1
|
Islam A, Rahman MZ, Hassan MM, Epstein JH, Klaassen M. Farm biosecurity practices affecting avian influenza virus circulation in commercial chicken farms in Bangladesh. One Health 2024; 18:100681. [PMID: 39010948 PMCID: PMC11247270 DOI: 10.1016/j.onehlt.2024.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/17/2024] [Indexed: 07/17/2024] Open
Abstract
Avian influenza virus (AIV) is of major concern to livestock, wildlife, and human health. In many countries in the world, including Bangladesh, AIV is endemic in poultry, requiring improving biosecurity. In Bangladesh, we investigated how variation in biosecurity practices in commercial chicken farms affected their AIV infection status to help guide AIV mitigation strategies. We collected pooled fecal swabs from 225 farms and tested the samples for the AIV matrix gene followed by H5, H7, and H9 subtyping using rRT-PCR. We found that 39.6% of chicken farms were AIV positive, with 13% and 14% being positive for subtypes H5 and H9, respectively. Using a generalized linear mixed effects model, we identified as many as 12 significant AIV risk factors. Two major factors promoting AIV risk that cannot be easily addressed in the short term were farm size and the proximity of the farm to a live bird market. However, the other ten significant determinants of AIV risk can be more readily addressed, of which the most important ones were limiting access by visitors (reducing predicted AIV risk from 42 to 6%), isolation and treatment of sick birds (42 to 7%), prohibiting access of vehicles to poultry sheds (38 to 8%), improving hand hygiene (from 42 to 9%), not sharing farm workers across farms (37 to 8%), and limiting access by wild birds to poultry sheds (37 to 8%). Our findings can be applied to developing practical and cost-effective measures that significantly decrease the prevalence of AIV in chicken farms. Notably, in settings with limited resources, such as Bangladesh, these measures can help governments strengthen biosecurity practices in their poultry industry to limit and possibly prevent the spread of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- EcoHealth Alliance, New York, NY 10018, USA
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Høg E, Fournié G, Hoque MA, Mahmud R, Pfeiffer DU, Barnett T. Avian Influenza Risk Environment: Live Bird Commodity Chains in Chattogram, Bangladesh. Front Vet Sci 2021; 8:694753. [PMID: 34616791 PMCID: PMC8489835 DOI: 10.3389/fvets.2021.694753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, we identify behaviours in live bird commodity chains in Chattogram, Bangladesh, which may influence the risk of pathogen emergence and transmission: the nature of poultry trade, value appropriation and selling sick or infected birds. Examining the reasons why actors engage in these behaviours, we emphasise the politics of constraints within a context of real-world decisions, governed by existential and pragmatic agency. Focusing on contact zones and entanglement, analysing patron-client relationships and precarious circumstances, we argue that agency and structure specific to the Bangladeshi context produce a risk environment. Structural constraints may reinforce risky occupational practises and limit individual agency. Structural constraints need to be addressed in order to tackle animal and zoonotic disease risk along live animal commodity chains.
Collapse
Affiliation(s)
- Erling Høg
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics and Public Health, The Royal Veterinary College, London, United Kingdom
| | - Md. Ahasanul Hoque
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Rashed Mahmud
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Dirk U. Pfeiffer
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics and Public Health, The Royal Veterinary College, London, United Kingdom
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Tony Barnett
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics and Public Health, The Royal Veterinary College, London, United Kingdom
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, United Kingdom
- Firoz Lalji Institute for Africa, London School of Economics, London, United Kingdom
| |
Collapse
|
3
|
Chen X, Wang W, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infections with highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC Med 2020; 18:377. [PMID: 33261599 PMCID: PMC7709391 DOI: 10.1186/s12916-020-01836-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A(H5N1) virus poses a global public health threat given severe and fatal zoonotic infections since 1997 and ongoing A(H5N1) virus circulation among poultry in several countries. A comprehensive assessment of the seroprevalence of A(H5N1) virus antibodies remains a gap and limits understanding of the true risk of A(H5N1) virus infection. METHODS We conducted a systematic review and meta-analysis of published serosurveys to assess the risk of subclinical and clinically mild A(H5N1) virus infections. We assessed A(H5N1) virus antibody titers and changes in titers among populations with variable exposures to different A(H5N1) viruses. RESULTS Across studies using the World Health Organization-recommended seropositive definition, the point estimates of the seroprevalence of A(H5N1) virus-specific antibodies were higher in poultry-exposed populations (range 0-0.6%) and persons exposed to both human A(H5N1) cases and infected birds (range 0.4-1.8%) than in close contacts of A(H5N1) cases or the general population (none to very low frequencies). Seroprevalence was higher in persons exposed to A(H5N1) clade 0 virus (1.9%, range 0.7-3.2%) than in participants exposed to other clades of A(H5N1) virus (range 0-0.5%) (p < 0.05). Seroprevalence was higher in poultry-exposed populations (range 0-1.9%) if such studies utilized antigenically similar A(H5N1) virus antigens in assays to A(H5N1) viruses circulating among poultry. CONCLUSIONS These low seroprevalences suggest that subclinical and clinically mild human A(H5N1) virus infections are uncommon. Standardized serological survey and laboratory methods are needed to fully understand the extent and risk of human A(H5N1) virus infections.
Collapse
Affiliation(s)
- Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
4
|
Islam SS, Akwar H, Hossain MM, Sufian MA, Hasan MZ, Chakma S, Meeyam T, Chaisowwong W, Punyapornwithaya V, Debnath NC, Brum E, Pichpol D. Qualitative risk assessment of transmission pathways of highly pathogenic avian influenza (HPAI) virus at live poultry markets in Dhaka city, Bangladesh. Zoonoses Public Health 2020; 67:658-672. [PMID: 32558220 DOI: 10.1111/zph.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
Analysis of environmental samples obtained from the Live Poultry Markets (LPMs) of Dhaka City, Bangladesh, has revealed that the highest degree of prevalence of highly pathogenic avian influenza A (HPAI, H5N1), besides other subtypes of the LPAI virus, poses the plausible risk of transmission of these viruses between human and poultry species. The present study was conducted using the OIE risk analysis framework to assess the risk level of each pathway successively. The estimated risk parameters were integrated towards to obtain the overall risk level for each specific HPAI transmission pathway using the matrix adapted by Cristobel Zepeda accompanying other expert consultations. The relevant data obtained from published and unpublished sources, together with survey data of field observations, were used to formulate and confirm the risk pathways and their associated risks. The results revealed that the risk of the release of the HPAI virus was medium when exposure was high. Additionally, the consequence would be considered very high with a medium degree of uncertainty for all parameters. Ultimately, the overall risk for transmission was estimated as medium with a medium degree of uncertainty. The findings of this study reveal that there is a significant threat that HPAI virus transmission could occur among poultry and humans and effectively sustain within the environment of the LPMs. Our findings are primarily focused on public health considerations, the hygienic slaughter of poultry and the relevant cleaning and sanitation practices conducted in the LPMs to support evidence-based decision-making processes. The findings of the study have the potential to be used to formulate effective risk reduction measures and can be further adapted in low-resource settings without major infrastructural changes required of the LPMs. All of which would reduce the risk of HPAI virus release and further lessen the degree of exposure and transmission in established LPMs.
Collapse
Affiliation(s)
- Sk Shaheenur Islam
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka, Bangladesh.,Master of Science in Veterinary Science (International), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Holy Akwar
- Emergency Centre for Transboundary Animal Diseases (ECTAD) of Food and Agriculture Organization of United Nations (FAO-UN), Dhaka, Bangladesh
| | - Md Mehedi Hossain
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka, Bangladesh
| | - Md Abu Sufian
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka, Bangladesh
| | - Md Zakiul Hasan
- Emergency Centre for Transboundary Animal Diseases (ECTAD) of Food and Agriculture Organization of United Nations (FAO-UN), Dhaka, Bangladesh
| | - Shovon Chakma
- Emergency Centre for Transboundary Animal Diseases (ECTAD) of Food and Agriculture Organization of United Nations (FAO-UN), Dhaka, Bangladesh
| | - Tongkorn Meeyam
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Veterinary Medicine, Veterinary Public Health Centre for Asia Pacific (VPHCAP), Chiang Mai University, Chiang Mai, Thailand
| | - Warangkhana Chaisowwong
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Veterinary Medicine, Veterinary Public Health Centre for Asia Pacific (VPHCAP), Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Faculty of Veterinary Medicine, Veterinary Public Health Centre for Asia Pacific (VPHCAP), Chiang Mai University, Chiang Mai, Thailand
| | - Nitish C Debnath
- Emergency Centre for Transboundary Animal Diseases (ECTAD) of Food and Agriculture Organization of United Nations (FAO-UN), Dhaka, Bangladesh
| | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD) of Food and Agriculture Organization of United Nations (FAO-UN), Dhaka, Bangladesh
| | - Duangporn Pichpol
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Veterinary Medicine, Veterinary Public Health Centre for Asia Pacific (VPHCAP), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Chaudhry M, Webby R, Swayne D, Rashid HB, DeBeauchamp J, Killmaster L, Criado MF, Lee DH, Webb A, Yousaf S, Asif M, Ain QU, Khan M, Ilyas Khan M, Hasan S, Yousaf A, Mushtaque A, Bokhari SF, Hasni MS. Avian influenza at animal-human interface: One-health challenge in live poultry retail stalls of Chakwal, Pakistan. Influenza Other Respir Viruses 2020; 14:257-265. [PMID: 32032469 PMCID: PMC7182597 DOI: 10.1111/irv.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Live poultry retail stalls (LPRSs) are believed to be the source of human infection with avian influenza viruses (AIVs); however, little is known about epidemiology of these viruses in LPRSs of Pakistan. Objectives The current study was conducted to estimate the virological and serological prevalence of AIVs in humans and poultry and associated risk factors among seropositive butchers. Methods A field survey of LPRSs of Chakwal District was conducted between December 2015 and March 2016. In total, 322 samples (sera = 161 and throat swab = 161) from butchers and 130 pooled oropharyngeal swabs and 100 sera from birds were collected. Baseline sera (n = 100) from general population were also tested. Data were collected by structured questionnaires. Sera were tested by hemagglutination inhibition (HI) test further confirmed by micro‐neutralization test (MN). Swabs were processed by real‐time RT‐PCR. Logistic regression analyses were conducted to identify risk factors. Results In butchers, 15.5% sera were positive for antibodies against H9 virus using a cutoff of ≥40 in HI titer; 6% sera from general population were positive for H9. Seroprevalence in poultry was 89%, and only 2.30% swabs were positive for H9. Presence of another LPRS nearby and the number of cages in the stall were risk factors (OR > 1) for H9 seroprevalence in butchers. Conclusions This study provides evidence of co‐circulation of H9 virus in poultry and exposure of butchers in the LPRSs, which poses a continued threat to public health. We suggest regular surveillance of AIVs in occupationally exposed butchers and birds in LPRSs.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Richard Webby
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Hamad Bin Rashid
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Ashley Webb
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shumaila Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asif
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qurat Ul Ain
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mirwaise Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ilyas Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima Hasan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arfat Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abida Mushtaque
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syeda Fakhra Bokhari
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sajid Hasni
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
|
7
|
Zhou X, Wang Y, Liu H, Guo F, Doi SA, Smith C, Clements ACA, Edwards J, Huang B, Soares Magalhães RJ. Effectiveness of Market-Level Biosecurity at Reducing Exposure of Poultry and Humans to Avian Influenza: A Systematic Review and Meta-Analysis. J Infect Dis 2019; 218:1861-1875. [PMID: 29986030 DOI: 10.1093/infdis/jiy400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2018] [Indexed: 11/12/2022] Open
Abstract
Background In this study, we aimed to identify the effect of market-level risk factors on avian influenza (AI) infection in poultry and humans and generate evidence that will inform AI prevention and control programs at live bird markets (LBMs). Methods We performed a systematic literature review in both English and Chinese search engines. We estimated the pooled odds ratios of biosecurity indicators relating to AI infections at market level using a quality effects (QE) meta-analysis model. Results Biosecurity measures effective at reducing AI market contamination and poultry infection at LBMs include smaller market size, selling single poultry species and separating different species, performing cleaning and disinfection and market closures, ban on overnight storage, and sourcing poultry from local areas. Our meta-analysis indicates that higher risk of exposure to AI infection occurs in workers at retail LBMs, female workers, and those who contact ducks, conduct cleaning, slaughtering, defeathering, or evisceration. Conclusions The most effective strategies to reduce AI market contamination identified in this study should target larger LBMs that are located at noncentral city areas and sell and slaughter multispecies of live poultry. Live bird market workers directly involved in cleaning and poultry processing tasks should participate in occupational health and safety programs.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton, Australia
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Ministry of Agriculture, People's Republic of China
| | - Hualei Liu
- China Animal Health and Epidemiology Centre, Ministry of Agriculture, People's Republic of China
| | - Fusheng Guo
- Food and Agriculture Organization of the United Nations (FAO), Bangkok
| | - Suhail A Doi
- Research School of Population Health, the Australian National University, Australia.,College of Medicine, Qatar University, Doha
| | - Carl Smith
- School of Agriculture and Food Sciences, the University of Queensland, Australia
| | - Archie C A Clements
- Research School of Population Health, the Australian National University, Australia
| | - John Edwards
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton, Australia.,Murdoch University, Western Australia
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Ministry of Agriculture, People's Republic of China
| | - Ricardo J Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton, Australia.,Children's Health and Environment Program, UQ Child Health Research Centre, University of Queensland, South Brisbane, Australia
| |
Collapse
|
8
|
A Decade of Avian Influenza in Bangladesh: Where Are We Now? Trop Med Infect Dis 2019; 4:tropicalmed4030119. [PMID: 31514405 PMCID: PMC6789720 DOI: 10.3390/tropicalmed4030119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) has been a public health threat in Bangladesh since the first reported outbreak in poultry in 2007. The country has undertaken numerous efforts to detect, track, and combat avian influenza viruses (AIVs). The predominant genotype of the H5N1 viruses is clade 2.3.2.1a. The persistent changing of clades of the circulating H5N1 strains suggests probable mutations that might have been occurring over time. Surveillance has provided evidence that the virus has persistently prevailed in all sectors and caused discontinuous infections. The presence of AIV in live bird markets has been detected persistently. Weak biosecurity in the poultry sector is linked with resource limitation, low risk perception, and short-term sporadic interventions. Controlling avian influenza necessitates a concerted multi-sector ‘One Health’ approach that includes the government and key stakeholders.
Collapse
|
9
|
Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh. BIOSOCIETIES 2018. [DOI: 10.1057/s41292-018-0131-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Carnero AM, Kitayama K, Diaz DA, Garvich M, Angulo N, Cama VA, Gilman RH, Bayer AM. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study. Zoonoses Public Health 2018; 65:528-539. [PMID: 29602269 DOI: 10.1111/zph.12463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational interventions on hygiene and food safety practices will be important for reducing the risk of interspecies influenza transmission.
Collapse
Affiliation(s)
- A M Carnero
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - K Kitayama
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - D A Diaz
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - M Garvich
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - N Angulo
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - V A Cama
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - R H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A M Bayer
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Zhou J, Wu J, Zeng X, Huang G, Zou L, Song Y, Gopinath D, Zhang X, Kang M, Lin J, Cowling BJ, Lindsley WG, Ke C, Peiris JSM, Yen HL. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. ACTA ACUST UNITED AC 2017; 21:30331. [PMID: 27608369 PMCID: PMC5015459 DOI: 10.2807/1560-7917.es.2016.21.35.30331] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Abstract
Zoonotic infections by avian influenza viruses occur at the human–poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls.
Collapse
Affiliation(s)
- Jie Zhou
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harfoot R, Webby RJ. H5 influenza, a global update. J Microbiol 2017; 55:196-203. [PMID: 28243942 DOI: 10.1007/s12275-017-7062-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/27/2022]
Abstract
H5 influenza viruses have caused much alarm globally due to their high pathogenic potential. As yet we have not seen sustained spread of the virus amongst humans despite a high prevalence of the virus in avian populations. Nevertheless, isolated human cases of infection have demonstrated high mortality and there are substantial efforts being taken to monitor the evolution of the virus and to undertake preparedness activities. Here we review and discuss the evolution of the A/goose/Guangdong/1/96 (H5N1) virus with emphasis on recent events.
Collapse
Affiliation(s)
- Rhodri Harfoot
- St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, USA
| | - Richard J Webby
- St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, USA.
| |
Collapse
|
13
|
Shimizu K, Wulandari L, Poetranto ED, Setyoningrum RA, Yudhawati R, Sholikhah A, Nastri AM, Poetranto AL, Candra AYR, Puruhito EF, Takahara Y, Yamagishi Y, Yamaoka M, Hotta H, Ustumi T, Lusida MI, Soetjipto, Shimizu YK, Soegiarto G, Mori Y. Seroevidence for a High Prevalence of Subclinical Infection With Avian Influenza A(H5N1) Virus Among Workers in a Live-Poultry Market in Indonesia. J Infect Dis 2016; 214:1929-1936. [PMID: 27923953 PMCID: PMC5142092 DOI: 10.1093/infdis/jiw478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/03/2016] [Indexed: 02/02/2023] Open
Abstract
Background. In Indonesia, highly pathogenic avian influenza A(H5N1) virus has become endemic in poultry and has caused sporadic deadly infections in human. Since 2012, we have conducted fixed-point surveillance of avian influenza viruses at a live-poultry market in East Java, Indonesia. In this study, we examined the seroprevalence of avian influenza A(H5N1) virus infection among market workers. Methods. Sera were collected from 101 workers in early 2014 and examined for antibody activity against avian A(H5N1) Eurasian lineage virus by a hemagglutination-inhibition (HI) assay. Results. By the HI assay, 84% of the sera tested positive for antibody activity against the avian virus. Further analysis revealed that the average HI titer in 2014 was 2.9-fold higher than in 2012 and that seroconversion occurred in 44% of paired sera (11 of 25) between 2012 and 2014. A medical history survey was performed in 2016; responses to questionnaires indicated that none of workers had had severe acute respiratory illness during 2013. Conclusions. This study provides evidence of a high prevalence of avian A(H5N1) virus infection in 2013 among workers at a live-poultry market. However, because no instances of hospitalizations were reported, we can conclude the virus did not manifest any clinical symptoms in workers.
Collapse
Affiliation(s)
- Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Laksmi Wulandari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Pulmonology and Respiratory Medicine
| | - Emmanuel D Poetranto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Clinical Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Retno A Setyoningrum
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Pediatrics
| | - Resti Yudhawati
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Pulmonology and Respiratory Medicine
| | - Amelia Sholikhah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Pediatrics
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Anna L Poetranto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Adithya Y R Candra
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Edith F Puruhito
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Yusuke Takahara
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Yoshiaki Yamagishi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Masaoki Yamaoka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Hak Hotta
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Takako Ustumi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Maria I Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease
| | - Yohko K Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease.,Department of Internal Medicine, Faculty of Medicine
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
14
|
Liu F, Sun X, Fairman J, Lewis DB, Katz JM, Levine M, Tumpey TM, Lu X. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology 2016; 492:197-203. [PMID: 26967975 PMCID: PMC5796654 DOI: 10.1016/j.virol.2016.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - David B Lewis
- Department of Pediatrics, Interdepartmental Program in Immunology, and Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiuhua Lu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
15
|
Nasreen S, Khan SU, Luby SP, Gurley ES, Abedin J, Zaman RU, Sohel BM, Rahman M, Hancock K, Levine MZ, Veguilla V, Wang D, Holiday C, Gillis E, Sturm-Ramirez K, Bresee JS, Rahman M, Uyeki TM, Katz JM, Azziz-Baumgartner E. Highly pathogenic Avian Influenza A(H5N1) virus infection among workers at live bird markets, Bangladesh, 2009-2010. Emerg Infect Dis 2015; 21:629-37. [PMID: 25811942 PMCID: PMC4378465 DOI: 10.3201/eid2104.141281] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence of infection was low despite frequent exposure to infected poultry and low use of personal protective equipment. The risk for influenza A(H5N1) virus infection is unclear among poultry workers in countries where the virus is endemic. To assess H5N1 seroprevalence and seroconversion among workers at live bird markets (LBMs) in Bangladesh, we followed a cohort of workers from 12 LBMs with existing avian influenza surveillance. Serum samples from workers were tested for H5N1 antibodies at the end of the study or when LBM samples first had H5N1 virus–positive test results. Of 404 workers, 9 (2%) were seropositive at baseline. Of 284 workers who completed the study and were seronegative at baseline, 6 (2%) seroconverted (7 cases/100 poultry worker–years). Workers who frequently fed poultry, cleaned feces from pens, cleaned food/water containers, and did not wash hands after touching sick poultry had a 7.6 times higher risk for infection compared with workers who infrequently performed these behaviors. Despite frequent exposure to H5N1 virus, LBM workers showed evidence of only sporadic infection.
Collapse
|
16
|
Nguyen TH, Than VT, Thanh HD, Nguyen VQ, Nguyen KH, Nguyen DT, Park JH, Chung IS, Jeong DG, Chang KT, Oh TK, Kim W. The evolutionary dynamics of highly pathogenic avian influenza H5N1 in south-central Vietnam reveals multiple clades evolving from Chinese and Cambodian viruses. Comp Immunol Microbiol Infect Dis 2015; 42:21-30. [DOI: 10.1016/j.cimid.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/09/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
|
17
|
Abstract
Debates about dual-use research often turn on the potential for scientific research to be used to benefit or harm humanity. This dual-use potential is conventionally understood as the product of the magnitude of the harms and benefits of dual-use research, multiplied by their likelihood. This account, however, neglects important social aspects of the use of science and technology. In this paper, I supplement existing conceptions of dual-use potential to account for the social context of dual-use research. This account incorporates relational and positional concerns that feature in the success or failure of dual-use. I then defend this account against foreseeable objections.
Collapse
Affiliation(s)
- Nicholas G Evans
- Department of Medical Ethics and Health Policy in the Perelman School of Medicine, University of Pennsylvania, 3401 Market Street, Suite 320, Philadelphia, PA, 19104-3319, USA,
| |
Collapse
|
18
|
Abstract
Each year, influenza causes substantial mortality and morbidity worldwide. It is important to understand influenza in the tropics because of the significant burden in the region and its relevance to global influenza circulation. In this review, influenza burden, transmission dynamics, and their determinants in the tropics are discussed. Environmental, cultural, and social conditions in the tropics are very diverse and often differ from those of temperate regions. Theories that account for and predict influenza dynamics in temperate regions do not fully explain influenza epidemic patterns observed in the tropics. Routine surveillance and household studies have been useful in understanding influenza dynamics in the tropics, but these studies have been limited to only some regions; there is still a lack of information regarding influenza burden and transmission dynamics in many tropical countries. Further studies in the tropics will provide useful insight on many questions that remain.
Collapse
Affiliation(s)
- Sophia Ng
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| |
Collapse
|
19
|
Setiawaty V, Dharmayanti NLPI, Misriyah, Pawestri HA, Azhar M, Tallis G, Schoonman L, Samaan G. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia. Zoonoses Public Health 2014; 62:381-7. [PMID: 25244310 DOI: 10.1111/zph.12158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/30/2022]
Abstract
WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was cooperation to achieve risk assessment objectives.
Collapse
Affiliation(s)
- V Setiawaty
- Center for Biomedical and Basic Technology of Health, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - N L P I Dharmayanti
- Indonesian Research Center for Veterinary Science, Ministry of Agriculture, Bogor, Indonesia
| | - Misriyah
- Directorate of Vectorborne Disease Control, Directorate-General for Disease Control and Environmental Health, Ministry of Health, Jakarta, Indonesia
| | - H A Pawestri
- Center for Biomedical and Basic Technology of Health, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - M Azhar
- Directorate of Animal Health, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Jakarta, Indonesia
| | - G Tallis
- Disease Surveillance and Emergencies, World Health Organization, Jakarta, Indonesia
| | - L Schoonman
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Jakarta, Indonesia
| | - G Samaan
- United States Centers for Disease Control and Prevention, Jakarta, Indonesia
| |
Collapse
|