1
|
Lerner UH. Vitamin A - discovery, metabolism, receptor signaling and effects on bone mass and fracture susceptibility. Front Endocrinol (Lausanne) 2024; 15:1298851. [PMID: 38711977 PMCID: PMC11070503 DOI: 10.3389/fendo.2024.1298851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.
Collapse
Affiliation(s)
- Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Mawson AR. Understanding health disparities affecting people of West Central African descent in the United States: An evolutionary perspective. Evol Appl 2023; 16:963-978. [PMID: 37216026 PMCID: PMC10197229 DOI: 10.1111/eva.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Human populations adapting to diverse aspects of their environment such as climate and pathogens leave signatures of genetic variation. This principle may apply to people of West Central African descent in the United States, who are at increased risk of certain chronic conditions and diseases compared to their European counterparts. Less well known is that they are also at reduced risk of other diseases. While discriminatory practices in the United States continue to affect access to and the quality of healthcare, the health disparities affecting African Americans may also be due in part to evolutionary adaptations to the original environment of sub-Saharan Africa, which involved continuous exposure to the vectors of potentially lethal endemic tropical diseases. Evidence is presented that these organisms selectively absorb vitamin A from the host, and its use in parasite reproduction contributes to the signs and symptoms of the respective diseases. These evolutionary adaptations included (1) sequestering vitamin A away from the liver to other organs, to reduce accessibility to the invaders; and (2) reducing the metabolism and catabolism of vitamin A (vA), causing it to accumulate to subtoxic concentrations and weaken the organisms, thereby reducing the risk of severe disease. However, in the environment of North America, lacking vA-absorbing parasites and with a mainly dairy-based diet that is high in vA, this combination of factors is hypothesized to lead to the accumulation of vA and to increased sensitivity to vA as a toxin, which contribute to the health disparities affecting African Americans. vA toxicity is linked to numerous acute and chronic conditions via mitochondrial dysfunction and apoptosis. Subject to testing, the hypothesis suggests that the adoption of traditional or modified West Central African-style diets that are low in vA and high in vA-absorbing fiber hold promise for disease prevention and treatment, and as a population-based strategy for health maintenance and longevity.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health SciencesJackson State UniversityJacksonMississippiUSA
| |
Collapse
|
3
|
Gene Expression Profiles of Human Mesenchymal Stromal Cells Derived from Wharton’s Jelly and Amniotic Membrane before and after Osteo-Induction Using NanoString Platform. Curr Issues Mol Biol 2022; 44:4240-4254. [PMID: 36135203 PMCID: PMC9497674 DOI: 10.3390/cimb44090291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The use of perinatal mesenchymal stem cells (MSCs) in bone tissue regeneration and engineering to substitute bone marrow MSCs has drawn great interest due to their high yield, ease of procurement, multilineage differentiation potential and lack of ethical concerns. Although amniotic membrane (AM) and Wharton’s jelly (WJ)-derived MSCs have been widely shown to possess osteogenic differentiation potential, the intrinsic properties determining their osteogenic capacity remain unclear. Here, we compared gene expression profiles of AM- and WJ-MSCs at basal and osteogenic conditions by using the NanoString Stem Cell Panel containing regulatory genes associated with stemness, self-renewal, Wnt, Notch and Hedgehog signalling pathways. At basal condition, WJ-MSCs displayed higher expression in most genes regardless of their functional roles in self-renewal, adhesion, or differentiation signalling pathways. After osteo-induction, elevated expression of self-renewal genes ADAR and PAFAH1B1 was observed in AM-MSCs, while stemness genes MME and ALDH1A1 were upregulated in WJ-MSC. Both MSCs showed differences in genes associated with ligands, receptors and ubiquitin ligases of the Notch pathway. In addition, further evidence was demonstrated in some signalling molecules including CTBPs, protein kinases, phosphatases, RHOA, RAC1. Downstream targets HES1 and JUN especially showed higher expression in non-induced WJ-MSCs. Hedgehog genes initially expressed in both MSCs were downregulated in WJ-MSCs during osteogenesis. This study has provided insights into the intrinsic biological differences that may lead to their discrimination in therapeutic intervention.
Collapse
|
4
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
5
|
Shen Q, Wang X, Bai H, Tan X, Liu X. Effects of high-dose all-trans retinoic acid on longitudinal bone growth of young rats. Growth Horm IGF Res 2022; 62:101446. [PMID: 35149382 DOI: 10.1016/j.ghir.2022.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The signaling axis consisting of GH-IGF1-IGFBP3 is the primary signal taht acts prepubertally to influence height development. Growth plate thinning and even premature closure have been reported in children with tumors treated with retinoid chemotherapy, resulting in long bone dysplasia. Growth failure may occur despite received GH treatment, but the reason is unknown. This study investigate the effect of high-dose all-trans retinoic acid (ATRA) on the development of long bones in growing SD rats. METHODS A total of 20 three-week-old male SD rats were randomly divided into a control group and an experimental group (n = 10). Rats were treated by gavage with or without high-dose ATRA for 10 days. The body weights of the rats were recorded daily. At the end of the experiment, we measured the length of nose-tail and tibia, stained the tibia and liver for pathological tissue and RT-PCR reaction, and measured the levels of serum GH, IGF1 and IGFBP3, and so on. RESULTS Compared with controls, experimental rats exhibited reduced body weight and shortened nasal-tail and radial tibial length. Cyp26b1 enzyme activity in the liver was elevated, and histopathological staining revealed that the cartilaginous epiphyseal plate was narrowed, the medullary cavity of trabecular bone was sparse, the number of trabecular bones was decreased, trabecular separation was increased, bone marrow mineralization was enhanced, osteoclastic activity was increased, and circulating GH-IGF1-IGFBP3 levels were decreased. However, RT-PCR reaction results of localized proximal tibiae showed upregulation of IGF1 and downregulation of IGFBP3. CONCLUSIONS High-dose ATRA intake over a short period of time can reduce GH-IGF1-IGFBP3 levels, affect cartilage and bone homeostasis, and inhibit bone growth in developing animals.
Collapse
Affiliation(s)
- Qin Shen
- Department of Orthopedic of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Stem Cell Biology and Therapy Laboratory, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Wang
- Department of Orthopedic of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Stem Cell Biology and Therapy Laboratory, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Haodi Bai
- Department of Orthopedic of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Stem Cell Biology and Therapy Laboratory, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xin Tan
- Department of Orthopedic of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Stem Cell Biology and Therapy Laboratory, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xing Liu
- Department of Orthopedic of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Stem Cell Biology and Therapy Laboratory, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
6
|
de Sousa BM, Correia CR, Ferreira JAF, Mano JF, Furlani EP, Soares Dos Santos MP, Vieira SI. Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. NPJ Regen Med 2021; 6:80. [PMID: 34815414 PMCID: PMC8611088 DOI: 10.1038/s41536-021-00184-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Replacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts' collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone-implant interface and deliver personalized stimulation to peri-implant tissues.
Collapse
Affiliation(s)
- Bárbara M de Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A F Ferreira
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, NY, 14260, USA
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal.
- Faculty of Engineering, Associated Laboratory for Energy, Transports and Aeronautics (LAETA), University of Porto, 4200-465, Porto, Portugal.
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Herlin M, Sánchez-Pérez I, Esteban J, Korkalainen M, Barber X, Finnilä MAJ, Hamscher G, Joseph B, Viluksela M, Håkansson H. Bone toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the retinoid system: A causality analysis anchored in osteoblast gene expression and mouse data. Reprod Toxicol 2021; 105:25-43. [PMID: 34363983 DOI: 10.1016/j.reprotox.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dioxin exposures impact on bone quality and osteoblast differentiation, as well as retinoic acid metabolism and signaling. In this study we analyzed associations between increased circulating retinol concentrations and altered bone mineral density in a mouse model following oral exposure to 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD). Additionally, effects of TCDD on differentiation marker genes and genes involved with retinoic acid metabolism were analysed in an osteoblast cell model followed by benchmark dose-response analyses of the gene expression data. Study results show that the increased trabecular and decreased cortical bone mineral density in the mouse model following TCDD exposure are associated with increased circulating retinol concentrations. Also, TCDD disrupted the expression of genes involved in osteoblast differentiation and retinoic acid synthesis, degradation, and nuclear translocation in directions compatible with increasing cellular retinoic acid levels. Further evaluation of the obtained results in relation to previously published data by the use of mode-of-action and weight-of-evidence inspired analytical approaches strengthened the evidence that TCDD-induced bone and retinoid system changes are causally related and compatible with an endocrine disruption mode of action.
Collapse
Affiliation(s)
- Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland.
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche, Alicante, Spain.
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 10 Giessen, Germany.
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Matti Viluksela
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland; School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Yin Y, Haller ME, Chadchan SB, Kommagani R, Ma L. Signaling through retinoic acid receptors is essential for mammalian uterine receptivity and decidualization. JCI Insight 2021; 6:e150254. [PMID: 34292881 PMCID: PMC8492326 DOI: 10.1172/jci.insight.150254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) signaling has long been speculated to regulate embryo implantation, because many enzymes and proteins responsible for maintaining RA homeostasis and transducing RA signals are tightly regulated in the endometrium during this critical period. However, due to a lack of genetic data, it was unclear whether RA signaling is truly required for implantation and which specific RA signaling cascades are at play. Herein we utilize a genetic murine model that expresses a dominant-negative form of RA receptor (RAR) specifically in female reproductive organs to show that functional RA signaling is fundamental to female fertility, particularly implantation and decidualization. Reduction in RA signaling activity severely affects the ability of the uterus to achieve receptive status and decidualize, partially through dampening follistatin expression and downstream activin B/bone morphogenetic protein 2 signaling. To confirm translational relevance of these findings to humans, human endometrial stromal cells (hESCs) were treated with a pan-RAR antagonist to show that in vitro decidualization is impaired. RNA interference perturbation of individual RAR transcripts in hESCs revealed that RARα in particular was essential for proper decidualization. These data provide direct functional evidence that uterine RAR-mediated RA signaling was crucial for mammalian embryo implantation, and its disruption led to failure of uterine receptivity and decidualization, resulting in severely compromised fertility.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Meade E Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
9
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
10
|
Rogers MA, Chen J, Nallamshetty S, Pham T, Goto S, Muehlschlegel JD, Libby P, Aikawa M, Aikawa E, Plutzky J. Retinoids Repress Human Cardiovascular Cell Calcification With Evidence for Distinct Selective Retinoid Modulator Effects. Arterioscler Thromb Vasc Biol 2020; 40:656-669. [PMID: 31852220 PMCID: PMC7047603 DOI: 10.1161/atvbaha.119.313366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Retinoic acid (RA) is a ligand for nuclear receptors that modulate gene transcription and cell differentiation. Whether RA controls ectopic calcification in humans is unknown. We tested the hypothesis that RA regulates osteogenic differentiation of human arterial smooth muscle cells and aortic valvular interstitial cells that participate in atherosclerosis and heart valve disease, respectively. Approach and Results: Human cardiovascular tissue contains immunoreactive RAR (RA receptor)-a retinoid-activated nuclear receptor directing multiple transcriptional programs. RA stimulation suppressed primary human cardiovascular cell calcification while treatment with the RAR inhibitor AGN 193109 or RARα siRNA increased calcification. RA attenuated calcification in a coordinated manner, increasing levels of the calcification inhibitor MGP (matrix Gla protein) while decreasing calcification-promoting TNAP (tissue nonspecific alkaline phosphatase) activity. Given that nuclear receptor action varies as a function of distinct ligand structures, we compared calcification responses to cyclic retinoids and the acyclic retinoid peretinoin. Peretinoin suppressed human cardiovascular cell calcification without inducing either secretion of APOC3 (apolipoprotein-CIII), which promotes atherogenesis, or reducing CYP7A1 (cytochrome P450 family 7 subfamily A member 1) expression, which occurred with cyclic retinoids all-trans RA, 9-cis RA, and 13-cis RA. Additionally, peretinoin did not suppress human femur osteoblast mineralization, whereas all-trans RA inhibited osteoblast mineralization. CONCLUSIONS These results establish retinoid regulation of human cardiovascular calcification, provide new insight into mechanisms involved in these responses, and suggest selective retinoid modulators, like acyclic retinoids may allow for treating cardiovascular calcification without the adverse effects associated with cyclic retinoids.
Collapse
MESH Headings
- Alkaline Phosphatase
- Aortic Valve/drug effects
- Aortic Valve/metabolism
- Aortic Valve/pathology
- Apolipoprotein C-III/genetics
- Apolipoprotein C-III/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/drug effects
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Heart Valve Diseases/genetics
- Heart Valve Diseases/metabolism
- Heart Valve Diseases/pathology
- Heart Valve Diseases/prevention & control
- Humans
- Isotretinoin/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/drug effects
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoids/pharmacology
- Retinoids/toxicity
- Signal Transduction
- Tretinoin/pharmacology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Matrix Gla Protein
Collapse
Affiliation(s)
- Maximillian A. Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jiaohua Chen
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Shriram Nallamshetty
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Shinji Goto
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Peter Libby
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jorge Plutzky
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| |
Collapse
|
11
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
12
|
Yang W, Yu Z, Chiyoya M, Liu X, Daitoku K, Motomura S, Imaizumi T, Fukuda I, Furukawa KI, Tsuji M, Seya K. Menaquinone-4 Accelerates Calcification of Human Aortic Valve Interstitial Cells in High-Phosphate Medium through PXR. J Pharmacol Exp Ther 2019; 372:277-284. [PMID: 31843813 DOI: 10.1124/jpet.119.263160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, we confirmed that in human aortic valve interstitial cells (HAVICs) isolated from patients with aortic valve stenosis (AVS), calcification is induced in high inorganic phosphate (high-Pi) medium by warfarin (WFN). Because WFN is known as a vitamin K antagonist, reducing the formation of blood clots by vitamin K cycle, we hypothesized that vitamin K regulates WFN-induced HAVIC calcification. Here, we sought to determine whether WFN-induced HAVIC calcification in high-Pi medium is inhibited by menaquinone-4 (MK-4), the most common form of vitamin K2 in animals. HAVICs obtained from patients with AVS were cultured in α-modified Eagle's medium containing 10% FBS, and when the cells reached 80%-90% confluency, they were further cultured in the presence or absence of MK-4 and WFN for 7 days in high-Pi medium (3.2 mM Pi). Intriguingly, in high-Pi medium, MK-4 dose-dependently accelerated WFN-induced HAVIC calcification and also accelerated the calcification when used alone (at 10 nM). Furthermore, MK-4 enhanced alkaline phosphatase (ALP) activity in HAVICs, and 7 days of MK-4 treatment markedly upregulated the gene expression of the calcification marker bone morphogenetic protein 2 (BMP2). Notably, MK-4-induced calcification was potently suppressed by two pregnane X receptor (PXR) inhibitors, ketoconazole and coumestrol; conversely, PXR activity was weakly increased, but in a statistically significant and dose-dependent manner, by MK-4. Lastly, in physiologic-Pi medium, MK-4 increased BMP2 gene expression and accelerated excess BMP2 (30 ng/ml)-induced HAVIC calcification. These results suggest that MK-4, namely vitamin K2, accelerates calcification of HAVICs from patients with AVS like WFN via PXR-BMP2-ALP pathway. SIGNIFICANCE STATEMENT: For aortic valve stenosis (AVS) induced by irreversible valve calcification, the most effective treatment is surgical aortic or transcatheter aortic valve replacement, but ∼20% of patients are deemed unsuitable because of its invasiveness. For effective drug treatment strategies for AVS, the mechanisms underlying aortic valve calcification must be elucidated. Here, we show that menaquinone-4 accelerates warfarin-induced calcification of AVS-patient human aortic valve interstitial cells in high inorganic phosphate medium; this effect is mediated by pregnane X receptor-bone morphogenetic protein 2-alkaline phosphatase signaling, which could be targeted for novel drug development.
Collapse
Affiliation(s)
- Wei Yang
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Zaiqiang Yu
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Mari Chiyoya
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Xu Liu
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Kazuyuki Daitoku
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Shigeru Motomura
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Tadaatsu Imaizumi
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Ikuo Fukuda
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Ken-Ichi Furukawa
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Motonori Tsuji
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| | - Kazuhiko Seya
- Departments of Thoracic and Cardiovascular Surgery (W.Y., Z.Y., M.C., X.L., K.D., I.F.), Vascular Biology (T.I., K.S.), and Pharmacology (S.M., K.-I.F.), Hirosaki University Graduate School Medicine, Hirosaki, Japan; and Institute of Molecular Function, Saitama, Japan (M.T.)
| |
Collapse
|
13
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
14
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
15
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
16
|
Lind T, Lugano R, Gustafson AM, Norgård M, van Haeringen A, Dimberg A, Melhus H, Robertson SP, Andersson G. Bones in human CYP26B1 deficiency and rats with hypervitaminosis A phenocopy Vegfa overexpression. Bone Rep 2018; 9:27-36. [PMID: 30003121 PMCID: PMC6039751 DOI: 10.1016/j.bonr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023] Open
Abstract
Angulated femurs are present prenatally both in CYP26B1 deficient humans with a reduced capacity to degrade retinoic acid (RA, the active metabolite of vitamin A), and mice overexpressing vascular endothelial growth factor a (Vegfa). Since excessive ingestion of vitamin A is known to induce spontaneous fractures and as the Vegfa-induced femur angulation in mice appears to be caused by intrauterine fractures, we analyzed bones from a CYP26B1 deficient human and rats with hypervitaminosis A to further explore Vegfa as a mechanistic link for the effect of vitamin A on bone. We show that bone from a human with CYP26B1 mutations displayed periosteal osteoclasts in piles within deep resorption pits, a pathognomonic sign of hypervitaminosis A. Analysis of the human angulated fetal femur revealed excessive bone formation in the marrow cavity and abundant blood vessels. Normal human endothelial cells showed disturbed cell-cell junctions and increased CYP26B1 and VEGFA expression upon RA exposure. Studies in rats showed increased plasma and tissue Vegfa concentrations and signs of bone marrow microhemorrhage on the first day of excess dietary vitamin A intake. Subsequently hypervitaminosis A rats displayed excess bone formation, fibrosis and an increased number of megakaryocytes in the bone marrow, which are known characteristics of Vegfa overexpression. This study supports the notion that the skeletal phenotype in CYP26B1 deficient human bone is caused by excess RA. Our findings suggest that an initial part of the vitamin A mechanism causing bone alterations is mediated by excess Vegfa and disturbed bone marrow microvessel integrity. Human CYP26B1 deficit and rat hypervitaminosis A phenocopy Vegf bone overexpression Hypervitaminosis A cause rapid microhemorrhage in rat bone marrow. Retinoic acid treatment disrupt cell-cell junction integrity between endothelial cells. Hypervitaminosis A have a persistent negative effect on rat bone marrow perfusion. Hypervitaminosis A rat bones resemble bones of patients with myelofibrotic disorders.
Collapse
Affiliation(s)
- Thomas Lind
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| | - Arie van Haeringen
- Department of Human and Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine University of Otago, 9054 Dunedin, New Zealand
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| |
Collapse
|
17
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28207193 DOI: 10.1002/wdev.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Guiu-Jurado E, Unthan M, Böhler N, Kern M, Landgraf K, Dietrich A, Schleinitz D, Ruschke K, Klöting N, Faßhauer M, Tönjes A, Stumvoll M, Körner A, Kovacs P, Blüher M. Bone morphogenetic protein 2 (BMP2) may contribute to partition of energy storage into visceral and subcutaneous fat depots. Obesity (Silver Spring) 2016; 24:2092-100. [PMID: 27515773 DOI: 10.1002/oby.21571] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Bone morphogenetic proteins (BMPs) are important regulators of adipogenesis and may play a role in obesity. In this study, the hypothesis that BMP2 is related to adipose tissue (AT) distribution in obesity was tested. METHODS BMP2 serum concentration (n = 439) and BMP2 and Schnurri-1 and -2 mRNA expression were measured in paired samples of visceral and subcutaneous AT from 547 individuals with a wide range of body mass index. In addition, a single nucleotide polymorphism rs979012 in the BMP2 gene was genotyped for subsequent association studies on quantitative traits related to obesity in 631 individuals. RESULTS BMP2 and Schnurri-1 mRNA were significantly higher in visceral compared with subcutaneous AT. Compared with individuals who were healthy and lean, BMP2 expression in both depots was significantly higher in people with obesity. Significantly higher BMP2 serum concentrations were found in patients with type 2 diabetes with moderate but not morbid obesity. Schnurri-1 and -2 mRNA expression was not related to either BMP2 expression or circulating BMP2. Finally, rs979012 showed nominal association with body mass index and total cholesterol levels. CONCLUSIONS Data suggest that with increasing demand to store excessive energy, AT BMP2 expression increases and may contribute to partitioning of energy storage into visceral and subcutaneous AT depots.
Collapse
Affiliation(s)
- Esther Guiu-Jurado
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Departament de Medicina i Cirurgia, Grup de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Mark Unthan
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Nina Böhler
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Department of Pediatric Endocrinology, Center for Pediatric Research Leipzig (CPL), Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Dorit Schleinitz
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Karen Ruschke
- AG Knaus, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nora Klöting
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | | | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Pediatric Endocrinology, Center for Pediatric Research Leipzig (CPL), Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Core Unit, Animal Models of Obesity, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
- Department of Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Green AC, Martin TJ, Purton LE. The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. J Steroid Biochem Mol Biol 2016; 155:135-46. [PMID: 26435449 DOI: 10.1016/j.jsbmb.2015.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Vitamin A and retinoid derivatives are recognized as morphogens that govern body patterning and skeletogenesis, producing profound defects when in excess. In post-natal bone, both high and low levels of vitamin A are associated with poor bone heath and elevated risk of fractures. Despite this, the precise mechanism of how retinoids induce post-natal bone changes remains elusive. Numerous studies have been performed to discover how retinoids induce these changes, revealing a complex morphogenic regulation of bone through interplay of different cell types. This review will discuss the direct and indirect effects of retinoids on mediators of bone turnover focusing on differentiation and activity of osteoblasts and osteoclasts and explains why some discrepancies in this field have arisen. Importantly, the overall effect of retinoids on the skeleton is highly site-specific, likely due to differential regulation of osteoblasts and osteoclasts at trabecular vs. cortical periosteal and endosteal bone surfaces. Further investigation is required to discover the direct gene targets of retinoic acid receptors (RARs) and molecular mechanisms through which these changes occur. A clear role for RARs in regulating bone is now accepted and the therapeutic potential of retinoids in treating bone diseases has been established.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| | - T John Martin
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| |
Collapse
|
21
|
Blum N, Begemann G. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 2015; 142:2894-903. [PMID: 26253409 DOI: 10.1242/dev.120204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany RTG1331, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
22
|
Yin Y, Wang Q, Sun W, Wang Y, Chen N, Miao D. p27(kip1) deficiency accelerates dentin and alveolar bone formation. Clin Exp Pharmacol Physiol 2015; 41:807-16. [PMID: 24916068 DOI: 10.1111/1440-1681.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Abstract
To assess the role of p27(kip1) in regulating dental formation and alveolar bone development, we compared the teeth and mandible phenotypes of homozygous p27(kip1) -deficient (p27(-/-) ) mice with their wild-type littermates at 2 weeks of age. At 2 weeks of age, dental mineral density, dental volume and dentin sialoprotein-immunopositive areas were increased significantly, whereas the predentin area : total dentin area and biglycan-immunopositive area : dentin area ratios were decreased significantly in p27(-/-) mice compared with their wild-type (WT) littermates. Mandible mineral density, cortical thickness, alveolar bone volume, type I collagen and osterix-immunopositive areas, osteoblast number and activity and mRNA expression of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin and bone morphogenetic protein (bmp2) were all significantly increased in the mandibles, as was the number and surface of tartrate-resistant acid phosphatase-positive osteoclasts in the alveolar bone of p27(-/-) mice compared with their WT littermates. Furthermore, the percentage of proliferating cell nuclear antigen-positive cells in Hertwig's epithelial root sheath and protein expression of cyclin E and cyclin-dependent kinase 2 were increased significantly in p27(-/-) mice relative to their WT littermates. The results from this study indicate that p27 plays a negative regulatory role in dentin formation and alveolar bone development.
Collapse
Affiliation(s)
- Ying Yin
- Institute of Stomatology, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy Histology and Embryology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
23
|
Henning P, Conaway HH, Lerner UH. Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne) 2015; 6:31. [PMID: 25814978 PMCID: PMC4356160 DOI: 10.3389/fendo.2015.00031] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 11/23/2022] Open
Abstract
Vitamin A (retinol) is a necessary and important constituent of the body which is provided by food intake of retinyl esters and carotenoids. Vitamin A is known best for being important for vision, but in addition to the eye, vitamin A is necessary in numerous other organs in the body, including the skeleton. Vitamin A is converted to an active compound, all-trans-retinoic acid (ATRA), which is responsible for most of its biological actions. ATRA binds to intracellular nuclear receptors called retinoic acid receptors (RARα, RARβ, RARγ). RARs and closely related retinoid X receptors (RXRα, RXRβ, RXRγ) form heterodimers which bind to DNA and function as ligand-activated transcription factors. It has been known for many years that hypervitaminosis A promotes skeleton fragility by increasing osteoclast formation and decreasing cortical bone mass. Some epidemiological studies have suggested that increased intake of vitamin A and increased serum levels of retinoids may decrease bone mineral density and increase fracture rate, but the literature on this is not conclusive. The current review summarizes how vitamin A is taken up by the intestine, metabolized, stored in the liver, and processed to ATRA. ATRA's effects on formation and activity of osteoclasts and osteoblasts are outlined, and a summary of clinical data pertaining to vitamin A and bone is presented.
Collapse
Affiliation(s)
- Petra Henning
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. Herschel Conaway
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ulf H. Lerner
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- *Correspondence: Ulf H. Lerner, Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Straket 11, 413 45 Gothenburg, Sweden e-mail:
| |
Collapse
|
24
|
Nallamshetty S, Le PT, Wang H, Issacsohn MJ, Reeder DJ, Rhee EJ, Kiefer FW, Brown JD, Rosen CJ, Plutzky J. Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity. Bone 2014; 67:281-91. [PMID: 25064526 PMCID: PMC4209126 DOI: 10.1016/j.bone.2014.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche.
Collapse
Affiliation(s)
- Shriram Nallamshetty
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phuong T. Le
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Hong Wang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maya J. Issacsohn
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J. Reeder
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eun-Jung Rhee
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florian W. Kiefer
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan D. Brown
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clifford J. Rosen
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
- Corresponding authors. Address all correspondence and requests for reprints to: Jorge Plutzky, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 742, Boston, Massachusetts 02115. Telephone: 617-525-4360 Fax: 617-525-4366
| | - Jorge Plutzky
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Corresponding authors. Address all correspondence and requests for reprints to: Jorge Plutzky, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 742, Boston, Massachusetts 02115. Telephone: 617-525-4360 Fax: 617-525-4366
| |
Collapse
|