PPARs in energy metabolism and tumorigenesis in ovarian CSCs. The expression of PPARs and fatty acid consumption as an energy source increased in spheroids derived from A2780 ovarian cancer cells (A2780-SP) compared with their parental cells. GW6471, a PPARα inhibitor, induced apoptosis in A2780-SP. PPARα silencing mediated by small hairpin RNA reduced A2780-SP cell proliferation. Treatment with GW6471 significantly inhibited the respiratory oxygen consumption of A2780-SP cells, with reduced dependency on fatty acids, glucose, and glutamine. In a xenograft tumor transplantation mouse model, intraperitoneal injection of GW6471 inhibited in vivo tumor growth of A2780-SP cells. These results suggest that PPARα plays a vital role in regulating the proliferation and energy metabolism of CSCs by altering mitochondrial activity and that it offers a promising therapeutic target to eradicate CSCs.
Collapse
Affiliation(s)
- Seo Yul Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Seong Min Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Dae Kyoung Kim
- HiCellTech Inc., Yangsan 50612, Gyeongsangnam-do, Republic of Korea;
| | - Mee Gyeon Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Jun Se Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea;
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Seong Jang Kim
- Department of Nuclear Medicine, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
3
|
Moreno-Rodríguez N, Laghezza A, Cerchia C, Sokolova DV, Spirina TS, De Filippis B, Romanelli V, Recio R, Fernández I, Loiodice F, Pokrovsky VS, Ammazzalorso A, Lavecchia A. Synthesis and in vitro cytotoxicity of benzoxazole-based PPARα/γ antagonists in colorectal cancer cell lines. Arch Pharm (Weinheim) 2024; 357:e2400086. [PMID: 38807029 DOI: 10.1002/ardp.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.
Collapse
Affiliation(s)
- Nazaret Moreno-Rodríguez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Laghezza
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Bari, Italy
| | - Carmen Cerchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Darina V Sokolova
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | - Tatiana S Spirina
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Virgilio Romanelli
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Bari, Italy
| | - Vadim S Pokrovsky
- Research, Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, Moscow, Russia
- Department of Biochemistry, Patrice Lumumba Peoples' Friendship University, Moscow, Russia
| | | | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
4
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zengin Kurt B, Öztürk Civelek D, Çakmak EB, Kolcuoğlu Y, Şenol H, Sağlık Özkan BN, Dag A, Benkli K. Synthesis of Sorafenib-Ruthenium Complexes, Investigation of Biological Activities and Applications in Drug Delivery Systems as an Anticancer Agent. J Med Chem 2024; 67:4463-4482. [PMID: 38471014 PMCID: PMC10983010 DOI: 10.1021/acs.jmedchem.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Sorafenib, a multiple kinase inhibitor, is widely used as a first-line treatment for hepatocellular carcinoma. However, there is a need for more effective alternatives when sorafenib proves insufficient. In this study, we aimed to design a structure that surpasses sorafenib's efficacy, leading us to synthesize sorafenib-ruthenium complexes for the first time and investigate their properties. Our results indicate that the sorafenib-ruthenium complexes exhibit superior epidermal growth factor receptor (EGFR) inhibition compared to sorafenib alone. Interestingly, among these complexes, Ru3S demonstrated high activity against various cancer cell lines including sorafenib-resistant HepG2 cells while exhibiting significantly lower cytotoxicity than sorafenib in healthy cell lines. Further evaluation of cell cycle, cell apoptosis, and antiangiogenic effects, molecular docking, and molecular dynamics studies revealed that Ru3S holds great potential as a drug candidate. Additionally, when free Ru3S was encapsulated into polymeric micelles M1, enhanced cytotoxicity on HepG2 cells was observed. Collectively, these findings position Ru3S as a promising candidate for EGFR inhibition and warrant further exploration for drug development purposes.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty
of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | | | - Yakup Kolcuoğlu
- Faculty
of Science, Department of Chemistry, Karadeniz
Technical University, 61080 Trabzon, Türkiye
| | - Halil Şenol
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | | | - Aydan Dag
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Kadriye Benkli
- Badakbas
Pharmacy, Altintepe str.
Koknarli 6/C, Maltepe, 34840 Istanbul, Türkiye
| |
Collapse
|
6
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Winquist A, Hodge JM, Diver WR, Rodriguez JL, Troeschel AN, Daniel J, Teras LR. Case-Cohort Study of the Association between PFAS and Selected Cancers among Participants in the American Cancer Society's Cancer Prevention Study II LifeLink Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127007. [PMID: 38088576 PMCID: PMC10718084 DOI: 10.1289/ehp13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Previous epidemiological studies found associations between exposure to per- and polyfluoroalkyl substances (PFAS) and some cancer types. Many studies considered highly exposed populations, so relevance to less-exposed populations can be uncertain. Additionally, many studies considered only cancer site, not histology. OBJECTIVES We conducted a case-cohort study within the American Cancer Society's prospective Cancer Prevention Study II (CPS-II) LifeLink cohort to examine associations between PFAS exposure and risk of selected cancers, considering histologic subtypes. METHODS Serum specimens were collected from cohort participants during the period 1998-2001. This study included a subcohort (500 men, 499 women) randomly selected from participants without prior cancer diagnoses at serum collection, and all participants with incident (after serum collection) first cancers of the breast (females only, n = 786 ), bladder (n = 401 ), kidney (n = 158 ), pancreas (n = 172 ), prostate (males only, n = 1,610 ) or hematologic system (n = 635 ). PFAS concentrations [perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] were measured in stored serum. We assessed associations between PFAS concentrations and incident cancers, by site and histologic subtype, using multivariable Cox proportional hazards models stratified by sex and controlling for age and year at blood draw, education, race/ethnicity, smoking, and alcohol use. RESULTS Serum PFOA concentrations were positively associated with renal cell carcinoma of the kidney among women [hazard ratio (HR) and 95% confidence interval (CI) per PFOA doubling: 1.54 (95% CI: 1.05, 2.26)] but not men. Among men, we observed a positive association between PFHxS concentrations and chronic lymphocytic leukemia/small lymphocytic lymphoma [CLL/SLL, HR and 95% CI per PFHxS doubling: 1.34 (95% CI: 1.02, 1.75)]. We observed some heterogeneity of associations by histologic subtype within sites. DISCUSSION This study supports the previously observed association between PFOA and renal cell carcinoma among women and suggests an association between PFHxS and CLL/SLL among men. Consideration of histologic subtypes might be important in future studies of PFAS-cancer associations. https://doi.org/10.1289/EHP13174.
Collapse
Affiliation(s)
- Andrea Winquist
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Juan L. Rodriguez
- Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa N. Troeschel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johnni Daniel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
9
|
He L, Zhou X, Liu J, Yao Y, Lin J, Chen J, Qiu S, Liu Z, He Y, Yi Y, Zhou X, Zou F. RAE1 promotes nitrosamine-induced malignant transformation of human esophageal epithelial cells through PPARα-mediated lipid metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115513. [PMID: 37774541 DOI: 10.1016/j.ecoenv.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Esophageal cancer (EC) is the sixth cause of cancer-related deaths and still is a significant public health problem globally. Nitrosamines exposure represents a major health concern increasing EC risks. Exploring the mechanisms induced by nitrosamines may contribute to the prevention and early detection of EC. However, the mechanism of nitrosamine carcinogenesis remains unclear. Ribonucleic acid export 1 (RAE1), has an important role in mediating diverse cancer types, but, to date, there has been no study for any functional role of RAE1 in esophageal carcinogenesis. Here, we successfully verified the nitrosamine-induced malignant transformation cell (MNNG-M) by xenograft tumor model, based on which it was found that RAE1 was upregulation in the early stage of nitrosamine-induced esophageal carcinogenesis and EC tissues. RAE1 knockdown led to severe blockade in G2/M phase and significant inhibition of proliferation of MNNG-M cells, whereas RAE1 overexpression had the opposite effect. In addition, peroxisome proliferator-activated receptor-alpha (PPARα), was demonstrated as a downstream target gene of RAE1, and its down-regulation reduced lipid accumulation, resulting in causing cells accumulation in the G2/M phase. Mechanistically, we found that RAE1 regulates the lipid metabolism by maintaining the stability of PPARα mRNA. Taken together, our study reveals that RAE1 promotes malignant transformation of human esophageal epithelial cells (Het-1A) by regulating PPARα-mediated lipid metabolism to affect cell cycle progression, and offers a new explanation of the mechanisms underlying esophageal carcinogenesis.
Collapse
Affiliation(s)
- Ling He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xiangjun Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yina Yao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Junyuan Lin
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Qiu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Zeyu Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yingzheng He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yujie Yi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
10
|
Rhee J, Chang VC, Cheng I, Calafat AM, Botelho JC, Shearer JJ, Sampson JN, Setiawan VW, Wilkens LR, Silverman DT, Purdue MP, Hofmann JN. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma in the Multiethnic Cohort Study. ENVIRONMENT INTERNATIONAL 2023; 180:108197. [PMID: 37741007 PMCID: PMC11093414 DOI: 10.1016/j.envint.2023.108197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent organic pollutants detectable in the serum of most U.S. adults. We previously reported a positive association between serum perfluorooctanoate (PFOA) concentrations and risk of renal cell carcinoma (RCC) within the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, comprising predominantly White individuals enrolled in 1993-2001. To extend our investigations to a larger and more racially and ethnically diverse population, we conducted a nested case-control study of serum PFAS concentrations and RCC within the Multiethnic Cohort Study. We measured pre-diagnostic serum concentrations of nine PFAS among 428 RCC cases and 428 individually matched controls. We estimated odds ratios (ORs) and 95 % confidence intervals (CIs) for risk of RCC in relation to each PFAS using conditional logistic regression, adjusting for RCC risk factors and other PFAS. PFOA was not associated with RCC risk overall [doubling in serum concentration, ORcontinuous = 0.89 (95 %CI = 0.67, 1.18)]. However, we observed suggestive positive associations among White participants [2.12 (0.87, 5.18)] and among participants who had blood drawn before 2002 [1.49 (0.77, 2.87)]. Furthermore, higher perfluorononanoate (PFNA) concentration was associated with increased risk of RCC overall [fourth vs. first quartile, OR = 1.84 (0.97, 3.50), Ptrend = 0.04; ORcontinuous = 1.29 (0.97, 1.71)], with the strongest association observed among African American participants [ORcontinuous = 3.69 (1.33, 10.25)], followed by Native Hawaiian [2.24 (0.70, 7.19)] and White [1.98 (0.92, 4.25)] participants. Most other PFAS were not associated with RCC. While PFOA was not associated with RCC risk overall in this racially and ethnically diverse population, the positive associations observed among White participants and those with sera collected before 2002 are consistent with previous PLCO findings. Our study also provided new evidence of a positive association between PFNA and RCC risk that was strongest in African American participants. These findings highlight the need for additional epidemiologic research investigating PFAS exposures and RCC in large racially and ethnically diverse populations.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph J Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, University of Southern California, CA, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
11
|
Somsuan K, Aluksanasuwan S. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Genomics Inform 2023; 21:e22. [PMID: 37423640 PMCID: PMC10326534 DOI: 10.5808/gi.23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/08/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
12
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Ioannou I, Chatziantoniou A, Drenios C, Christodoulou P, Kourti M, Zaravinos A. Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Kidney Cancers. Int J Mol Sci 2023; 24:ijms24076577. [PMID: 37047552 PMCID: PMC10094846 DOI: 10.3390/ijms24076577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and β-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.
Collapse
Affiliation(s)
- Ioanna Ioannou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Angeliki Chatziantoniou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Constantinos Drenios
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | | | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
14
|
Kado T, Kusakari N, Tamaki T, Murota K, Tsujiuchi T, Fukushima N. Oleic acid stimulates cell proliferation and BRD4-L-MYC-dependent glucose transporter transcription through PPARα activation in ovarian cancer cells. Biochem Biophys Res Commun 2023; 657:24-34. [PMID: 36965420 DOI: 10.1016/j.bbrc.2023.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fatty acids (FAs) play important roles in cell membrane structure maintenance, energy production via β-oxidation, and as extracellular signaling molecules. Prior studies have demonstrated that exposure of cancer cells to FAs affects cell survival, cell proliferation, and cell motility. Oleic acid (OA) has somewhat controversial effects in cancer cells, with both pro- and anti-cancer effects, depending on cell type. Our prior findings suggested that OA enhances cell survival in serum starved HNOA ovarian cancer cells by activating glycolysis, but not β-oxidation. Here, we pharmacologically examined the cellular mechanisms by which OA stimulates glycolysis in HNOA cells. OA induced cell cycle progression, leading to increase in cell number through peroxisome proliferator activated receptor (PPAR) α activation. OA-induced glycolysis was mediated by increased GLUT expression, and increases in GLUT expression were mediated by increased L-MYC expression. Furthermore, L-MYC expression was due to BRD4 activation. These findings suggested involvement of the BRD4-L-MYC-GLUT axis in OA-stimulated glycolysis. These results suggested that OA could activate PPARα to stimulate two pathways: glycolysis and cell cycle progression, and provided insight into the role of OA in ovarian cancer cell growth.
Collapse
Affiliation(s)
- Tsuyoshi Kado
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Naoki Kusakari
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Takeru Tamaki
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Kaeko Murota
- Division of Food and Nutritional Chemistry, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan.
| |
Collapse
|
15
|
Gallorini M, Di Valerio V, Bruno I, Carradori S, Amoroso R, Cataldi A, Ammazzalorso A. Phenylsulfonimide PPARα Antagonists Enhance Nrf2 Activation and Promote Oxidative Stress-Induced Apoptosis/Pyroptosis in MCF7 Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24021316. [PMID: 36674831 PMCID: PMC9864319 DOI: 10.3390/ijms24021316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The NF-E2-related factor 2 transcription factor (Nrf2) orchestrates the basal and stress-inducible activation of a vast array of antioxidant genes. A high amount of reactive oxygen species (ROS) promotes carcinogenesis in cells with defective redox-sensitive signaling factors such as Nrf2. In breast cancer (BC), emerging evidence indicates that increased Nrf2 activity enhances cell metastatic potential. An interconnection between peroxisome proliferator-activated receptors (PPARs) and Nrf2 pathways in cancer has been shown. In this light, newly synthesized PPARα antagonists, namely IB42, IB44, and IB66, were tested in the BC cell line MCF7 in parallel with GW6471 as the reference compound. Our results show that the most promising compound of this phenylsulfonimide series (IB66) is able to decrease MCF7 proliferation by blocking cells at the G2/M checkpoint. The underlying mechanism has been investigated, disclosing a caspase 3/Akt-dependent apoptotic/pyroptotic pathway induced by the increased generation of oxidative stress. Moreover, the involvement of Nrf2 and COX2 in IB66-treated MCF7 cell response has been highlighted. The reported data lay the groundwork for the development of alternative targeted therapy involving the Nrf2/PPARα molecular axis, able to overcome BC cell chemoresistance and cause better clinical outcomes, promoting other forms of programmed cell death, such as pyroptosis.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| | - Valentina Di Valerio
- Department of Medicine and Aging Sciences, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Isabella Bruno
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| |
Collapse
|
16
|
Li SC, Yan LJ, Wei XL, Jia ZK, Yang JJ, Ning XH. A novel risk model of three SUMOylation genes based on RNA expression for potential prognosis and treatment sensitivity prediction in kidney cancer. Front Pharmacol 2023; 14:1038457. [PMID: 37201027 PMCID: PMC10185777 DOI: 10.3389/fphar.2023.1038457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: Kidney cancer is one of the most common and lethal urological malignancies. Discovering a biomarker that can predict prognosis and potential drug treatment sensitivity is necessary for managing patients with kidney cancer. SUMOylation is a type of posttranslational modification that could impact many tumor-related pathways through the mediation of SUMOylation substrates. In addition, enzymes that participate in the process of SUMOylation can also influence tumorigenesis and development. Methods: We analyzed the clinical and molecular data which were obtanied from three databases, The Cancer Genome Atlas (TCGA), the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC), and ArrayExpress. Results: Through analysis of differentially expressed RNA based on the total TCGA-KIRC cohort, it was found that 29 SUMOylation genes were abnormally expressed, of which 17 genes were upregulated and 12 genes were downregulated in kidney cancer tissues. A SUMOylation risk model was built based on the discovery TCGA cohort and then validated successfully in the validation TCGA cohort, total TCGA cohort, CPTAC cohort, and E-TMAB-1980 cohort. Furthermore, the SUMOylation risk score was analyzed as an independent risk factor in all five cohorts, and a nomogram was constructed. Tumor tissues in different SUMOylation risk groups showed different immune statuses and varying sensitivity to the targeted drug treatment. Discussion: In conclusion, we examined the RNA expression status of SUMOylation genes in kidney cancer tissues and developed and validated a prognostic model for predicting kidney cancer outcomes using three databases and five cohorts. Furthermore, the SUMOylation model can serve as a biomarker for selecting appropriate therapeutic drugs for kidney cancer patients based on their RNA expression.
Collapse
Affiliation(s)
- Song-Chao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Jie Yan
- Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - Xu-Liang Wei
- Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - Zhan-Kui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Jian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Hui Ning
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiang-Hui Ning,
| |
Collapse
|
17
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Lauritano A, Cipollone I, Verde R, Kalkan H, Moriello C, Iannotti FA, Di Marzo V, Piscitelli F. The endocannabinoidome mediator N-oleoylglycine is a novel protective agent against 1-methyl-4-phenyl-pyridinium-induced neurotoxicity. Front Aging Neurosci 2022; 14:926634. [PMID: 36313013 PMCID: PMC9614236 DOI: 10.3389/fnagi.2022.926634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson’s disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1β induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.
Collapse
Affiliation(s)
- Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Irene Cipollone
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Québec City, QC, Canada
- *Correspondence: Vincenzo Di Marzo,
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Fabiana Piscitelli,
| |
Collapse
|
19
|
Prew MS, Adhikary U, Choi DW, Portero EP, Paulo JA, Gowda P, Budhraja A, Opferman JT, Gygi SP, Danial NN, Walensky LD. MCL-1 is a master regulator of cancer dependency on fatty acid oxidation. Cell Rep 2022; 41:111445. [PMID: 36198266 PMCID: PMC9933948 DOI: 10.1016/j.celrep.2022.111445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023] Open
Abstract
MCL-1 is an anti-apoptotic BCL-2 family protein essential for survival of diverse cell types and is a major driver of cancer and chemoresistance. The mechanistic basis for the oncogenic supremacy of MCL-1 among its anti-apoptotic homologs is unclear and implicates physiologic roles of MCL-1 beyond apoptotic suppression. Here we find that MCL-1-dependent hematologic cancer cells specifically rely on fatty acid oxidation (FAO) as a fuel source because of metabolic wiring enforced by MCL-1 itself. We demonstrate that FAO regulation by MCL-1 is independent of its anti-apoptotic activity, based on metabolomic, proteomic, and genomic profiling of MCL-1-dependent leukemia cells lacking an intact apoptotic pathway. Genetic deletion of Mcl-1 results in transcriptional downregulation of FAO pathway proteins such that glucose withdrawal triggers cell death despite apoptotic blockade. Our data reveal that MCL-1 is a master regulator of FAO, rendering MCL-1-driven cancer cells uniquely susceptible to treatment with FAO inhibitors.
Collapse
Affiliation(s)
- Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erika P Portero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pruthvi Gowda
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
21
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
22
|
Estrogen Sulfotransferase is Highly Expressed in Vascular Endothelial Cells Overlying Atherosclerotic Plaques. Protein J 2022; 41:179-188. [DOI: 10.1007/s10930-022-10042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
23
|
Cizkova K, Foltynkova T, Hanyk J, Kamencak Z, Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines 2021; 9:biomedicines9091255. [PMID: 34572440 PMCID: PMC8472525 DOI: 10.3390/biomedicines9091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor that plays a role in various processes including differentiation of several cell types. We investigated the role of PPARα in the differentiation of intestinal cells using HT-29 and Caco2 cell lines as a model as well as human normal colon and colorectal carcinoma tissues. We detected a significant increase in PPARα expression in differentiated HT-29 cells as well as in normal surface colon epithelium where differentiated cells are localised. Thus, it seems that PPARα may play a role in differentiation of intestinal cells. Interestingly, we found that both PPARα activators (fenofibrate and WY-14643) as well as its inhibitor (GW6471) regulated proliferation and differentiation of HT-29 cells in vitro in the same way. Both compounds led to a decrease in proliferation accompanied by a significant increase in expression of villin, intestinal alkaline phosphatase (differentiation markers). Moreover, the same trend in villin expression was observed in Caco2 cells. Furthermore, villin expression was independent of subcellular localisation of PPARα. In addition, we found similar levels of PPARα expression in colorectal carcinomas in comparison to adjacent normal epithelium. All these findings support the hypothesis that differentiation of intestinal epithelium is PPARα-independent.
Collapse
Affiliation(s)
| | | | | | | | - Zdenek Tauber
- Correspondence: ; Tel.: +420-585-632-283; Fax: +420-585-632-966
| |
Collapse
|
24
|
Zhan Y, Zhang R, Li C, Xu X, Zhu K, Yang Z, Zheng J, Guo Y. A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma. Cancer Med 2021; 10:6128-6139. [PMID: 34288551 PMCID: PMC8419758 DOI: 10.1002/cam4.4148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have shown that microRNA (miRNA) serves as key regulatory factors in the origin and development of cancers. However, the biological mechanisms of miRNAs in kidney renal clear cell carcinoma (KIRC) are still unknown. It is necessary to construct an effective miRNA‐clinical model to predict the prognosis of KIRC. In this study, 94 differentially expressed miRNAs were found between para‐tumor and tumor tissues based on the Cancer Genome Atlas (TCGA) database. Seven miRNAs (hsa‐miR‐21‐5p, hsa‐miR‐3613‐5p, hsa‐miR‐144‐5p, hsa‐miR‐376a‐5p, hsa‐miR‐5588‐3p, hsa‐miR‐1269a, and hsa‐miR‐137‐3p) were selected as prognostic indicators. According to their cox coefficient, a risk score formula was constructed. Patients with risk scores were divided into high‐ and low‐risk groups based on the median score. Kaplan–Meier curves analysis showed that the low‐risk group had a better survival probability compared to the high‐risk group. The area under the ROC curve (AUC) value of the miRNA model was 0.744. In comparison with clinical features, the miRNA model risk score was considered as an independent prognosis factor in multivariate Cox regression analysis. In addition, we built a nomogram including age, metastasis, and miRNA prognostic model based on the results of multivariate Cox regression analysis. The decision curve analysis (DCA) revealed the clinical net benefit of the prognostic model. Gene set enrichment analysis (GSEA) results suggested that several important pathways may be the potential pathways for KIRC. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the target genes of 7 miRNAs revealed that miRNAs may participate in KIRC progression via many specific pathways. Additionally, the levels of seven prognostic miRNAs showed a significant difference between KIRC tissues and adjacent non‐tumorous tissues. In conclusion, the miRNA‐clinical model provides an effective and accurate way to predict the prognosis of KIRC.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuantong Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhan Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Guo
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Pérez-Martín E, Muñoz-Castañeda R, Moutin MJ, Ávila-Zarza CA, Muñoz-Castañeda JM, Del Pilar C, Alonso JR, Andrieux A, Díaz D, Weruaga E. Oleoylethanolamide Delays the Dysfunction and Death of Purkinje Cells and Ameliorates Behavioral Defects in a Mouse Model of Cerebellar Neurodegeneration. Neurotherapeutics 2021; 18:1748-1767. [PMID: 33829414 PMCID: PMC8609004 DOI: 10.1007/s13311-021-01044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid that has been proposed to prevent neuronal damage and neuroinflammation. In this study, we evaluated the effects of OEA on the disruption of both cerebellar structure and physiology and on the behavior of Purkinje cell degeneration (PCD) mutant mice. These mice exhibit cerebellar degeneration, displaying microtubule alterations that trigger the selective loss of Purkinje cells and consequent behavioral impairments. The effects of different doses (1, 5, and 10 mg/kg, i.p.) and administration schedules (chronic and acute) of OEA were assessed at the behavioral, histological, cellular, and molecular levels to determine the most effective OEA treatment regimen. Our in vivo results demonstrated that OEA treatment prior to the onset of the preneurodegenerative phase prevented morphological alterations in Purkinje neurons (the somata and dendritic arbors) and decreased Purkinje cell death. This effect followed an inverted U-shaped time-response curve, with acute administration on postnatal day 12 (10 mg/kg, i.p.) being the most effective treatment regimen tested. Indeed, PCD mice that received this specific OEA treatment regimen showed improvements in motor, cognitive and social functions, which were impaired in these mice. Moreover, these in vivo neuroprotective effects of OEA were mediated by the PPARα receptor, as pretreatment with the PPARα antagonist GW6471 (2.5 mg/kg, i.p.) abolished them. Finally, our in vitro results suggested that the molecular effect of OEA was related to microtubule stability and structure since OEA administration normalized some alterations in microtubule features in PCD-like cells. These findings provide strong evidence supporting the use of OEA as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Marie-Jo Moutin
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - Carmelo A Ávila-Zarza
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Department of Statistics, University of Salamanca, 37007, Salamanca, Spain
| | - José M Muñoz-Castañeda
- Department of Theoretical, Atomic and Optical Physics, University of Valladolid, 47071, Valladolid, Spain
| | - Carlos Del Pilar
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Universidad de Tarapacá, Arica, Chile
| | - Annie Andrieux
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
26
|
Shearer JJ, Callahan CL, Calafat AM, Huang WY, Jones RR, Sabbisetti VS, Freedman ND, Sampson JN, Silverman DT, Purdue MP, Hofmann JN. Serum Concentrations of Per- and Polyfluoroalkyl Substances and Risk of Renal Cell Carcinoma. J Natl Cancer Inst 2021; 113:580-587. [PMID: 32944748 DOI: 10.1289/isee.2020.virtual.o-sy-1758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are highly persistent chemicals that have been detected in the serum of over 98% of the US population. Studies among highly exposed individuals suggest an association with perfluorooctanoic acid (PFOA) exposure and kidney cancer. It remains unclear whether PFOA or other PFAS are renal carcinogens or if they influence risk of renal cell carcinoma (RCC) at concentrations observed in the general population. METHODS We measured prediagnostic serum concentrations of PFOA and 7 additional PFAS in 324 RCC cases and 324 individually matched controls within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Multivariable conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs) relating serum PFAS concentrations and RCC risk. Individual PFAS were modeled continuously (log2-transformed) and categorically, with adjustment for kidney function and additional potential confounders. All statistical tests were 2-sided. RESULTS We observed a positive association with RCC risk for PFOA (doubling in serum concentration, ORcontinuous = 1.71, 95% CI = 1.23 to 2.37, P = .002) and a greater than twofold increased risk among those in the highest quartile vs the lowest (OR = 2.63, 95% CI = 1.33 to 5.20, Ptrend = .007). The association with PFOA was similar after adjustment for other PFAS (ORcontinuous = 1.68, 95% CI = 1.07 to 2.63, P = .02) and remained apparent in analyses restricted to individuals without evidence of diminished kidney function and in cases diagnosed 8 or more years after phlebotomy. CONCLUSIONS Our findings add substantially to the weight of evidence that PFOA is a renal carcinogen and may have important public health implications for the many individuals exposed to this ubiquitous and highly persistent chemical.
Collapse
Affiliation(s)
- Joseph J Shearer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Catherine L Callahan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rena R Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
27
|
Shearer JJ, Callahan CL, Calafat AM, Huang WY, Jones RR, Sabbisetti VS, Freedman ND, Sampson JN, Silverman DT, Purdue MP, Hofmann JN. Serum Concentrations of Per- and Polyfluoroalkyl Substances and Risk of Renal Cell Carcinoma. J Natl Cancer Inst 2021; 113:580-587. [PMID: 32944748 PMCID: PMC8096365 DOI: 10.1093/jnci/djaa143] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are highly persistent chemicals that have been detected in the serum of over 98% of the US population. Studies among highly exposed individuals suggest an association with perfluorooctanoic acid (PFOA) exposure and kidney cancer. It remains unclear whether PFOA or other PFAS are renal carcinogens or if they influence risk of renal cell carcinoma (RCC) at concentrations observed in the general population. METHODS We measured prediagnostic serum concentrations of PFOA and 7 additional PFAS in 324 RCC cases and 324 individually matched controls within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Multivariable conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs) relating serum PFAS concentrations and RCC risk. Individual PFAS were modeled continuously (log2-transformed) and categorically, with adjustment for kidney function and additional potential confounders. All statistical tests were 2-sided. RESULTS We observed a positive association with RCC risk for PFOA (doubling in serum concentration, ORcontinuous = 1.71, 95% CI = 1.23 to 2.37, P = .002) and a greater than twofold increased risk among those in the highest quartile vs the lowest (OR = 2.63, 95% CI = 1.33 to 5.20, Ptrend = .007). The association with PFOA was similar after adjustment for other PFAS (ORcontinuous = 1.68, 95% CI = 1.07 to 2.63, P = .02) and remained apparent in analyses restricted to individuals without evidence of diminished kidney function and in cases diagnosed 8 or more years after phlebotomy. CONCLUSIONS Our findings add substantially to the weight of evidence that PFOA is a renal carcinogen and may have important public health implications for the many individuals exposed to this ubiquitous and highly persistent chemical.
Collapse
Affiliation(s)
- Joseph J Shearer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Catherine L Callahan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rena R Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
28
|
Abstract
Clear cell renal cell carcinoma (ccRCC) is a major cancer yet has long evaded extensive efforts to target it chemotherapeutically. Recent efforts to characterize its proteome and metabolome in a grade-defined manner has resulted in a global proteometabolomic reprogramming model yielding a number of potential drug targets, many of which are under the control of transcription factor and MYC proto-oncogene, bHLH transcription factor. Furthermore, through the use of conventional technologies such as immunohistochemistry, protein moonlighting, a phenomenon wherein a single protein performs more than one distinct biochemical or biophysical functions, is emerging as a second mode of operation for ccRCC metabolo-proteomic reprogramming. This renders the subcellular localization of the grade-defining biomarkers an additional layer of grade-defining ccRCC molecular signature, although its functional significance in ccRCC etiology is only beginning to emerge.
Collapse
Affiliation(s)
- Tatsuto Ishimaru
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA.
| |
Collapse
|
29
|
Hydroxychloroquine Potentiates Apoptosis Induced by PPAR α Antagonist in 786-O Clear Cell Renal Cell Carcinoma Cells Associated with Inhibiting Autophagy. PPAR Res 2021; 2021:6631605. [PMID: 33959154 PMCID: PMC8075691 DOI: 10.1155/2021/6631605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major pathological pattern of renal cell carcinoma. The ccRCC cells exhibit a certain degree of inherent drug resistance due to some genetic mutations. In recent years, peroxisome proliferator-activated receptor-α (PPARα) antagonists have been reported as a targeted therapeutic drug capable of inducing apoptosis and cell cycle arrest in the ccRCC cell line. Autophagy, which can be induced by stress in eukaryotic cells, plays a complex role in the proliferation, survival, and death of tumor cells. In our study, we found that the expression of PPARα was low in highly differentiated ccRCC tissues and 786-O cell line but high in poorly differentiated ccRCC tissues. The level of PPARα expression in ccRCC tissues is correlated to the grade of differentiation, but not to the sex or age of ccRCC patients. The findings also revealed that the PPARα antagonist GW6471 can lower cell viability and induce autophagy in the 786-O ccRCC cell line. This autophagy can be inhibited by hydroxychloroquine. When treated with a combination of hydroxychloroquine and GW6471, the viability of the 786-O cells was decreased further when compared to the treatment with GW6471 or hydroxychloroquine alone, and apoptosis was promoted. Meanwhile, when human kidney 2 cells were cotreated with hydroxychloroquine and GW6471, cell viability was only slightly influenced. Hence, our finding indicates that the combination of GW6471 and hydroxychloroquine may constitute a novel and potentially effective treatment for ccRCC. Furthermore, this approach is likely to be safe owing to its minimal effects on normal renal tissues.
Collapse
|
30
|
Castelli V, Catanesi M, Alfonsetti M, Laezza C, Lombardi F, Cinque B, Cifone MG, Ippoliti R, Benedetti E, Cimini A, d’Angelo M. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021; 9:biomedicines9020127. [PMID: 33525605 PMCID: PMC7912302 DOI: 10.3390/biomedicines9020127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology G. Salvatore, CNR, 80131 Naples, Italy;
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Correspondence: (A.C.); (M.d.)
| |
Collapse
|
31
|
WY-14643 Regulates CYP1B1 Expression through Peroxisome Proliferator-Activated Receptor α-Mediated Signaling in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20235928. [PMID: 31775380 PMCID: PMC6928855 DOI: 10.3390/ijms20235928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytochrome P450 1B1 (CYP1B1)-mediated biotransformation of endobiotics and xenobiotics plays an important role in the progression of human breast cancer. In this study, we investigated the effects of WY-14643, a peroxisome proliferator-activated receptor α (PPARα) agonist, on CYP1B1 expression and the related mechanism in MCF7 breast cancer cells. We performed quantitative reverse transcription-polymerase chain reaction, transient transfection, and chromatin immunoprecipitation to evaluate the effects of PPARα on peroxisome proliferator response element (PPRE)-mediated transcription. WY-14643 increased the protein and mRNA levels of CYP1B1, as well as promoter activity, in MCF-7 cells. Moreover, WY-14643 plus GW6471, a PPARα antagonist, significantly inhibited the WY-14643-mediated increase in CYP1B1 expression. PPARα knockdown by a small interfering RNA markedly suppressed the induction of CYP1B1 expression by WY-14643, suggesting that WY-14643 induces CYP1B1 expression via a PPARα-dependent mechanism. Bioinformatics analysis identified putative PPREs (−833/−813) within the promoter region of the CYP1B1 gene. Inactivation of these putative PPREs by deletion mutagenesis suppressed the WY-14643-mediated induction of CYP1B1 promoter activation. Furthermore, WY-14643 induced PPARα to assume a form capable of binding specifically to the PPRE-binding site in the CYP1B1 promoter. Our findings suggest that WY-14643 induces the expression of CYP1B1 through activation of PPARα.
Collapse
|
32
|
Luo Y, Chen L, Wang G, Qian G, Liu X, Xiao Y, Wang X, Qian K. PPARα gene is a diagnostic and prognostic biomarker in clear cell renal cell carcinoma by integrated bioinformatics analysis. J Cancer 2019; 10:2319-2331. [PMID: 31258735 PMCID: PMC6584416 DOI: 10.7150/jca.29178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
Genetic alterations in lipid metabolism genes are correlated with progression and poor prognosis of Clear cell renal cell carcinoma (ccRCC). PPARα play a critical role in lipid metabolism. This study aimed to identify that PPARα is a diagnosis and prognostic biomarker in ccRCC by integrated bioinformatics analysis. UALCAN database was used to explore the differential expression status and prognostic value of PPARα gene in various tumor types, qRT-PCR and immunohistochemical staining experiments were utilized for validation. Next, ccRCC data were obtained from TCGA. Correlation between PPARα expression levels and patients' clinicopathological characteristics was assessed, and the clinically diagnosis and prognostic value of PPARα were explored in ccRCC. According to the gene set enrichment analysis (GSEA) analysis, PPARα gene associated biological pathways were identified. PPARα has prognostic significance only in ccRCC tumors. Expression of PPARα was associated with ccRCC stages. PPARα was significantly down-regulated in ccRCC and associated with survival. Gender, tumor dimension, grade and stage showed a significant relevance with PPARα expression. Lower PPARα expression revealed significantly poorer survival and progression compared with higher PPARα expression. Adjusted by other clinical risk factors, PPARα remained an independent prognostic factor. Moreover, Low PPARα expression was a potential diagnostic biomarker of ccRCC. A nomogram was constructed based on PPARα expression and other clinicopathological risk factors, and it performed well in predict patients survival. GSEA analysis showed that PPARα gene associated biological pathways were enriched in mTOR pathway, AKT pathway, IGF1-mTOR pathway and Wnt signaling pathways. In conclusion, PPARα expression was decreased in ccRCC tumors. Lower expression of PPARα is closely correlated with poorer survival. It can be used as a clinically diagnosis and prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, the First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19:397-407. [PMID: 30983433 DOI: 10.1080/14737159.2019.1607729] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is a metabolic disease, of which the incidence rate is increasing worldwide. Renal carcinoma is characterized by mutations in target genes involved in metabolic pathways. Metabolic reprogramming covers different processes such as aerobic glycolysis, fatty acid metabolism, and the utilization of tryptophan, glutamine, and arginine. In the era of the multi-omics approach (with integrated transcriptomics, proteomics, and metabolomics), discovering biomarkers for early diagnosis is gaining renewed importance. Areas covered: In this review, we discuss the pathophysiological mechanisms underlying ccRCC metabolic reprogramming. In addition, we describe the emerging metabolomics-based biomarkers differentially expressed in ccRCC and the rationale for the recently developed drugs specifically targeting the ccRCC metabolome. Expert opinion: A number of metabolic pathways will be explored in future years, and many of these pathways are potential therapeutic targets and may serve as diagnostic and prognostic biomarkers of ccRCC.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Davide Loizzo
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Rossana Franzin
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Stefano Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Matteo Ferro
- b Division of Urology , European Institute of Oncology , Milan , Italy
| | - Francesco Cantiello
- c Department of Urology , Magna Graecia University of Catanzaro , Catanzaro , Italy
| | - Giuseppe Castellano
- d Department of Emergency and Organ Transplantation - Nephrology and Dialysis Unit , University of Bari , Bari , Italy
| | - Carlo Bettocchi
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Pasquale Ditonno
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Michele Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| |
Collapse
|
34
|
Abstract
Kidney cancer, or renal cell carcinoma (RCC), is a disease of increasing incidence that commonly is seen in the general practice of nephrology. Despite this state of affairs, this fascinating and highly morbid disease frequently is under-represented, or even absent, from the curriculum of nephrologists in training and generally is underemphasized in national nephrology meetings, both scientific as well as clinical. Although classic concepts in cancer research in general had led to the concept that cancer is a disease resulting from mutations in the control of growth-regulating pathways, reinforced by the discovery of oncogenes, more contemporary research, particularly in kidney cancer, has uncovered changes in metabolic pathways mediated by those same genes that control tumor energetics and biosynthesis. This adaptation of classic biochemical pathways to the tumor's advantage has been labeled metabolic reprogramming. For example, in the case of kidney cancer there exists a near-universal presence of von Hippel-Lindau tumor suppressor (pVHL) inactivation in the most common form, clear cell RCC (ccRCC), leading to activation of hypoxia-relevant and other metabolic pathways. Studies of this and other pathways in clear cell RCC (ccRCC) have been particularly revealing, leading to the concept that ccRCC can itself be considered a metabolic disease. For this reason, the relatively new method of metabolomics has become a useful technique in the study of ccRCC to tease out those pathways that have been reprogrammed by the tumor to its maximum survival advantage. Furthermore, identification of the nodes of such pathways can lead to novel areas for drug intervention in a disease for which such targets are seriously lacking. Further research and dissemination of these concepts, likely using omics techniques, will lead to clinical trials of therapeutics specifically targeted to tumor metabolism, rather than those generally toxic to all proliferating cells. Such novel agents are highly likely to be more effective than existing drugs and to have far fewer adverse effects. This review provides a general overview of the technique of metabolomics and then discusses how it and other omics techniques have been used to further our understanding of the basic biology of kidney cancer as well as to identify new therapeutic approaches.
Collapse
Affiliation(s)
- Robert H Weiss
- Division of Nephrology, University of California, Davis, CA and Medical Service, VA Northern California Health Care System, Sacramento, CA.
| |
Collapse
|
35
|
Haynes HR, Scott HL, Killick-Cole CL, Shaw G, Brend T, Hares KM, Redondo J, Kemp KC, Ballesteros LS, Herman A, Cordero-Llana O, Singleton WG, Mills F, Batstone T, Bulstrode H, Kauppinen RA, Wurdak H, Uney JB, Short SC, Wilkins A, Kurian KM. shRNA-mediated PPARα knockdown in human glioma stem cells reduces in vitro proliferation and inhibits orthotopic xenograft tumour growth. J Pathol 2018; 247:422-434. [PMID: 30565681 PMCID: PMC6462812 DOI: 10.1002/path.5201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/18/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
The overall survival for patients with primary glioblastoma is very poor. Glioblastoma contains a subpopulation of glioma stem cells (GSC) that are responsible for tumour initiation, treatment resistance and recurrence. PPARα is a transcription factor involved in the control of lipid, carbohydrate and amino acid metabolism. We have recently shown that PPARα gene and protein expression is increased in glioblastoma and has independent clinical prognostic significance in multivariate analyses. In this work, we report that PPARα is overexpressed in GSC compared to foetal neural stem cells. To investigate the role of PPARα in GSC, we knocked down its expression using lentiviral transduction with short hairpin RNA (shRNA). Transduced GSC were tagged with luciferase and stereotactically xenografted into the striatum of NOD-SCID mice. Bioluminescent and magnetic resonance imaging showed that knockdown (KD) of PPARα reduced the tumourigenicity of GSC in vivo. PPARα-expressing control GSC xenografts formed invasive histological phenocopies of human glioblastoma, whereas PPARα KD GSC xenografts failed to establish viable intracranial tumours. PPARα KD GSC showed significantly reduced proliferative capacity and clonogenic potential in vitro with an increase in cellular senescence. In addition, PPARα KD resulted in significant downregulation of the stem cell factors c-Myc, nestin and SOX2. This was accompanied by downregulation of the PPARα-target genes and key regulators of fatty acid oxygenation ACOX1 and CPT1A, with no compensatory increase in glycolytic flux. These data establish the aberrant overexpression of PPARα in GSC and demonstrate that this expression functions as an important regulator of tumourigenesis, linking self-renewal and the malignant phenotype in this aggressive cancer stem cell subpopulation. We conclude that targeting GSC PPARα expression may be a therapeutically beneficial strategy with translational potential as an adjuvant treatment. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Harry R Haynes
- Brain Tumour Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Helen L Scott
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Clare L Killick-Cole
- Functional Neurosurgery Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gary Shaw
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Tim Brend
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Kelly M Hares
- Multiple Sclerosis and Stem Cell Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Juliana Redondo
- Multiple Sclerosis and Stem Cell Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- Multiple Sclerosis and Stem Cell Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lorena S Ballesteros
- Flow Cytometry Facility, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Andrew Herman
- Flow Cytometry Facility, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Oscar Cordero-Llana
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - William G Singleton
- Functional Neurosurgery Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Department of Neurosurgery, North Bristol NHS Trust, Bristol, UK
| | - Francesca Mills
- Department of Clinical Biochemistry, North Bristol NHS Trust, Bristol, UK
| | - Tom Batstone
- Bioinformatics Facility, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Harry Bulstrode
- Department of Clinical Neuroscience and Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Risto A Kauppinen
- Clinical Research and Imaging Centre, University of Bristol, Bristol, UK
| | - Heiko Wurdak
- Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - James B Uney
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
36
|
Liang J, Liu Z, Zou Z, Wang X, Tang Y, Zhou C, Wu K, Zhang F, Lu Y. Knockdown of ribosomal protein S15A inhibits human kidney cancer cell growth in vitro and in vivo. Mol Med Rep 2018; 19:1117-1127. [PMID: 30569143 PMCID: PMC6323228 DOI: 10.3892/mmr.2018.9751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Ribosomal protein S15A (RPS15A), a member of the ribosomal protein gene family, was demonstrated to be closely associated with tumorigenesis in multiple human malignancies. Nevertheless, the role of RPS15A in the progression of renal cell carcinoma (RCC) remains unknown. In the present study, by comparing the publicly available data from RCC tissues and reverse transcription-quantitative polymerase chain reaction results, it was identified that RPS15A was upregulated in RCC tissues and cell lines (P<0.001). Notably, knockdown of RPS15A suppressed 786-O cell proliferation (P<0.001) and promoted its apoptosis/necrotic (P=0.0001) in vitro. Additionally, tumour formation and growth of transfected 786-O cells were observed to be restrained in a mouse model (P<0.05). Subsequent to analysing the microarray data, 747 genes were differentially expressed in the RPS15A-knockdown 786-O cells. The enriched canonical pathways, diseases and functions of differentially expressed genes, and the interactive network of RPS15A in RCC were successfully constructed by ingenuity pathway analysis. Overall, the present results provided a preliminary experimental basis for RPS15A as a novel oncogene and potential therapeutic target in RCC.
Collapse
Affiliation(s)
- Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zijun Zou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiangxiu Wang
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongquan Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
37
|
Zhang N, Li G, Li X, Xu L, Chen M. Circ5379-6, a circular form of tumor suppressor PPARα, participates in the inhibition of hepatocellular carcinoma tumorigenesis and metastasis. Am J Transl Res 2018; 10:3493-3503. [PMID: 30662602 PMCID: PMC6291688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the role of circRNAs encoded by PPARα in regulating the pathogenesis processes of hepatocellular carcinoma (HCC). Comprehensive analysis of 3 circular RNA databases revealed multiple circular RNAs within the PPARα gene. The candidate circRNAs were first structurally validated via specific convergent and divergent primer amplification, RNase R treatment, and Sanger sequencing. According to a further validation of the cell viability assay, cell cycle and apoptosis, and transwell assays, the circRNAs correlated to PPARα were obtained. Their functions in tumorigenesis were further validated via the subcutaneous tumor model and the migration model in nude mice. We showed that the overexpression of circ5379-6 decreased cell proliferation, inhibited cell migration and invasion, and induced cell apoptosis in the HCC cell lines. Consistently, in vivo studies in nude mice confirmed that the overexpression of circ5379-6 effectively inhibited the tumorigenesis and metastasis of HCC. We conclude that circ5379-6 plays a role similar to its linear counterpart PPARα to inhibit HCC tumorigenesis and progression.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Guohua Li
- Department of Gastroenterology, Shunde People’s Hospital, Nanfang Medical UniversityFoshan 528300, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhou 510080, China
| | - Lixia Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| |
Collapse
|
38
|
Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, Williams DP, Kevin Park B, Chadwick AE. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol In Vitro 2018; 53:136-147. [PMID: 30096366 DOI: 10.1016/j.tiv.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
The importance of mitochondrial toxicity in drug-induced liver injury is well established. The bioenergetic phenotype of the HepaRG cell line was defined in order to assess their suitability as a model of mitochondrial hepatotoxicity. Bioenergetic phenotyping categorised the HepaRG cells as less metabolically active when measured beside the more energetic HepG2 cells. However, inhibition of mitochondrial ATP synthase induced an increase in glycolytic activity of both HepaRG and HepG2 cells suggesting an active Crabtree Effect in both cell lines. The suitability of HepaRG cells for the acute metabolic modification assay as a screen for mitotoxicity was confirmed using a panel of compounds, including both positive and negative mitotoxic compounds. Seahorse respirometry studies demonstrated that a statistically significant decrease in spare respiratory capacity is the first indication of mitochondrial dysfunction. Furthermore, based upon comparing changes in respiratory parameters to those of the positive controls, rotenone and carbonyl cyanide m-chlorophenyl hydrazone, compounds were categorised into two mechanistic groups; inhibitors or uncouplers of the electron transport chain. Overall, the findings from this study have demonstrated that HepaRG cells, despite having different resting bioenergetic phenotype to HepG2 cells are a suitable model to detect drug-induced mitochondrial toxicity with similar detection rates to HepG2 cells.
Collapse
Affiliation(s)
- Laleh Kamalian
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Oisin Douglas
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Carol E Jolly
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Jan Snoeys
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium.
| | - Damir Simic
- Mechanistic and Investigative Toxicology, Janssen Research and Development, Spring House, PA, USA.
| | - Mario Monshouwer
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium
| | - Dominic P Williams
- Innovative Medicines and Early Development
- Drug Safety and Metabolism
- Translational Safety, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge, CB4 0FZ, United Kingdom.
| | - B Kevin Park
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| |
Collapse
|
39
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
40
|
Xiao YB, Cai SH, Liu LL, Yang X, Yun JP. Decreased expression of peroxisome proliferator-activated receptor alpha indicates unfavorable outcomes in hepatocellular carcinoma. Cancer Manag Res 2018; 10:1781-1789. [PMID: 29983595 PMCID: PMC6027701 DOI: 10.2147/cmar.s166971] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a close relationship with lipid metabolism. Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the regulation of fatty acid oxidation in the liver. However, the role of PPARα in HCC remains unclear. Methods A total of 804 HCC specimens were collected to construct a tissue microarray and for immunohistochemical analysis. The relationship between PPARα expression and clinical features of HCC patients was analyzed. Kaplan–Meier analysis was conducted to assess the prognostic value of PPARα expression levels. Results The expression of PPARα in HCC was noticeably decreased in HCC tissues. HCC patients with high levels of PPARα expression in cytoplasm had smaller tumors (P=0.027), less vascular invasion (P=0.049), and a higher proportion of complete involucrum (P=0.038). Kaplan–Meier analysis showed that HCC patients with low PPARα expression in the cytoplasm had significantly worse outcomes in terms of overall survival (P<0.001), disease-free survival (P=0.024), and the probability of recurrence (P=0.037). Similarly, overall survival was significantly shorter in HCC patients with negative PPARα expression in the nucleus (P=0.034). Multivariate Cox analyses indicated that tumor size (P=0.001), TNM stage (P<0.001), vascular invasion (P<0.001), and PPARα expression in the cytoplasm (P<0.001) were found to be independent prognostic variables for overall survival. Conclusion Our data revealed that PPARα expression was decreased in HCC samples. High PPARα expression was correlated with longer survival times in HCC patients, and served as an independent factor for better outcomes. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yong-Bo Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Shao-Hang Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| |
Collapse
|
41
|
Aimudula A, Nasier H, Yang Y, Zhang R, Lu P, Hao J, Bao Y. PPARα mediates sunitinib resistance via NF-κB activation in clear cell renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2389-2400. [PMID: 31938351 PMCID: PMC6958248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/24/2018] [Indexed: 06/10/2023]
Abstract
Sunitinib is used as standard treatment for metastatic or unresectable clear cell renal cell carcinoma (ccRCC). However, ccRCC eventually develops resistance to sunitinib in most cases, and the mechanisms underlying such resistance have not been fully determined. Nuclear receptors (NRs) are a class of transcription factors that regulate many cellular functions by controlling gene expression, and they also play important roles in tumor development, proliferation and progression in various types of cancers. In the present study, we aimed to explore the mechanisms underlying sunitinib resistance in RCC and the potential role of NRs in sunitinib resistance. The expression profile of NRs was obtained from the Gene Expression Omnibus (GEO) RNAseq database. A total of 138 patients from GSE65615 were examined in this study. From the GEO metadata, we found that the expressions of three genes, encoding peroxisome proliferator activated receptor alpha (PPARα), androgen receptor (AR) and PPARγ, were significantly increased in sunitinib-treated samples compared with control samples. RT-PCR analysis showed that the PPARα expression at the mRNA level was significantly increased in sunitinib-resistant A498, CaKi-1 and 780-O ccRCC lines compared with their sunitinib-sensitive parental cells. Furthermore, knockdown of PPARα significantly inhibited cell proliferation in all three sunitinib-resistant ccRCC lines, successfully overcoming the resistance to sunitinib. Our results also showed that nuclear factor kappa B (NF-κB) signaling pathway was activated in sunitinib-resistant ccRCC lines, indicating that PPARα and NF-κB inhibition could play a synergistic role to modulate sunitinib resistance and suggesting that PPARα could be used as a potential target to overcome sunitinib resistance via the NF-κB pathway.
Collapse
Affiliation(s)
- Ainiwaer Aimudula
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Huerxidan Nasier
- Department of VIP Internal Medicine, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Ying Yang
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Ruili Zhang
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Pengfei Lu
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Jie Hao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Yongxing Bao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi, Xinjiang, China
| |
Collapse
|
42
|
Shi Y, Tao T, Liu N, Luan W, Qian J, Li R, Hu Q, Wei Y, Zhang J, You Y. PPARα, a predictor of patient survival in glioma, inhibits cell growth through the E2F1/miR-19a feedback loop. Oncotarget 2018; 7:84623-84633. [PMID: 27835866 PMCID: PMC5356686 DOI: 10.18632/oncotarget.13170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/28/2016] [Indexed: 12/04/2022] Open
Abstract
Nuclear receptors such as peroxisome proliferator-activated receptor α (PPARα) are potential therapeutic targets. In this study, we found that PPARα expression was lower in high grade gliomas and PPARα was an independent prognostic factor in GBM patients. PPARα agonism or overexpression inhibited glioma cell proliferation, invasion, and aerobic glycolysis as well as suppressed glioma growth in an orthotopic model. Bioinformatic analysis and luciferase reporter assays showed that miR-19a decreased PPARα expression. E2F1 knockdown up-regulated PPARα and inhibited cell proliferation, invasion, and aerobic glycolysis, but this activity was blocked by miR-19a. Knockdown of E2F1 decreased miR-19a by inhibiting the miR-19a promoter. Moreover, PPARα repressed E2F1 via the p21 pathwayby modulating the transcriptional complexes containing E2F1 and pRB proteins. These results suggest that the E2F1/miR19a/PPARα feedback loop is critical for glioma progression.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - WenKang Luan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, People's Hospital of Xuancheng City, Anhui, China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
44
|
The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8:113502-113515. [PMID: 29371925 PMCID: PMC5768342 DOI: 10.18632/oncotarget.23056] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has a poor prognosis despite novel biological targeted therapies. Tumor aggressiveness and poor survival may correlate with tumor grade at diagnosis and with complex metabolic alterations, also involving glucose and lipid metabolism. However, currently no grade-specific metabolic therapy addresses these alterations. Here we used primary cell cultures from ccRCC of low- and high-grade to investigate the effect on energy state and reduced pyridine nucleotide level, and on viability and proliferation, of specific inhibition of glycolysis with 2-deoxy-D-glucose (2DG), or fatty acid oxidation with Etomoxir. Our primary cultures retained the tissue grade-dependent modulation of lipid and glycogen storage and aerobic glycolysis (Warburg effect). 2DG affected lactate production, energy state and reduced pyridine nucleotide level in high-grade ccRCC cultures, but the energy state only in low-grade. Rather, Etomoxir affected energy state in high-grade and reduced pyridine nucleotide level in low-grade cultures. Energy state and reduced pyridine nucleotide level were evaluated by ATP and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) dye quantification, respectively. 2DG treatment impaired cell proliferation and viability of low-grade ccRCC and normal cortex cultures, whereas Etomoxir showed a cytostatic and cytotoxic effect only in high-grade ccRCC cultures. Our data indicate that in ccRCC the Warburg effect is a grade-dependent feature, and fatty acid oxidation can be activated for different grade-dependent metabolic needs. A possible grade-dependent metabolic therapeutic approach in ccRCC is also highlighted.
Collapse
|
45
|
Abstract
In the age of bioinformatics and with the advent of high-powered computation over the past decade or so the landscape of biomedical research has become radically altered. Whereas a generation ago, investigators would study their "favorite" protein or gene and exhaustively catalog the role of this compound in their disease of interest, the appearance of omics has changed the face of medicine such that much of the cutting edge (and fundable!) medical research now evaluates the biology of the disease nearly in its entirety. Couple this with the realization that kidney cancer is a "metabolic disease" due to its multiple derangements in biochemical pathways [1, 2], and clear cell renal cell carcinoma (ccRCC) becomes ripe for data mining using multiple omics approaches.
Collapse
Affiliation(s)
- Omran Abu Aboud
- Division of Nephrology, University of California Davis, Davis, CA, USA
| | - Robert H. Weiss
- Division of Nephrology, University of California Davis, Davis, CA, USA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
- Medical Service, VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
46
|
Ammazzalorso A, De Lellis L, Florio R, Bruno I, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Perconti S, Verginelli F, Cama A, Amoroso R. Cytotoxic effect of a family of peroxisome proliferator-activated receptor antagonists in colorectal and pancreatic cancer cell lines. Chem Biol Drug Des 2017; 90:1029-1035. [PMID: 28544586 DOI: 10.1111/cbdd.13026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Recent studies report an interesting role of peroxisome proliferator-activated receptor (PPAR) antagonists in different tumor models, being these compounds able to perturb metabolism and viability in cancer cells. In this work, the identification of a novel PPAR antagonist, showing inhibitory activity on PPARα and a weaker antagonism on PPARγ, is described. The activity of this compound and of a series of chemical analogues was investigated in selected tumor cell lines, expressing both PPARα and PPARγ. Data obtained show a dose-dependent cytotoxic effect of the novel PPAR antagonist in colorectal and pancreatic cancer models.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Laura De Lellis
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy.,Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Rosalba Florio
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy.,Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Isabella Bruno
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Barbara De Filippis
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Marialuigia Fantacuzzi
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Letizia Giampietro
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Cristina Maccallini
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | - Silvia Perconti
- Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Fabio Verginelli
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy.,Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Alessandro Cama
- Unità di Patologia Generale, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy.,Aging Research Center (Ce.S.I.), Università "G. d'Annunzio", Chieti, Italy
| | - Rosa Amoroso
- Unità di Chimica Farmaceutica, Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
47
|
Fidoamore A, Cristiano L, Laezza C, Galzio R, Benedetti E, Cinque B, Antonosante A, d'Angelo M, Castelli V, Cifone MG, Ippoliti R, Giordano A, Cimini A. Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment. Oncotarget 2017; 8:108430-108450. [PMID: 29312541 PMCID: PMC5752454 DOI: 10.18632/oncotarget.19086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 06/10/2017] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB), the most-common cancer in the adult brain, despite surgery and radio/ chemotherapy, is to date almost incurable. Many hypoxic tumors, including GB, show metabolic reprogramming to sustain uncontrolled proliferation, hypoxic conditions and angiogenesis. Peroxisome Proliferator-activated Receptors (PPAR), particularly the α isotype, have been involved in the control of energetic metabolism. Herein, we characterized patient-derived GB neurospheres focusing on their energetic metabolism and PPARα expression. Moreover, we used a specific PPARα antagonist and studied its effects on the energetic metabolism and cell proliferation/survival of GB stem cells. The results obtained demonstrate that tumor neurospheres are metabolically reprogrammed up-regulating glucose transporter, glucose uptake and glycogen and lipid storage, mainly under hypoxic culture conditions. Treatment with the PPARα antagonist GW6471 resulted in decreased cell proliferation and neurospheres formation. Therefore, PPARα antagonism arises as a potent new strategy as adjuvant to gold standard therapies for GB for counteracting recurrences and opening the way for pre-clinical trials for this class of compounds. When tumor neurospheres were grown in hypoxic conditions in the presence of different glucose concentrations, the most diluted one (0.25g/L) mimicking the real concentration present in the neurosphere core, PPARα increase/PPARγ decrease, increased proliferation and cholesterol content, decreased glycogen particles and LDs were observed. All these responses were reverted by the 72 h treatment with the PPARα antagonist.
Collapse
Affiliation(s)
- Alessia Fidoamore
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS, CNR, Naples, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| |
Collapse
|
48
|
Florio R, De Lellis L, di Giacomo V, Di Marcantonio MC, Cristiano L, Basile M, Verginelli F, Verzilli D, Ammazzalorso A, Prasad SC, Cataldi A, Sanna M, Cimini A, Mariani-Costantini R, Mincione G, Cama A. Effects of PPARα inhibition in head and neck paraganglioma cells. PLoS One 2017; 12:e0178995. [PMID: 28594934 PMCID: PMC5464765 DOI: 10.1371/journal.pone.0178995] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/22/2017] [Indexed: 01/21/2023] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- * E-mail: (LDL); (AC)
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mariangela Basile
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
| | - Delfina Verzilli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Sanna
- Department of Otology and Skull Base Surgery, Gruppo Otologico, Piacenza, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, United States of America
- Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), Assergi, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- * E-mail: (LDL); (AC)
| |
Collapse
|
49
|
Nguyen CH, Huttary N, Atanasov AG, Chatuphonprasert W, Brenner S, Fristiohady A, Hong J, Stadler S, Holzner S, Milovanovic D, Dirsch VM, Kopp B, Saiko P, Krenn L, Jäger W, Krupitza G. Fenofibrate inhibits tumour intravasation by several independent mechanisms in a 3-dimensional co-culture model. Int J Oncol 2017; 50:1879-1888. [PMID: 28393180 DOI: 10.3892/ijo.2017.3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Lymph node metastasis of breast cancer is a clinical marker of poor prognosis. Yet, there exist no therapies targeting mechanisms of intravasation into lymphatics. Herein we report on an effect of the antidyslipidemic drug fenofibrate with vasoprotective activity, which attenuates breast cancer intravasation in vitro, and describe the potential mechanisms. To measure intravasation in a 3-dimensional co-culture model MDA-MB231 and MCF-7 breast cancer spheroids were placed on immortalised lymphendothelial cell (LEC) monolayers. This provokes the formation of circular chemorepellent induced defects (CCIDs) in the LEC barrier resembling entry ports for the intravasating tumour. Furthermore, the expression of adhesion molecules ICAM-1, CD31 and FAK was investigated in LECs by western blotting as well as cell-cell adhesion and NF-κB activity by respective assays. In MDA-MB231 cells the activity of CYP1A1 was measured by EROD assay. Fenofibrate inhibited CCID formation in the MDA-MB231/LEC- and MCF-7/LEC models and the activity of NF-κB, which in turn downregulated ICAM-1 in LECs and the adhesion of cancer cells to LECs. Furthermore, CD31 and the activity of FAK were inhibited. In MDA-MB231 cells, fenofibrate attenuated CYP1A1 activity. Combinations with other FDA-approved drugs, which reportedly inhibit different ion channels, attenuated CCID formation additively or synergistically. In summary, fenofibrate inhibited NF-κB and ICAM-1, and inactivated FAK, thereby attenuating tumour intravasation in vitro. A combination with other FDA-approved drugs further improved this effect. Our new concept may lead to a novel therapy for cancer patients.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Adryan Fristiohady
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Junli Hong
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Philipp Saiko
- Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Zhang T, Zhang A, Qiu S, Sun H, Han Y, Guan Y, Wang X. High-throughput metabolomics approach reveals new mechanistic insights for drug response of phenotypes of geniposide towards alcohol-induced liver injury by using liquid chromatography coupled to high resolution mass spectrometry. MOLECULAR BIOSYSTEMS 2017; 13:73-82. [DOI: 10.1039/c6mb00742b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alcohol-induced liver injury (ALD) shows obvious metabolic disorders, categorized by a wide range of metabolite abnormalities.
Collapse
Affiliation(s)
- Tianlei Zhang
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Aihua Zhang
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Shi Qiu
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Hui Sun
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Ying Han
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Yu Guan
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| | - Xijun Wang
- Sino-US Chinmedomics Technology Cooperation Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Heilongjiang University of Chinese Medicine
| |
Collapse
|