1
|
Wu Y, Wang Y, Li W, Li D, Song P, Kang Y, Han X, Wang X, Tian H, Rauf A, Yan J, Zhang H, Li X. Construction of piezoelectric, conductive and injectable hydrogels to promote wound healing through electrical stimulation. Acta Biomater 2025; 191:205-215. [PMID: 39577481 DOI: 10.1016/j.actbio.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Piezoelectric, conductive, and injectable hydrogel (SPG hydrogel) is constructed to rapidly close wounds, efficiently harvest biomechanical energy from animal motion, and generate electrical stimulation for electrotherapy of wound healing. 3-amino-4-methoxybenzoic acid (AMB) monomer was polymerized and grafted onto the gelatin, which was further crosslinked using EDC/NHS and embedded with strontium titanate nanoparticles (80.5 wt%), forming SPG hydrogel. This SPG hydrogel had high tissue adhesion ability, and could generate the output voltage (maximum output voltage 1 V) and current (maximum output current 0.5 nA) upon mechanical bending, promoting NIH-3T3 cell migration and proliferation. Upon application to the mice wound model, the SPG hydrogel rapidly closed the skin wound, smoothed the wound's appearance, reduced the remaining wound size, and increased epidermal thickness, demonstrating remarkable wound healing capabilities. This study suggests that the body motion-promoted electrotherapy offers a promising strategy for wound healing. STATEMENT OF SIGNIFICANCE: Piezoelectric nanomaterials are often incorporated into hydrogels to create piezoelectric hydrogels for wound healing. However, piezoelectric nanomaterials tend to agglomerate within the hydrogel matrix, and the hydrogel's low conductivity hinders efficient electron transfer. Together, both factors significantly reduce the piezoelectric effect. In this study, we developed an SPG hydrogel to improve the homogeneity and conductivity of the piezoelectric hydrogel. We first designed a conductive PG hydrogel and then immoblized piezoelectric STO nanoparticles within its matrix through coordination chemistry. Upon mechanical deformation, the uniformly distributed STO nanoparticles can generate electricity, which can efficiently transfer through the conductive matrix to the hydrogel's surface. This design shows great potential for wound healing applications.
Collapse
Affiliation(s)
- Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Yanjing Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Weili Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Diyi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Panpan Song
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yaqing Kang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xinbo Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa 23430, Pakistan
| | - Jiao Yan
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyuan Zhang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
2
|
Portan DV, Bampounis G, Koliadima A, Patsidis AC, Kontaxis LC, Papanicolaou GC. Biodegradation and Thermomechanical Behavior of 3D-Printed PLA Scaffolds Under Static and Stirring Biomimetic Conditions. Biomimetics (Basel) 2024; 9:743. [PMID: 39727747 DOI: 10.3390/biomimetics9120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
3D-printed biomedical polylactic acid (PLA) scaffolds were developed, and their biodegradation, as well as their thermomechanical behavior, were studied in a relevant in vitro environment. The scaffold's biodegradability profile has been monitored after immersion in a cell culture medium that contains components of blood and body fluids. Two types of biodegradation experiments were performed-a standard static one and an adapted stirring one, mimicking the body fluids' flow, respectively-to achieve a comparative investigation. The biodegradation experiment's duration was one month. The measurements were performed between days 1 and 28. The scaffold microstructure was analyzed with scanning electron microscopy (SEM). The weight loss of the scaffolds has been monitored. Differential scanning calorimetry (DSC) has been used to evaluate the glass transition temperature (Tg) of the scaffolds and to draw useful conclusions about their thermal behavior. Finally, dynamic mechanical analysis (DMA) was applied to investigate the viscoelastic behavior of the samples. The SEM analysis demonstrated that the samples in a static experiment are more damaged, while those in the stirring experiment are more brittle. The maximum Tg value of the material measured by DSC is around 65 °C. This value is reached after 5 days of immersion in static conditions and after 14 days of immersion after stirring, indicating that some processes take place faster in the static experiment. The variation of the Tg vs. immersion time, as derived from DSC vs. DMA measurements, gives similar results for both static and fluid absorption conditions, demonstrating the reproducibility of the results.
Collapse
Affiliation(s)
- Diana V Portan
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
| | - Georgios Bampounis
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
| | - Athanasia Koliadima
- Physical Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | | | - Lykourgos C Kontaxis
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
| | - George C Papanicolaou
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Jang Y, Lee D, Oh J. Fast Autograft Generation Using Transferable 3D Keratinocyte Cell Sheet on PEDOT:PSS Composite PDMS Membrane for Enhancing Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406529. [PMID: 39588867 DOI: 10.1002/smll.202406529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The application of cell sheet technology for wound healing preserves dense cell tissue and the natural extracellular matrix (ECM), contributing to disease prevention. Despite the effectiveness of autologous and allograft cell sheets for wound healing, conventional cell sheets, although stable, may experience necrosis in their middle layers due to a lack of nutrients or oxygen. To address these issues, a novel approach is proposed to create cell sheets using mechanical and electrical stimulation. This method not only facilitates the transfer of cell sheets but also enhances cell bioactivity. The performance of the proposed membrane, with a mechanically controlled microstructure under electrical stimulation, is validated in both in vitro and in vivo models. The micro-structured membrane allows for diverse electrical stimulation compared to flat membranes, which accelerates the detachment of cell sheets and promotes angiogenesis and re-epithelialization. These findings indicate that the innovative cell sheet technology could significantly enhance rapid wound healing in regenerative medicine.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dongwon Lee
- Department of Polymer Nano Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Kulkarni G, Guha Ray P, Sunka KC, Dixit K, Dhar D, Chakrabarti R, Singh A, Byram PK, Dhara S, Das S. Investigating the Effect of Polypyrrole-Gelatin/Silk Fibroin Hydrogel Mediated Pulsed Electrical Stimulation for Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56762-56776. [PMID: 39382540 DOI: 10.1021/acsami.4c12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In clinical practice to treat complex injuries, the application of electrical stimulation (ES) directly to the skin complicates the wound. In this work, the effect of a conductive hydrogel mediated electric field on skin regeneration is investigated. Polypyrrole incorporated matrices of gelatin and silk fibroin were prepared by two-step interfacial polymerization. The maximum electrical conductivity of 10-4 S cm-1 was achieved when 200 mM polypyrrole was loaded. Mechanically stable and cytocompatible hydrogels were evidenced to have antioxidant and blood compatible characteristics. Human dermal fibroblast cells responded to pulsed stimulation of 100 or 300 mV mm-1 as observed from the increased expressions of TGFβ1, αSMA, and COLIAI genes. Further, the increase in the αSMA protein expression with the magnitude of electrical stimulation also suggested transdifferentiation of the fibroblast to myofibroblast. Moreover, Raman spectroscopy identified two fingerprint regions (collagen and lipid) to differentiate ES treated and nontreated samples. Therefore, the combination of hydrogels and electrical stimulation has potential therapeutic effects for accelerating the rate of skin regeneration.
Collapse
Affiliation(s)
- Gaurav Kulkarni
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Chaitanya Sunka
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Dixit
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dhruba Dhar
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Kim JU, Ko J, Kim YS, Jung M, Jang MH, An YH, Hwang NS. Electrical Stimulating Redox Membrane Incorporated with PVA/Gelatin Nanofiber for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400170. [PMID: 38989721 DOI: 10.1002/adhm.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Chronic wounds adversely affect the quality of life. Although electrical stimulation has been utilized to treat chronic wounds, there are still limitations to practicing it due to the complicated power system. Herein, an electrostimulating membrane incorporated with electrospun nanofiber (M-sheet) to treat diabetic wounds is developed. Through the screen printing method, the various alternate patterns of both Zn and AgCl on a polyurethane substrate, generating redox-mediated electrical fields are introduced. The antibacterial ability of the patterned membrane against both E. coli and S. aureus is confirmed. Furthermore, the poly(vinyl alcohol) (PVA)/gelatin electrospun fiber is incorporated into the patterned membrane to enhance biocompatibility and maintain the wet condition in the wound environment. The M-sheet can improve cell proliferation and migration in vitro and has an immune regulatory effect by inducing the polarization of macrophage to the M2 phenotype. Finally, when applied to a diabetic skin wound model, the M-sheet displays an accelerated wound healing rate and enhances re-epithelialization, collagen synthesis, and angiogenesis. It suggests that the M-sheet is a simple and portable system for the spontaneous generation of electrical stimulation and has great potential to be used in the practical wound and other tissue engineering applications.
Collapse
Affiliation(s)
- Jeong-Uk Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoong Jung
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Hoon Jang
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Sachs D, Jakob R, Restivo G, Hafner J, Lindenblatt N, Ehret AE, Mazza E. A quadriphasic mechanical model of the human dermis. Biomech Model Mechanobiol 2024; 23:1121-1136. [PMID: 38489079 PMCID: PMC11584490 DOI: 10.1007/s10237-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
The present study investigates the multiphasic nature of the mechanical behavior of human dermis. Motivated by experimental observations and by consideration of its composition, a quadriphasic model of the dermis is proposed, distinguishing solid matrix components, interstitial fluid and charged constituents moving within the fluid, i.e., anions and cations. Compression and tensile experiments with and without change of osmolarity of the bath are performed to characterize the chemo-mechanical coupling in the dermis. Model parameters are determined through inverse analysis. The computations predict a dominant role of the permeability in the determination of the temporal evolution of the mechanical response of the tissue. In line with the previous studies on other tissues, the analysis shows that an ideal model based on Donnan's equilibrium overestimates the osmotic pressure in skin for the case of very dilute solutions. The quadriphasic model is applied to predict changes in dermal cell environment and therefore alterations in what is called the "mechanome," associated with skin stretch. The simulations indicate that skin deformation causes a variation in several local variables, including in particular the electric field associated with a deformation-induced non-homogeneous distribution of fixed charges.
Collapse
Affiliation(s)
- David Sachs
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland.
| | - Raphael Jakob
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, Zurich, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland.
- Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, Switzerland.
| |
Collapse
|
7
|
George RE, Bay CC, Thornton SM, Knazze JT, Kane NC, Ludwig KA, Donnelly DT, Poore SO, Dingle AM. Can Electrical Stimulation Prevent Recurrence of Keloid Scars? A Scoping Review. Adv Wound Care (New Rochelle) 2024. [PMID: 38888004 DOI: 10.1089/wound.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Objective: Keloids represent a symptomatic, aberrant healing process that is difficult to treat with high recurrence rates spanning from 55% to 100% if treated via excision without adjuvant therapy. Electrical stimulation (ES) has demonstrated findings that suggest it could reduce the recurrence rate of keloids after resection. Therefore, the aim of this study is to conduct a scoping review to investigate ES as an adjuvant therapy for decreasing keloid recurrence after excision. Approach: A scoping review was performed using PubMed and Web of Science databases. The search strategy encompassed terms linking keloids and various aspects of electrical stimulation. Results: Our search yielded 2,229 articles, of which 115 articles were analyzed as full text and 1 article met inclusion criteria. Despite this, ES has demonstrated other evidence that suggests its utility. ES has been shown to counter keloidic features by reducing mast cell counts, shifting wound composition from M2 to M1 macrophages, promoting angiogenesis, and controlling fibroblast orientation and location. An alternating current will orient fibroblasts perpendicular to the current without unintended migration. Innovation: Our study indicates that, based on a compilation of clinical and preclinical in vitro data, the optimal scenario for ES in the role of keloid treatment is after excision with a biphasic pulsed application and square waveform. Conclusions: ES could serve as a multifaceted, adjuvant treatment after keloid excision, steering the healing process away from keloid-associated characteristics. Its cost-effectiveness means it could be adopted globally, providing a strategy to mitigate the burden of keloids irrespective of other available treatments or economic conditions.
Collapse
Affiliation(s)
- Robert E George
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caroline C Bay
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah M Thornton
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessieka T Knazze
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole C Kane
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kip A Ludwig
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
| | - D'Andrea T Donnelly
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samuel O Poore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron M Dingle
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Mosier S, Berbel G, Friis EA. Computational analysis of electrical stimulation to promote tissue healing for hernia repair at varying mesh placement planes. J Biomater Appl 2024; 39:58-65. [PMID: 38652260 DOI: 10.1177/08853282241249044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Development of a tear in the abdominal wall allowing for protrusion of intra-abdominal contents is known as a hernia. This can cause pain, discomfort, and may need surgical repair. Hernias can affect people of any age or demographic. In the USA, over 1 million hernia repair procedures are performed each year. During these surgeries, it is common for a mesh to be utilized to strengthen the repair. Different techniques allow for the mesh to be placed in different anatomical planes depending on hernia location and approach. The locations are onlay, inlay, and sublay, with sublay being split into retromuscular or preperitoneal with sublay being the most commonly used. The use of an electrically active hernia repair mesh is of interest to model as electrical stimulation has been shown to improve soft tissue healing which could reduce recurrence rates. Theoretical 3D COMSOL models were built to evaluate the varying electric fields of an electrically active hernia repair mesh at each of the different anatomical planes. Three voltages were chosen (10, 20, and 30 mV) for the study to simulate a low-level electrical signal and the electric field from a piezoelectric material at the tissue layers surrounding the mesh construct. Based on the model outputs, the optimal mesh placement location was the sublay-retromuscular as this location had the highest electric field values in the connective tissues and rectus abdominis muscle, which are the primary tissues of concern for the healing process and a successful repair.
Collapse
Affiliation(s)
- Savannah Mosier
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - German Berbel
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elizabeth A Friis
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
9
|
Cheng H, Bai J, Zhou X, Chen N, Jiang Q, Ren Z, Li X, Su T, Liang L, Jiang W, Wang Y, Peng J, Shang A. Electrical stimulation with polypyrrole-coated polycaprolactone/silk fibroin scaffold promotes sacral nerve regeneration by modulating macrophage polarisation. BIOMATERIALS TRANSLATIONAL 2024; 5:157-174. [PMID: 39351163 PMCID: PMC11438605 DOI: 10.12336/biomatertransl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/18/2024] [Accepted: 06/22/2024] [Indexed: 10/04/2024]
Abstract
Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder. It remains unknown whether electrical stimulation can facilitate sacral nerve regeneration in addition to modulate bladder function. The objective of this study was to utilise electrical stimulation in sacra nerve crush injury with newly constructed electroconductive scaffold and explore the role of macrophages in electrical stimulation with crushed nerves. As a result, we generated a polypyrrole-coated polycaprolactone/silk fibroin scaffold through which we applied electrical stimulation. The electrical stimulation boosted nerve regeneration and polarised the macrophages towards the M2 phenotype. An in vitro test using bone marrow derived macrophages revealed that the pro-regenerative polarisation of M2 were significantly enhanced by electrical stimulation. Bioinformatics analysis showed that the expression of signal transducer and activator of transcriptions (STATs) was differentially regulated in a way that promoted M2-related genes expression. Our work indicated the feasibility of electricals stimulation used for sacral nerve regeneration and provided a firm demonstration of a pivotal role which macrophages played in electrical stimulation.
Collapse
Affiliation(s)
- Haofeng Cheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Jun Bai
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Xingyu Zhou
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Nantian Chen
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Qingyu Jiang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiqi Ren
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiangling Li
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Tianqi Su
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Lijing Liang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Graduate School of Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Wenli Jiang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
- Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
| | - Aijia Shang
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Lee H, Cho S, Kim D, Lee T, Kim HS. Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation. Biomed Eng Lett 2024; 14:367-392. [PMID: 38645592 PMCID: PMC11026362 DOI: 10.1007/s13534-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Seungkwan Cho
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Taehyun Lee
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| |
Collapse
|
11
|
Urabe H, Akimoto R, Kamiya S, Hosoki K, Ichikawa H, Nishiyama T. Effects of pulsed electrical stimulation on α-smooth muscle actin and type I collagen expression in human dermal fibroblasts. Biosci Biotechnol Biochem 2024; 88:522-528. [PMID: 38341279 DOI: 10.1093/bbb/zbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshio Nishiyama
- Homer Ion Laboratory Co., Ltd., Tokyo, Japan
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
12
|
Dai J, Shao J, Zhang Y, Hang R, Yao X, Bai L, Hang R. Piezoelectric dressings for advanced wound healing. J Mater Chem B 2024; 12:1973-1990. [PMID: 38305583 DOI: 10.1039/d3tb02492j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The treatment of chronic refractory wounds poses significant challenges and threats to both human society and the economy. Existing research studies demonstrate that electrical stimulation fosters cell proliferation and migration and promotes the production of cytokines that expedites the wound healing process. Presently, clinical settings utilize electrical stimulation devices for wound treatment, but these devices often present issues such as limited portability and the necessity for frequent recharging. A cutting-edge wound dressing employing the piezoelectric effect could transform mechanical energy into electrical energy, thereby providing continuous electrical stimulation and accelerating wound healing, effectively addressing these concerns. This review primarily reviews the selection of piezoelectric materials and their application in wound dressing design, offering a succinct overview of these materials and their underlying mechanisms. This study also provides a perspective on the current limitations of piezoelectric wound dressings and the future development of multifunctional dressings harnessing the piezoelectric effect.
Collapse
Affiliation(s)
- Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jin Shao
- Taikang Bybo Dental, Zhuhai, 519100, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
13
|
Urabe H, Akimoto R, Kamiya S, Hosoki K, Ichikawa H, Nishiyama T. Pulsed electrical stimulation and amino acid derivatives promote collagen gene expression in human dermal fibroblasts. Cytotechnology 2024; 76:139-151. [PMID: 38304625 PMCID: PMC10828296 DOI: 10.1007/s10616-023-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024] Open
Abstract
Several collagen types are important for maintaining skin structure and function. Previous reports show that l-hydroxyproline (Hyp), N-acetyl-l-hydroxyproline (AHyp), and l-alanyl-l-glutamine (Aln-Gln) are biological active substances with collagen synthesis-promoting effects. In this study, we combined the promotive effects of pulsed electrical stimulation (PES) with three amino acid derivatives in human dermal fibroblasts. Fibroblasts were exposed to PES with a 4,800 Hz pulse frequency and a voltage at 1 or 5 V for 15 min. The gene expression of type I and III collagen (fibrillar collagen), type IV and VII collagen (basement membrane collagen and anchoring fibril collagen) were measured by RT-PCR 48 h after PES. PES alone promoted the expression of COL1A1 and COL3A1 at 5 V but did not alter that of COL4A1 and COL7A1. Each AAD and the AAD mixture promoted the expression of COL4A1 and COL7A1 but either repressed, or did not alter, that of COL1A1 and COL3A1. Compared to treatment with each AAD, PES at 5 V with Hyp promoted the expression of COL1A1 and COL3A1, enhanced COL3A1 expression with AHyp, and stimulated COL3A1 expression with Aln-Gln, while COL4A1 and COL7A1 expressions were not affected. PES and the AAD mixture significantly promoted COL4A1 expression in a voltage-dependent manner, and COL1A1 and COL3A1 demonstrated a similar but nonsignificant trend, whereas COL7A1 expression was not affected. The combination of PES with each AAD or the AAD mixture may improve skin structure and function by increasing the expression of basement membrane collagen and dermal fibrillar collagen.
Collapse
Affiliation(s)
- Hiroya Urabe
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Ryuji Akimoto
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Shohei Kamiya
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Katsu Hosoki
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Hideyuki Ichikawa
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Toshio Nishiyama
- Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045 Japan
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 Japan
| |
Collapse
|
14
|
Rabbani M, Rahman E, Powner MB, Triantis IF. Making Sense of Electrical Stimulation: A Meta-analysis for Wound Healing. Ann Biomed Eng 2024; 52:153-177. [PMID: 37743460 PMCID: PMC10808217 DOI: 10.1007/s10439-023-03371-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Electrical stimulation as a mode of external enhancement factor in wound healing has been explored widely. It has proven to have multidimensional effects in wound healing including antibacterial, galvanotaxis, growth factor secretion, proliferation, transdifferentiation, angiogenesis, etc. Despite such vast exploration, this modality has not yet been established as an accepted method for treatment. This article reviews and analyzes the approaches of using electrical stimulation to modulate wound healing and discusses the incoherence in approaches towards reporting the effect of stimulation on the healing process. The analysis starts by discussing various processes adapted in in vitro, in vivo, and clinical practices. Later it is focused on in vitro approaches directed to various stages of wound healing. Based on the analysis, a protocol is put forward for reporting in vitro works in such a way that the outcomes of the experiment are replicable and scalable in other setups. This work proposes a ground of unification for all the in vitro approaches in a more sensible manner, which can be further explored for translating in vitro approaches to complex tissue stimulation to establish electrical stimulation as a controlled clinical method for modulating wound healing.
Collapse
Affiliation(s)
- Mamun Rabbani
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Enayetur Rahman
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Michael B Powner
- Centre for Applied Vision Research, School of Health and Psychological Sciences, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Iasonas F Triantis
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK.
| |
Collapse
|
15
|
Tringides CM, Mooney DJ. Conductive Hydrogel Scaffolds for the 3D Localization and Orientation of Fibroblasts. Macromol Biosci 2024; 24:e2300044. [PMID: 37016832 PMCID: PMC10551049 DOI: 10.1002/mabi.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Dermal wounds and their healing are a collection of complex, multistep processes which are poorly recapitulated by existing 2D in vitro platforms. Biomaterial scaffolds that support the 3D growth of cell cultures can better resemble the native dermal environment, while bioelectronics has been used as a tool to modulate cell proliferation, differentiation, and migration. A porous conductive hydrogel scaffold which mimics the properties of dermis, while promoting the viability and growth of fibroblasts is described. As these scaffolds are also electrically conductive, the application of exogenous electrical stimulation directs the migration of cells across and/or through the material. The mechanical properties of the scaffold, as well as the amplitude and/or duration of the electrical pulses, are independently tunable and further influence the resulting fibroblast networks. This biomaterial platform may enable better recapitulation of wound healing and can be utilized to develop and screen therapeutic interventions.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard–MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| |
Collapse
|
16
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Drapal V, Mosier S, Norman A, Berbel G, Robinson JL, Friis EA. A preliminary In Vitro viability study of an electrically active hernia mesh on mouse fibroblasts. J Biomater Appl 2023; 38:662-669. [PMID: 37862784 PMCID: PMC11181991 DOI: 10.1177/08853282231209312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Hernias occur when part of an organ, typically the intestines, protrudes through a disruption of the fascia in the abdominal wall, leading to patient pain, discomfort, and surgical intervention. Over one million hernia repair surgeries occur annually in the USA, but globally, hernia surgeries can exceed 20 million. Standard practice includes hernia repair mesh to help hold the compromised tissue together, depending on where the fascial disruption is located and the patient's condition. However, the recurrence rate for hernias after using the most common type of hernia mesh, synthetic, is currently high. Physiological-level electrical stimulation (ES) has shown beneficial effects in improving healing in soft tissue regeneration. Piezoelectric materials can produce low-level electrical signals from mechanical loading to help speed healing. Combining the novelty of piezo elements to create an electrically active hernia repair mesh for faster healing prospects is explored in this study through simulated transcutaneous mechanical loading of the piezo element with therapeutic ultrasound. A tissue phantom was developed using Gelatin #0 and Metamucil® to better simulate a clinical application of the therapeutic ultrasound loading modality. The cellular viability of varying ultrasound intensities and temporal effects was analyzed. Overall, minimal cytotoxicity was observed across all experimental groups during the ultrasound intensity and temporal viability studies.
Collapse
Affiliation(s)
- Victoria Drapal
- University of Kansas, Bioengineering Program, Lawrence, KS, USA
| | - Savannah Mosier
- University of Kansas, Bioengineering Program, Lawrence, KS, USA
| | - Anna Norman
- University of Kansas, Bioengineering Program, Lawrence, KS, USA
| | - German Berbel
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L. Robinson
- University of Washington, Department of Orthopaedics and Sports Medicine
- University of Washington, Department of Mechanical Engineering
| | - Elizabeth A. Friis
- University of Kansas, Bioengineering Program, Lawrence, KS, USA
- University of Kansas, Department of Mechanical Engineering, Lawrence, KS, USA
| |
Collapse
|
18
|
Sanz-Fraile H, Herranz-Diez C, Ulldemolins A, Falcones B, Almendros I, Gavara N, Sunyer R, Farré R, Otero J. Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia. Gels 2023; 9:745. [PMID: 37754426 PMCID: PMC10530680 DOI: 10.3390/gels9090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.
Collapse
Affiliation(s)
- Héctor Sanz-Fraile
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Carolina Herranz-Diez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Du J, Liu X, Wong CWY, Wong KKY, Yuan Z. Direct cellular reprogramming and transdifferentiation of fibroblasts on wound healing-Fantasy or reality? Chronic Dis Transl Med 2023; 9:191-199. [PMID: 37711868 PMCID: PMC10497843 DOI: 10.1002/cdt3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 09/16/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is one of the de novo approaches in regeneration medicine and has led to new research applications for wound healing in recent years. Fibroblasts have attracted wide attention as the first cell line used for differentiation into iPSCs. Researchers have found that fibroblasts can be induced into different types of cells in variable mediums or microenvironments. This indicates the potential "stem" characteristics of fibroblasts in terms of direct cellular reprogramming compared with the iPSC detour. In this review, we described the morphology and biological function of fibroblasts. The stem cell characteristics and activities of fibroblasts, including transdifferentiation into myofibroblasts, osteogenic cells, chondrogenic cells, neurons, and vascular tissue, are discussed. The biological values of fibroblasts are then briefly reviewed. Finally, we discussed the potential applications of fibroblasts in clinical practice.
Collapse
Affiliation(s)
- Juan Du
- Diabetic Foot Diagnosis and Treatment CentreJilin Province People HospitalChangchunJilinChina
| | - Xuelai Liu
- Department of SurgeryCapital Institute of Pediatrics Affiliated Children HospitalBeijingChina
| | - Carol Wing Yan Wong
- Department of Surgery, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kenneth Kak Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Zhixin Yuan
- Department of Emergency SurgeryJilin Province People HospitalChangchunJilinChina
| |
Collapse
|
20
|
Wang W, Huang W, Liu J, Zhang Z, Ji R, Wu C, Zhang J, Jiang X. Electric field promotes dermal fibroblast transdifferentiation through activation of RhoA/ROCK1 pathway. Int J Med Sci 2023; 20:1326-1335. [PMID: 37786441 PMCID: PMC10542021 DOI: 10.7150/ijms.86215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 10/04/2023] Open
Abstract
With the increased incidence of age-related and lifestyle-related diseases, chronic wounds are sweeping the world, where recent studies reveal that dysfunction of fibroblast plays an indispensable role. Endogenous electric field (EF) generated by skin wound disrupting an epithelial layer has been used as an alternative clinical treatment in chronic wound by modulating cellular behaviours, including fibroblasts transdifferentiation. Although many molecules and signaling pathways have been reported associated with fibroblasts transdifferentiation, studies investigating how the electric field affects the cellular pathways have been limited. For this purpose, a model of electric field treatment in vitro was established, where cells were randomly divided into control and electrified groups. The changes of protein expression and distribution were detected under different conditions, along with Zeiss imaging system observing the response of cells. Results showed that fibroblast transdifferentiation was accompanied by increased expression of a-SMA and extracellular matrix (COL-1 and COL-3) under the EF. Simultaneously, fibroblast transdifferentiation was also consistent with changes of cell arrangement and enhanced motility. Furthermore, we found that electric field activated RhoA signaling pathways activity. Y-27632, a RhoA inhibitor, which was used to treat fibroblasts, resulted in reduced transdifferentiation. The connection between electric field and RhoA signaling pathways is likely to be significant in modulating fibroblast transdifferentiation in acute injury and tissue remodeling, which provides an innovative idea for the molecular mechanism of EF in promoting chronic wound healing.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ran Ji
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
21
|
Kurz P, Danner G, Lembelembe J, Nair HKR, Martin R. Activation of healing and reduction of pain by single-use automated microcurrent electrical stimulation therapy in patients with hard-to-heal wounds. Int Wound J 2023; 20:2053-2061. [PMID: 36601702 PMCID: PMC10333020 DOI: 10.1111/iwj.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Evidence shows that Electrical Stimulation Therapy (EST) accelerates healing and reduces pain, but EST has yet to become widely used. One reason is the historical use of complex, clinic-based EST devices. This evaluation assessed the early response of different hard-to-heal wounds to a simple, wearable, single-use, automated microcurrent EST device (Accel-Heal, Accel-Heal Technologies Limited - Hever, UK). Forty wounds (39 patients: 18 female - 21 male), mean age 68.9 ± 14.0 years comprised of: seven post-surgical, three trauma, 12 diabetic foot (DFU), 10 venous (VLU), four pressure injuries (PI), four mixed venous or arterial ulcers (VLU/arterial) received automated microcurrent EST for 12 days. Early clinical responses were scored on a 0-5 scale (5-excellent-0-no response). Pain was assessed at 48 h, seven days, and 14 days on a 0-10 visual analogue scale (VAS). Overall, 78% of wounds showed a marked positive clinical response (scores of 5 and 4). Sixty eight percent of wounds were painful with a mean VAS score of 5.5. Almost every patient (96%) with pain experienced reduction within 48 h. All patients with painful wounds experienced pain reduction after seven days: 2.50 VAS (45% reduction) and further pain reduction after 14 days: 1.83 VAS (33%).
Collapse
Affiliation(s)
- Peter Kurz
- WPM Wund Pflege Management GmbHBad PirawarthAustria
| | | | - Jean‐Paul Lembelembe
- Department, Geriatrics & Wound Day HospitalClinique des AugustinesMalestroitFrance
| | | | - Robin Martin
- Robin Martin PhD Scientific ConsultingFoggathorpeUK
| |
Collapse
|
22
|
Vukomanović M, Gazvoda L, Kurtjak M, Maček-Kržmanc M, Spreitzer M, Tang Q, Wu J, Ye H, Chen X, Mattera M, Puigmartí-Luis J, Pane SV. Filler-Enhanced Piezoelectricity of Poly-L-Lactide and Its Use as a Functional Ultrasound-Activated Biomaterial. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301981. [PMID: 37186376 DOI: 10.1002/smll.202301981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.
Collapse
Affiliation(s)
- Marija Vukomanović
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Lea Gazvoda
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Mario Kurtjak
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Marjeta Maček-Kržmanc
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Matjaž Spreitzer
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Qiao Tang
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jiang Wu
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Michele Mattera
- Department of Physical Chemistry, University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Vidal Pane
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
23
|
Szołtys-Brzezowska B, Bańkowska A, Piejko L, Zarzeczny R, Nawrat-Szołtysik A, Kloth LC, Polak A. Electrical Stimulation in the Treatment of Pressure Injuries: A Systematic Review of Clinical Trials. Adv Skin Wound Care 2023; 36:292-302. [PMID: 37212564 DOI: 10.1097/01.asw.0000926632.19578.b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
GENERAL PURPOSE To provide information on evidence-based practice regarding the use of electrical stimulation for pressure injury management. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Apply clinical practice recommendations related to the use of electrical stimulation in the treatment of pressure injuries.2. Identify issues related to the use of electrical stimulation to treat pressure injuries.
Collapse
|
24
|
de Farias CS, Garcez AS, Teixeira LN, Suzuki SS. In vitro effects of photobiomodulation on cell migration and gene expression of ALP, COL-1, RUNX-2, and osterix in cementoblasts. Lasers Med Sci 2023; 38:121. [PMID: 37160506 DOI: 10.1007/s10103-023-03775-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
The aim of this study was to evaluate the effects of photobiomodulation (PBM) on cell migration and alkaline phosphatase (ALP), type I collagen (Col-1), runt-related transcription factor 2 (RUNX-2), and Osterix (OSX) gene expression in a cementoblast culture (OCCM-30), in a microenvironment mimicking an injury on the cementoblast layer, such as it occurs during root resorption. For this, OCCM-30 cells were cultured in 6-well plates and the following parameters were assayed: (1) migration by scratch assay and ALP, Col-1, Runx2, and Osx by real-time PCR. PBM was performed in two protocols using a LED device emitting light at 660 nm (± 30 nm). OCCM-30 cementoblasts were grown and divided into four groups: (1) negative control; (2) positive control (scratch); (3) scratch + PBM with a total energy of 36 J and energy density 1.6 J/cm2; and (4) scratch + PBM with a total energy of 72 J and energy density of 3.2 J/cm2. Data were statistically analyzed, with the level of significance set at 5%. Cementoblasts migrated from the edge of the scratch toward the center, and the wound closed after 24 h, with the PBM3.2J/cm2 group showing the higher cell migration compared with the other groups at 2 h, 6 h, 8 h, and 13 h (p < 0.05). The control and PBM1.6J/cm2 groups showed similar levels of cell migration, with no significant differences (p > 0.05). PBM3.2J/cm2 group exhibited greater ALP, Col-1, OSX, and RUNX2 in comparison with the other experimental groups (p < 0.05). Similar levels of all genes evaluated were observed between the PBM1.6J/cm2 group and the positive control group (p > 0.05). In conclusion, our findings support the effectiveness of photobiomodulation on cementoblast migration and gene expression, which may contribute to the formation of a new cementum layer.
Collapse
Affiliation(s)
| | - Aguinaldo Silva Garcez
- Department of Oral Microbiology, Division of Oral Medicine, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Yang S, Wang Y, Liang X. Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment. Pharmaceutics 2023; 15:1338. [PMID: 37242580 PMCID: PMC10223188 DOI: 10.3390/pharmaceutics15051338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Electric stimulation has been used in changing the morphology, status, membrane permeability, and life cycle of cells to treat certain diseases such as trauma, degenerative disease, tumor, and infection. To minimize the side effects of invasive electric stimulation, recent studies attempt to apply ultrasound to control the piezoelectric effect of nano piezoelectric material. This method not only generates an electric field but also utilizes the benefits of ultrasound such as non-invasive and mechanical effects. In this review, important elements in the system, piezoelectricity nanomaterial and ultrasound, are first analyzed. Then, we summarize recent studies categorized into five kinds, nervous system diseases treatment, musculoskeletal tissues treatment, cancer treatment, anti-bacteria therapy, and others, to prove two main mechanics under activated piezoelectricity: one is biological change on a cellular level, the other is a piezo-chemical reaction. However, there are still technical problems to be solved and regulation processes to be completed before widespread use. The core problems include how to accurately measure piezoelectricity properties, how to concisely control electricity release through complex energy transfer processes, and a deeper understanding of related bioeffects. If these problems are conquered in the future, piezoelectric nanomaterials activated by ultrasound will provide a new pathway and realize application in disease treatment.
Collapse
Affiliation(s)
| | | | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
26
|
Bianchi LMG, Irmici G, Cè M, D'Ascoli E, Della Pepa G, Di Vita F, Casati O, Soresina M, Menozzi A, Khenkina N, Cellina M. Diagnosis and Treatment of Post-Prostatectomy Lymphedema: What's New? Curr Oncol 2023; 30:4512-4526. [PMID: 37232799 DOI: 10.3390/curroncol30050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Lymphedema is a chronic progressive disorder that significantly compromises patients' quality of life. In Western countries, it often results from cancer treatment, as in the case of post-radical prostatectomy lymphedema, where it can affect up to 20% of patients, with a significant disease burden. Traditionally, diagnosis, assessment of severity, and management of disease have relied on clinical assessment. In this landscape, physical and conservative treatments, including bandages and lymphatic drainage have shown limited results. Recent advances in imaging technology are revolutionizing the approach to this disorder: magnetic resonance imaging has shown satisfactory results in differential diagnosis, quantitative classification of severity, and most appropriate treatment planning. Further innovations in microsurgical techniques, based on the use of indocyanine green to map lymphatic vessels during surgery, have improved the efficacy of secondary LE treatment and led to the development of new surgical approaches. Physiologic surgical interventions, including lymphovenous anastomosis (LVA) and vascularized lymph node transplant (VLNT), are going to face widespread diffusion. A combined approach to microsurgical treatment provides the best results: LVA is effective in promoting lymphatic drainage, bridging VLNT delayed lymphangiogenic and immunological effects in the lymphatic impairment site. Simultaneous VLNT and LVA are safe and effective for patients with both early and advanced stages of post-prostatectomy LE. A new perspective is now represented by the combination of microsurgical treatments with the positioning of nano fibrillar collagen scaffolds (BioBridgeTM) to favor restoring the lymphatic function, allowing for improved and sustained volume reduction. In this narrative review, we proposed an overview of new strategies for diagnosing and treating post-prostatectomy lymphedema to get the most appropriate and successful patient treatment with an overview of the main artificial intelligence applications in the prevention, diagnosis, and management of lymphedema.
Collapse
Affiliation(s)
| | - Giovanni Irmici
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Elisa D'Ascoli
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Filippo Di Vita
- Postgraduation School in Plastic Surgery, University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Omar Casati
- Postgraduation School in Plastic Surgery, University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Massimo Soresina
- Plastic Surgery Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milan, Italy
| | - Andrea Menozzi
- Plastic Surgery Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milan, Italy
| | - Natallia Khenkina
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milan, Italy
| |
Collapse
|
27
|
Paramshetti S, Angolkar M, Al Fatease A, Alshahrani SM, Hani U, Garg A, Ravi G, Osmani RAM. Revolutionizing Drug Delivery and Therapeutics: The Biomedical Applications of Conductive Polymers and Composites-Based Systems. Pharmaceutics 2023; 15:pharmaceutics15041204. [PMID: 37111689 PMCID: PMC10145001 DOI: 10.3390/pharmaceutics15041204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first conductive polymers (CPs) were developed during the 1970s as a unique class of organic substances with properties that are electrically and optically comparable to those of inorganic semiconductors and metals while also exhibiting the desirable traits of conventional polymers. CPs have become a subject of intensive research due to their exceptional qualities, such as high mechanical and optical properties, tunable electrical characteristics, ease of synthesis and fabrication, and higher environmental stability than traditional inorganic materials. Although conducting polymers have several limitations in their pure state, coupling with other materials helps overcome these drawbacks. Owing to the fact that various types of tissues are responsive to stimuli and electrical fields has made these smart biomaterials attractive for a range of medical and biological applications. For various applications, including the delivery of drugs, biosensors, biomedical implants, and tissue engineering, electrical CPs and composites have attracted significant interest in both research and industry. These bimodalities can be programmed to respond to both internal and external stimuli. Additionally, these smart biomaterials have the ability to deliver drugs in various concentrations and at an extensive range. This review briefly discusses the commonly used CPs, composites, and their synthesis processes. Further highlights the importance of these materials in drug delivery along with their applicability in various delivery systems.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Sultan M Alshahrani
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- College of Applied Medical Sciences, Bisha University, Bisha 67714, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| |
Collapse
|
28
|
Kougkolos G, Golzio M, Laudebat L, Valdez-Nava Z, Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 2023; 11:2036-2062. [PMID: 36789648 DOI: 10.1039/d2tb02019j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- IPBS, Université de Toulouse, NRS UMR, UPS, 31077 Toulouse CEDEX 4, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,INU Champollion, Université de Toulouse, 81012 Albi, France
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
29
|
Katoh K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med Sci (Basel) 2023; 11:medsci11010011. [PMID: 36810478 PMCID: PMC9944882 DOI: 10.3390/medsci11010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Electrical stimulation of the cell can have a number of different effects depending on the type of cell being stimulated. In general, electrical stimulation can cause the cell to become more active, increase its metabolism, and change its gene expression. For example, if the electrical stimulation is of low intensity and short duration, it may simply cause the cell to depolarize. However, if the electrical stimulation is of high intensity or long duration, it may cause the cell to become hyperpolarized. The electrical stimulation of cells is a process by which an electrical current is applied to cells in order to change their function or behavior. This process can be used to treat various medical conditions and has been shown to be effective in a number of studies. In this perspective, the effects of electrical stimulation on the cell are summarized.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
30
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
31
|
Onorato G, Fardella F, Lewinska A, Gobbo F, Tommasini G, Wnuk M, Tino A, Moros M, Antognazza MR, Tortiglione C. Optical Control of Tissue Regeneration through Photostimulation of Organic Semiconducting Nanoparticles. Adv Healthc Mater 2022; 11:e2200366. [PMID: 35861262 PMCID: PMC11469744 DOI: 10.1002/adhm.202200366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/04/2022] [Indexed: 01/27/2023]
Abstract
Next generation bioengineering strives to identify crucial cues that trigger regeneration of damaged tissues, and to control the cells that execute these programs with biomaterials and devices. Molecular and biophysical mechanisms driving embryogenesis may inspire novel tools to reactivate developmental programs in situ. Here nanoparticles based on conjugated polymers are employed for optical control of regenerating tissues by using an animal with unlimited regenerative potential, the polyp Hydra, as in vivo model, and human keratinocytes as an in vitro model to investigate skin repair. By integrating animal, cellular, molecular, and biochemical approaches, nanoparticles based on poly-3-hexylthiophene (P3HT) are shown able to enhance regeneration kinetics, stem cell proliferation, and biomolecule oxidation levels. Opposite outputs are obtained with PCPDTBT-NPs (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)], causing a beneficial effect on Hydra regeneration but not on the migratory capability of keratinocytes. These results suggest that the artificial modulation of the redox potential in injured tissues may represent a powerful modality to control their regenerative potential. Importantly, the possibility to fine-tuning materials' photocatalytic efficiency may enable a biphasic modulation over a wide dynamic range, which can be exploited to augment the tissue regenerative capacity or inhibit the unlimited potential of cancerous cells in pathological contexts.
Collapse
Affiliation(s)
- Giada Onorato
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Institute of Biosciences and BioresourcesNational Research CouncilVia Pietro Castellino 111NapoliItaly
| | - Federica Fardella
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Anna Lewinska
- Department of BiotechnologyInstitute of Biology and BiotechnologyFaculty of BiotechnologyUniversity of RzeszowPigonia 1Rzeszow35–310Poland
| | - Federico Gobbo
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia Pascoli 70/3Milano20133Italy
- Politecnico di MilanoDip. di FisicaP.zza L. Da Vinci 32Milano20133Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Maciej Wnuk
- Department of BiologyFaculty of BiotechnologyUniversity of RzeszowPigonia 1Rzeszow35–310Poland
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia Pascoli 70/3Milano20133Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| |
Collapse
|
32
|
Xiong F, Wei S, Sheng H, Wu S, Liu Z, Cui W, Sun Y, Wu Y, Li B, Xuan H, Xue Y, Yuan H. Three-layer core-shell structure of polypyrrole/polydopamine/poly(l-lactide) nanofibers for wound healing application. Int J Biol Macromol 2022; 222:1948-1962. [DOI: 10.1016/j.ijbiomac.2022.09.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
33
|
Hormesis: wound healing and fibroblasts. Pharmacol Res 2022; 184:106449. [PMID: 36113746 DOI: 10.1016/j.phrs.2022.106449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
Hormetic dose responses are reported here to occur commonly in the dermal wound healing process, with the particular focus on cell viability, proliferation, migration and collagen deposition of human and murine fibroblasts with in vitro studies. Hormetic responses were induced by a wide range of substances, including endogenous agents, pharmaceutical preparations, plant-derived extracts including many well-known dietary supplements, as well as physical stressor agents such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings complement and extend a similar comprehensive assessment concerning the occurrence of hormetic dose responses in keratinocytes. These findings demonstrate the generality of the hormetic dose response for key wound healing endpoints, suggesting that the hormesis concept has a fundamental role in wound healing, with respect to guiding strategies for experimental evaluation as well as therapeutic applications.
Collapse
|
34
|
Yang J, Liu X, Wang W, Chen Y, Liu J, Zhang Z, Wu C, Jiang X, Liang Y, Zhang J. Bioelectric fields coordinate wound contraction and re-epithelialization process to accelerate wound healing via promoting myofibroblast transformation. Bioelectrochemistry 2022; 148:108247. [PMID: 35994901 DOI: 10.1016/j.bioelechem.2022.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Electric fields (EFs) are thought to play a decisive role in wound healing. However, most studies focused on the effects of EF on single species of cells in vitro. Here, we aimed to investigate the coordination function of EFs on wound healing. Using a bamamini pig whole-layer wound model, we further evaluated the potential of EFs as a treatment modality by applying continuous and stable EF to the wound, and we found that EF promoted wound contraction and re-epithelialization in vivo, which accelerated wound healing. In vitro, we found that EFs significantly promoted the collective migration of HaCaT cells, guided HSF cells rearrangement, and promoted collagen secretion and myofibroblast transformation, and the electrotaxis of HaCaT cells was significantly enhanced on the collagen substrate and F-actin polarization at the leading edge of the cells was more pronounced. Overall, we determined that EF promotes wound contraction by promoting myofibrillar transformation, while accelerating the formation of collagen substrates, and the substrates could provide a good basis for electric field-guided re-epithelialization. EF may promote wound healing in multiple dimensions interaction and coordinate the whole process of wound healing. These findings provide support for the continued development of EF for wound treatment applications.
Collapse
Affiliation(s)
- Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenping Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Liang
- Department of Burn and Plastic Surgery, Army 73rd Group Military Hospital, China.
| | - JiaPing Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
35
|
Kodolova-Chukhontseva VV, Shishov MA, Kolbe KA, Smirnova NV, Dobrovol’skaya IP, Dresvyanina EN, Bystrov SG, Terebova NS, Kamalov AM, Bursian AE, Ivan’kova EM, Yudin VE. Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies. Polymers (Basel) 2022; 14:polym14163287. [PMID: 36015544 PMCID: PMC9413541 DOI: 10.3390/polym14163287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that chitosan films containing 0.1–3.0 wt.% of single-wall carbon nanotubes have higher conductivity (10 S/m) than pure chitosan films (10−11 S/m). The investigation of electrical stimulation of human dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the chitosan matrix.
Collapse
Affiliation(s)
- Vera Vladimirovna Kodolova-Chukhontseva
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
| | - Mikhail Alexandrovich Shishov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
| | - Konstantin Andreevich Kolbe
- Laboratory No 8—Mechanics of Polymers and Composite, Institute of Macromolecular Compounds Russian Academy of Science, V.O., Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Natalia Vladimirovna Smirnova
- Laboratory No 8—Mechanics of Polymers and Composite, Institute of Macromolecular Compounds Russian Academy of Science, V.O., Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Irina Petrovna Dobrovol’skaya
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
| | - Elena Nikolaevna Dresvyanina
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
- Institute of Textile and Fashion, Saint Petersburg State University of Industrial Technologies and Design, Bolshaya Morskaya Street, 18, 191186 Saint-Petersburg, Russia
- Correspondence:
| | - Sergei Gennadievich Bystrov
- Department of Physics and Surface Chemistry, Udmurt Federal Research Center UB RAS, Tatiana Baramzina Str., 34, 426067 Izhevsk, Russia
| | - Nadezda Semenovna Terebova
- Department of Physics and Surface Chemistry, Udmurt Federal Research Center UB RAS, Tatiana Baramzina Str., 34, 426067 Izhevsk, Russia
| | - Almaz Maratovich Kamalov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
| | - Anna Ericovna Bursian
- Laboratory No 8—Mechanics of Polymers and Composite, Institute of Macromolecular Compounds Russian Academy of Science, V.O., Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Elena Mikhailovna Ivan’kova
- Laboratory No 8—Mechanics of Polymers and Composite, Institute of Macromolecular Compounds Russian Academy of Science, V.O., Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Vladimir Evgenievich Yudin
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia
| |
Collapse
|
36
|
Gazvoda L, Perišić Nanut M, Spreitzer M, Vukomanović M. Antimicrobial activity of piezoelectric polymer: piezoelectricity as the reason for damaging bacterial membrane. Biomater Sci 2022; 10:4933-4948. [PMID: 35861487 DOI: 10.1039/d2bm00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell stimulation using piezoelectric polymers, which is known as piezostimulation, is an innovative approach for designing antimicrobial protection. As an antibiotic-free and inorganic nanoparticle-free approach, it uses physical stimuli to target bacterial cells in a non-specific manner, which may be of great importance, particularly in the context of avoiding resistant bacterial strains. In this study, we prepared fully organic piezoelectric biodegradable films composed of poly-L-lactide (PLLA) and demonstrated their antimicrobial effect on S. epidermidis as a model of Gram-positive and E. coli as a model of Gram-negative bacteria. The PLLA films were either smooth and fabricated using simple melt- drawing or nanotextured, as self-standing nanotubes formed using the template-assisted method. The morphological differences between nanotextured and smooth films resulted in a larger surface area and better surface contact in nanotextured films, together with improved structural properties and better crystallinity, which were the main reasons for their better piezoelectric properties, and consequently stronger bactericidal effect. The comparison between the nanotextured surfaces with and without piezoelectric nature excluded the main role of morphology and directly confirmed piezoelectricity as the main reason for the observed antimicrobial affect. We also confirmed that piezo-stimulation using the antibacterial nanotextured film could damage the bacterial membrane as the main mechanism of action, while the contribution of pH changes and ROS generation was negligible. More importantly, the effect was selective toward the bacterial membrane and the same damage was not observed in human red blood cells, making the therapeutic use of these films possible.
Collapse
Affiliation(s)
- Lea Gazvoda
- Advanced materials Department, Jožef Stefan Institute, Ljubljana, Slovenia. .,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Matjaž Spreitzer
- Advanced materials Department, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Marija Vukomanović
- Advanced materials Department, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Kamalov A, Shishov M, Smirnova N, Kodolova-Chukhontseva V, Dobrovol’skaya I, Kolbe K, Didenko A, Ivan’kova E, Yudin V, Morganti P. Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts. J Funct Biomater 2022; 13:89. [PMID: 35893457 PMCID: PMC9326723 DOI: 10.3390/jfb13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10-15 to 102 S/m with increasing graphene content (from 0 to 5.0 wt.%). The characteristics of ionic and electronic currents flowing through the matrix with the superposition of cyclic potentials ± 100 mV were studied. The high stability of the composite was established during prolonged cycling (130 h) in an electric field with a frequency of 0.016 Hz. It was established that the composite films based on polyimide and graphene have good biocompatibility and are not toxic to fibroblast cells. It was shown that preliminary electrical stimulation increases the proliferative activity of human dermal fibroblasts in comparison with intact cells. It is revealed that an electric field with a strength E = 0.02-0.04 V/m applied to the polyimide films containing 0.5-3.0 wt.% of the graphene nanoparticles activates cellular processes (adhesion, proliferation).
Collapse
Affiliation(s)
- Almaz Kamalov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Mikhail Shishov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Natalia Smirnova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vera Kodolova-Chukhontseva
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Irina Dobrovol’skaya
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Konstantin Kolbe
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Andrei Didenko
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Elena Ivan’kova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vladimir Yudin
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Pierfrancesco Morganti
- R&D Unit, Academy of History of Healthcare Art, Lungotevere in Sassia 3, 00186 Rome, Italy;
| |
Collapse
|
38
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Verdes M, Mace K, Margetts L, Cartmell S. Status and challenges of electrical stimulation use in chronic wound healing. Curr Opin Biotechnol 2022; 75:102710. [DOI: 10.1016/j.copbio.2022.102710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
40
|
Interfaces Based on Laser-Structured Arrays of Carbon Nanotubes with Albumin for Electrical Stimulation of Heart Cell Growth. Polymers (Basel) 2022; 14:polym14091866. [PMID: 35567036 PMCID: PMC9102927 DOI: 10.3390/polym14091866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Successful formation of electronic interfaces between living cells and electronic components requires both good cell viability and performance level. This paper presents a technology for the formation of nanostructured arrays of multi-walled carbon nanotubes (MWCNT) in biopolymer (albumin) layer for higher biocompatibility. The layer of liquid albumin dispersion was sprayed on synthesized MWCNT arrays by deposition system. These nanostructures were engineered using the nanosecond pulsed laser radiation mapping in the near-IR spectral range (λ = 1064 nm). It was determined that the energy density of 0.015 J/cm2 provided a sufficient structuring of MWCNT. The structuring effect occurred during the formation of C–C bonds simultaneously with the formation of a cellular structure of nanotubes in the albumin matrix. It led to a decrease in the nanotube defectiveness, which was observed during the Raman spectroscopy. In addition, laser structuring led to a more than twofold increase in the electrical conductivity of MWCNT arrays with albumin (215.8 ± 10 S/m). Successful electric stimulation of cells on the interfaces with the system based on a culture plate was performed, resulting in the enhanced cell proliferation. Overall, the MWCNT laser-structured arrays with biopolymers might be a promising material for extended biomedical applications.
Collapse
|
41
|
Effect of Magnetohydrodynamic on Cutaneous Wound Healing in Rat Model. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.118387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Exogenous electrical stimulation of the skin may mimic its endogenous bioelectric currents. In this study, a combination of direct current (DC) and magnetic field (MF) was investigated in the excision of the rat wound model. Methods: A circular wound was created on the posterior of the neck, and an electrode was fixed in the wound center. Rats were divided into sham, DC (600 µA), MF (~0.8 T), and magnet-direct current (MDC) groups. The study was conducted in 14 days with 20-min treatment daily. Results: The DC and MDC groups had higher healing percentages (P < 0.01) with mean differences of -13.42 and -15.63, respectively. Direct current on days 2, 5, and 6, and MDC on days 8, 9, 10, 11, 12, and 13 showed higher wound closing. In the DC-treated group, angiogenesis was improved on day 7. In MDC-treated rats, angiogenesis and fibroplasia were improved on day 13. The MF and MDC groups had lower granulation thicknesses on day 7. Granulation thickness increased on day 13 in the MF and MDC groups, while it decreased in the DC group. Direct current treatment improved healing in the first half of the study period, whereas MDC enhanced it in the second half, overtaking DC. From day 7, the magnet group started to overtake the control group slightly in the last four days. Conclusions: To accelerate wound healing, we suggest applying DC in the first days of wounding and MDC in the following days.
Collapse
|
42
|
Non-contact electrical stimulation as an effective means to promote wound healing. Bioelectrochemistry 2022; 146:108108. [DOI: 10.1016/j.bioelechem.2022.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
|
43
|
Lee H, Hwang D, Lee M, Lee J, Cho S, Kim TJ, Kim HS. Micro-Current Stimulation Suppresses Inflammatory Responses in Peptidoglycan-Treated Raw 264.7 Macrophages and Propionibacterium acnes-Induced Skin Inflammation via TLR2/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23052508. [PMID: 35269651 PMCID: PMC8910224 DOI: 10.3390/ijms23052508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Acne is a common inflammatory disorder of the human skin and a multifactorial disease caused by the sebaceous gland and Propionibacterium acnes (P. acnes). This study aimed to evaluate the anti-inflammatory effect of micro-current stimulation (MC) on peptidoglycan (PGN)-treated raw 264.7 macrophages and P. acnes-induced skin inflammation. To specify the intensity with anti-inflammatory effects, nitric oxide (NO) production was compared according to various levels of MC. As the lowest NO production was shown at an intensity of 50 μA, subsequent experiments used this intensity. The changes of expression of the proteins related to TLR2/NF-κB signaling were examined by immunoblotting. Also, immunofluorescence analysis was performed for observing NF-κB p65 localization. All of the expression levels of proteins regarding TLR2/NF-κB signaling were decreased by the application of MC. Moreover, the application of MC to PGN-treated raw 264.7 cells showed a significant decrease in the amount of nuclear p65-protein. In the case of animal models with P. acnes-induced skin inflammation, various pro-inflammatory cytokines and mediators significantly decreased in MC-applied mice. In particular, the concentration of IL-1β in serum decreased, and the area of acne lesions, decreased from the histological analysis. We suggest for the first time that MC can be a novel treatment for acne.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Donghyun Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Jinho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (J.L.); (T.-J.K.)
| | | | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (J.L.); (T.-J.K.)
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
- Correspondence: ; Tel.: +82-33-760-2913
| |
Collapse
|
44
|
Melotto G, Tunprasert T, Forss JR. The effects of electrical stimulation on diabetic ulcers of foot and lower limb: A systematic review. Int Wound J 2022; 19:1911-1933. [PMID: 35112496 DOI: 10.1111/iwj.13762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a life-threatening condition affecting a third of diabetic patients. Many adjuvant therapies aimed at improving the healing rate (HR) and accelerating healing time are currently under investigation. Electrical stimulation (ES) is a physical-based therapy able to increase cells activity and migration into wound bed as well as inhibiting bacterial activity. The aim of this paper was to collect and analyse findings on the effects of ES used in combination with standard wound care (SWC) in the treatment of diabetic foot ulceration compared with SWC alone. A systematic review was performed to synthesise data from quantitative studies from eight databases. Article quality was assessed using the Crowe critical appraisal tool. Seven articles out of 560 publications met the inclusion criteria. A meta-analysis was not performed due to the heterogeneity of the studies and the results were narratively synthetised. Findings showed that HR appears to be higher among diabetic ulcers treated with ES; however, the reliability of these findings is affected by the small sample sizes of the studies. Furthermore, four studies are considered as moderate or high risk of bias. The evidence to suggest the systematic usage of ES in the treatment of DFUs is still insufficient.
Collapse
Affiliation(s)
- Gianluca Melotto
- School of Health Sciences, University of Brighton, Eastbourne, UK
| | | | | |
Collapse
|
45
|
Yoshikawa Y, Hiramatsu T, Sugimoto M, Uemura M, Mori Y, Ichibori R. Efficacy of Low-frequency Monophasic Pulsed Microcurrent Stimulation Therapy in Undermining Pressure Injury: A Double-blind Crossover-controlled Study. Prog Rehabil Med 2022; 7:20220045. [PMID: 36160025 PMCID: PMC9470497 DOI: 10.2490/prm.20220045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives: This double-blind crossover-controlled trial aimed to verify the effect of electrical
stimulation therapy on pressure injuries with undermining. Methods : In this trial, we compared the healing rates between a sham period and a treatment
period using monophasic pulsed microcurrent therapy. The participants were randomly
assigned to the sham or treatment group and received stimulation for 2 weeks. All the
participants, physical therapists, and researchers were blinded to the allocation. For
the main analysis, data on the effect of the intervention on changes in weekly healing
and contraction rates of the wound areas, including undermining, were analyzed based on
a two-period crossover study design. The intervention effect was estimated by examining
the mean treatment difference for each period using Wilcoxon’s signed-rank test. Results : The reduction of the entire wound area, including the undermining area, resulted in
significantly higher healing and contraction rates in the treatment group (overall wound
area reduction rate: contraction rate, P=0.008; period healing rate, P=0.002). Conclusions : Electrical stimulation therapy for pressure injuries, using conditions based on the
findings of an in vivo culture study, was effective in reducing the wound area.
Collapse
Affiliation(s)
| | | | - Masaharu Sugimoto
- Department of Physical therapy, Kobe Gakuin University (Retired), Kobe, Japan
| | - Mikiko Uemura
- Department of Health Science, Kansai University of Welfare Sciences, Kashiwara City, Japan
| | - Yuki Mori
- Department of Rehabilitation, Housenka Hospital, Ibaraki City, Japan
| | - Ryoko Ichibori
- Department of Dermatology, Housenka Hospital, Ibaraki City, Japan
| |
Collapse
|
46
|
Electrical Stimulation and Cellular Behaviors in Electric Field in Biomedical Research. MATERIALS 2021; 15:ma15010165. [PMID: 35009311 PMCID: PMC8746014 DOI: 10.3390/ma15010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Research on the cellular response to electrical stimulation (ES) and its mechanisms focusing on potential clinic applications has been quietly intensified recently. However, the unconventional nature of this methodology has fertilized a great variety of techniques that make the interpretation and comparison of experimental outcomes complicated. This work reviews more than a hundred publications identified mostly from Medline, categorizes the techniques, and comments on their merits and weaknesses. Electrode-based ES, conductive substrate-mediated ES, and noninvasive stimulation are the three principal categories used in biomedical research and clinic. ES has been found to enhance cell proliferation, growth, migration, and stem cell differentiation, showing an important potential in manipulating cellular activities in both normal and pathological conditions. However, inappropriate parameters or setup can have negative effects. The complexity of the delivered electric signals depends on how they are generated and in what form. It is also difficult to equate one set of parameters with another. Mechanistic studies are rare and badly needed. Even so, ES in combination with advanced materials and nanotechnology is developing a strong footing in biomedical research and regenerative medicine.
Collapse
|
47
|
Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, Choi EH. Influence of Redox Stress on Crosstalk between Fibroblasts and Keratinocytes. BIOLOGY 2021; 10:biology10121338. [PMID: 34943253 PMCID: PMC8698713 DOI: 10.3390/biology10121338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary There has been significant scientific progress in skin care and skin damage repair, but the complete understanding of skin homeostasis is still beyond our reach. With an increase in environmental stress factors, the incidence rates of skin cancer and skin disorders are on the rise. Taken together with the incidence of scar- and burn-related morbidities, there is an urgent need to understand interactions between skin cells to develop novel therapies for the regeneration of healthy skin. One of the recurrent stress factors affecting the skin are the harmful free radicals, also referred to as oxidative stress. This study aimed to address the influence of oxidative stress on the interaction between two types of skin cells, keratinocytes and fibroblasts. The study utilized cold atmospheric plasma (CAP) to induce oxidative stress in cells and to assess the interactions between the two cell types. We showed that CAP can stimulate cells to enhance their proliferation and migration. This study provides a further understanding of skin cell regulation under stress conditions. Such knowledge may help in designing treatment therapies for rapid wound healing and skin repair. Abstract Although the skin is constantly subjected to endogenous and exogenous stress, it maintains a homeostatic state through wound repair and regeneration pathways. Treatment for skin diseases and injury requires a significant understanding of the various mechanisms and interactions that occur within skin cells. Keratinocytes and fibroblasts interact with each other and act as key players in the repair process. Although fibroblasts and keratinocytes are widely studied in wound healing and skin remodeling under different conditions, the influence of redox stress on keratinocyte-fibroblast crosstalk has not been thoroughly investigated. In this study, we used cold atmospheric plasma (CAP) to generate and deliver oxidative stress to keratinocytes and fibroblasts and to assess its impact on their interactions. To this end, we used a well-established in vitro 3D co-culture model imitating a realistic scenario. Our study shows that low CAP exposure is biocompatible and does not affect the viability or energetics of fibroblasts and keratinocytes. Exposure to low doses of CAP enhanced the proliferation rate of cells and stimulated the expression of key genes (KGF, MMP2, GMCSF, IL-6, and IL-8) in fibroblasts, indicating the activation and initiation of the skin repair process. Additionally, enhanced migration was observed under co-culture conditions under the given redox stress conditions, and expression of the upstream regulator and the effectors of the Hippo pathway (YAP and CYR61, respectively), which are associated with enhanced migration, were elevated. Overall, this study reinforces the application of CAP and redox stress in skin repair physiology.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Kai Masur
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Debarati Shome
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong 18323, Korea;
| | - Linh N. Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| |
Collapse
|
48
|
Zulbaran-Rojas A, Park C, Lepow B, Najafi B. Effectiveness of Lower-Extremity Electrical Stimulation to Improve Skin Perfusion. J Am Podiatr Med Assoc 2021; 111. [PMID: 33656524 DOI: 10.7547/20-172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although numerous studies suggest the benefit of electrical stimulation (E-Stim) therapy to accelerate wound healing, the underlying mechanism of action is still debated. In this pilot study, we examined the potential effectiveness of lower-extremity E-Stim therapy to improve tissue perfusion in patients with diabetic foot ulcers. METHODS Thirty-eight patients with diabetic foot ulcers underwent 60 min of active E-Stim therapy on acupuncture points above the level of the ankle joint using a bioelectric stimulation technology platform. Perfusion changes in response to E-Stim were assessed by measuring skin perfusion pressure (SPP) at baseline and during 30 and 60 min of therapy; retention was assessed 10 min after therapy. Tissue oxygen saturation (SatO2) was measured using a noninvasive near-infrared camera. RESULTS Skin perfusion pressure increased in response to E-Stim therapy (P = .02), with maximum improvement observed at 60 min (11%; P = .007) compared with baseline; SPP reduced 10 min after therapy but remained higher than baseline (9%; P = .1). Magnitude of improvement at 60 min was negatively correlated with baseline SPP values (r = -0.45; P = .01), suggesting that those with lower perfusion could benefit more from E-Stim therapy. Similar trends were observed for SatO2, with statistically significant improvement for a subsample (n = 16) with moderate-to-severe peripheral artery disease. CONCLUSIONS This study provides early results on the feasibility and effectiveness of E-Stim therapy to improve skin perfusion and SatO2. The magnitude of benefit is higher in those with poorer skin perfusion. Also, the effects of E-Stim could be washed out after stopping therapy, and regular daily application might be required for effective benefit in wound healing.
Collapse
|
49
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
50
|
Modeling optical design parameters for fine stimulation in sciatic nerve of optogenetic mice. Sci Rep 2021; 11:22588. [PMID: 34799602 PMCID: PMC8605010 DOI: 10.1038/s41598-021-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
Optogenetics presents an alternative method for interfacing with the nervous system over the gold-standard of electrical stimulation. While electrical stimulation requires electrodes to be surgically embedded in tissue for in vivo studies, optical stimulation offers a less-invasive approach that may yield more specific, localized stimulation. The advent of optogenetic laboratory animals-whose motor neurons can be activated when illuminated with blue light-enables research into refining optical stimulation of the mammalian nervous system where subsets of nerve fibers within a nerve may be stimulated without embedding any device directly into the nerve itself. However, optical stimulation has a major drawback in that light is readily scattered and absorbed in tissue thereby limiting the depth with which a single emission source can penetrate. We hypothesize that the use of multiple, focused light emissions deployed around the circumference of a nerve can overcome these light-scattering limitations. To understand the physical parameters necessary to produce pinpointed light stimulation within a single nerve, we employed a simplified Monte Carlo simulation to estimate the size of nerves where this technique may be successful, as well as the necessary optical lens design for emitters to be used during future in vivo studies. By modeling multiple focused beams, we find that only fascicles within a nerve diameter less than 1 mm are fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture [Formula: see text]. These simulations inform on the design of instrumentation capable of stimulating disparate motor neurons in mouse sciatic nerve to control hindlimb movement.
Collapse
|