1
|
Li F, Han X, Wu C, He J, Liu H, Li S, Li L, Long X, Sun H. Evaluation of immune and pyroptosis status in a model of sepsis-induced secondary pneumonia. Int Immunopharmacol 2024; 140:112835. [PMID: 39088917 DOI: 10.1016/j.intimp.2024.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
In recent years, researchers have focused on studying the mechanism of sepsis-induced immunosuppression, but there is still a lack of suitable animal models that accurately reflect the process of sepsis-induced immunosuppression. The aim of this study was to evaluate the immune status at various stages in a model of sepsis-induced secondary pneumonia and to demonstrate whether pyroptosis is one of the modes of immune cell death in sepsis. Firstly, we established a sepsis model in C57BL/6J mice using cecal ligation and puncture (CLP). The surviving mice were treated with a 40 μL suspension of P.aeruginosa (Pa) under anesthesia on day 4 post-CLP to establish a sepsis-induced secondary pneumonia model. Secondly, routine blood tests, serum ALT and PCT levels, gross lung specimens, and H&E staining of the lung and liver tissues were used to assess the successful establishment of this model. Serum levels of TNF-α and IL-6, the CD4+/CD8+ratio in blood, H&E staining of the spleen, and immunohistochemistry of CD4 and CD8 in the spleen were detected to evaluate the immune status of the model mice. Finally, the expression levels of pyroptosis-related proteins in the spleen were detected by Western blot. The expression of GSDMD was assessed using immunohistochemistry, and pyroptosis was directly observed through transmission electron microscopy. The experimental results above confirmed the successful construction of the model for sepsis-induced secondary pneumonia, demonstrating its ability to reflect sepsis-induced immunosuppression. Moreover, the expression of pyroptosis-related proteins, immunohistochemical GSDMD, and transmission electron microscopy of the spleen showed that pyroptosis was one of the modes of immune cell death in sepsis.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Department of Infectious Diseases,The People's Hospital of Jiulongpo District, Chongqing,China
| | - Xinjing Han
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chuanxin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiahui He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huang Liu
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shuhua Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Li Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xianli Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
2
|
Beltrán-García J, Casabó-Vallés G, Osca-Verdegal R, Navarrete-López P, Rodriguez-Gimillo M, Nacher-Sendra E, Ferrando-Sánchez C, García-López E, Pallardó FV, Carbonell N, Mena-Mollá S, García-Giménez JL. Alterations in leukocyte DNA methylome are associated to immunosuppression in severe clinical phenotypes of septic patients. Front Immunol 2024; 14:1333705. [PMID: 38235139 PMCID: PMC10791922 DOI: 10.3389/fimmu.2023.1333705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Germán Casabó-Vallés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Salk Institute for Biological Studies, San Diego, CA, United States
| | - Paula Navarrete-López
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carolina Ferrando-Sánchez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Eva García-López
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Salvador Mena-Mollá
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Huang L, Chen J, Li X, Huang M, Liu J, Qin N, Zeng Z, Wang X, Li F, Yang H. Polydatin Improves Sepsis-Associated Encephalopathy by Activating Sirt1 and Reducing p38 Phosphorylation. J Surg Res 2022; 276:379-393. [PMID: 35447391 DOI: 10.1016/j.jss.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Our previous study confirmed that polydatin (PD) can alleviate sepsis-induced multiorgan dysfunction (in the vascular endothelium, kidney, and small intestine) by activating Sirt1 and that PD protects against traumatic brain injury in rats via increased Sirt1 and inhibition of the p38-mediated mitogen-activated protein kinase (MAPK) pathway. We aim to investigate whether PD may also attenuate sepsis-associated encephalopathy (SAE). METHODS In this study, we constructed an SAE mouse model by cecal ligation and puncture (CLP) and measured Sirt1 protein activity, p38 phosphorylation, brain tissue pathological damage, pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), mitochondrial function (mitochondrial membrane potential, ATP content, and reactive oxygen species), neurological function, and animal survival time. Sirt1 selective inhibitor Ex527 and p38 inhibitor SB203580 were used to explore the possible mechanism of PD in SAE. RESULTS We confirmed that PD inhibits neuroinflammation evidenced by reduced proinflammatory cytokines. In addition, PD protects mitochondria as demonstrated by restored mitochondrial membrane potential and adenosine triphosphate (ATP) content, and decreased reactive oxygen species (ROS) level. As we expected, p38 inhibition reduces neuroinflammation and mitochondrial damage. In contrast, Sirt1 inhibition aggravates cerebral cortex mitochondrial damage and neuroinflammation and promotes phosphorylation of p38. Mechanistically, PD treatment suppressed p38 phosphorylation and consequently reduced the neuroinflammatory response, and these effects were blocked by the Sirt selective inhibitor Ex527. CONCLUSIONS This study, to the best of our knowledge, is the first to demonstrate that PD alleviates SAE, at least partially, by upregulating Sir1-mediated neuroinflammation inhibition and mitochondrial function protection.
Collapse
Affiliation(s)
- Lin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jiawei Chen
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiaojie Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Mingxin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jilou Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Na Qin
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingmin Wang
- Department of Pathology, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China.
| | - Fen Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Sano T, Sun X, Feng Y, Liu S, Hase M, Fan Y, Zha R, Wu D, Aryal UK, Li BY, Sudo A, Yokota H. Inhibition of the Growth of Breast Cancer-Associated Brain Tumors by the Osteocyte-Derived Conditioned Medium. Cancers (Basel) 2021; 13:1061. [PMID: 33802279 PMCID: PMC7959137 DOI: 10.3390/cancers13051061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The brain is a common site of metastasis from advanced breast cancer but few effective treatments are available. We examined a therapeutic option with a conditioned medium (CM), focusing on the role of Lrp5 and β-catenin in Wnt signaling, and IL1ra in osteocytes. Osteocytes presented the innate anti-tumor effect and the overexpression of the above genes strengthened their action. In a mouse model, the injection of their CM inhibited mammary tumors and tumor-driven osteolysis. Importantly, Lrp5- and/or IL1ra-overexpressing osteocytes or the local administration of β-catenin-overexpressing CM markedly inhibited brain tumors. In the transport analysis, tumor-suppressing factors in CM were shown to diffuse through the skull. Mechanistically, the CM with overexpression of the above genes downregulated oncogenic genes such as MMP9, Runx2, TGFβ, and Snail in breast cancer cells. Also, the CM with β-catenin overexpression downregulated CXCL1 and CXCL5 and upregulated tumor suppressors such as LIMA1, DSP, p53, and TRAIL in breast cancer cells. Notably, whole-genome proteomics revealed that histone H4 was enriched in CM and acted as an atypical tumor suppressor. Lrp5-overexpressing MSCs were also shown to act as anti-tumor agents. Collectively, this study demonstrated the therapeutic role of engineered CM in brain tumors and the tumor-suppressing action of extracellular histone H4. The result sheds light on the potential CM-based therapy for breast cancer-associated brain metastases in a minimally invasive manner.
Collapse
Affiliation(s)
- Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Edobashi Tsu 2-174, Japan;
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Yan Feng
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Graduate School of Engineering, Mie University, Edobashi Tsu 2-174, Japan
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA;
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Edobashi Tsu 2-174, Japan;
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
- Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Retraction: Histones-Mediated Lymphocyte Apoptosis during Sepsis Is Dependent on p38 Phosphorylation and Mitochondrial Permeability Transition. PLoS One 2020; 15:e0244473. [PMID: 33332466 PMCID: PMC7746272 DOI: 10.1371/journal.pone.0244473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
|
6
|
Peng X, Sun Z, Kuang P, Li L, Chen J, Chen J. Copper-Catalyzed Selective Arylation of Nitriles with Cyclic Diaryl Iodonium Salts: Direct Access to Structurally Diversified Diarylmethane Amides with Potential Neuroprotective and Anticancer Activities. Org Lett 2020; 22:5789-5795. [PMID: 32677838 DOI: 10.1021/acs.orglett.0c01829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
A novel, simple, and high-yielding approach for the preparation of diarylmethane amide derivatives has been developed by reacting cyclic diaryl iodonium salts with nitriles using CuCl as a catalyst. The procedure is efficient with high atom economy and a wide substrate range. Importantly, selective arylation of nitriles was obtained without affecting the phenyl amino/hydroxyl groups. Furthermore, two of the diarylmethane amides (3k, 3s) displayed excellent neuroprotective and anticancer activities.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Peihua Kuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| |
Collapse
|
7
|
Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. Eur J Pharmacol 2020; 881:173259. [PMID: 32565338 DOI: 10.1016/j.ejphar.2020.173259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023]
Abstract
Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1β messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.
Collapse
|
8
|
Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, Carbonell N, Ferreres J, Rodríguez M, Mulet S, García-López E, Pallardó FV, García-Giménez JL. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics 2020; 12:617-646. [PMID: 32396480 DOI: 10.2217/epi-2019-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| |
Collapse
|
9
|
Vrijens K, Trippas AJ, Lefebvre W, Vanpoucke C, Penders J, Janssen BG, Nawrot TS. Association of Prenatal Exposure to Ambient Air Pollution With Circulating Histone Levels in Maternal Cord Blood. JAMA Netw Open 2020; 3:e205156. [PMID: 32421184 PMCID: PMC7235690 DOI: 10.1001/jamanetworkopen.2020.5156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Exposure to ambient air pollution has been associated with the risk of carcinogenesis in later life. Changes in histone modifications might have long-term adverse health effects. OBJECTIVE To investigate the association of prenatal exposure to ambient air pollution with levels of circulating total histone H3 and specific trimethylation marks (ie, H3 lysine 4, H3 lysine 36) in maternal cord blood. DESIGN, SETTING, AND PARTICIPANTS The Environmental Influence on Aging (ENVIRONAGE) birth cohort study included 609 mothers and their newborns. Participants were recruited when mothers entered the Hospital East Limburg (Genk, Belgium) for delivery between February 2010 and January 2017. The inclusion criteria were singleton pregnancies and the ability to fill out questionnaires in Dutch. Data analysis was conducted from March to August 2019. EXPOSURES Exposure to particulate matter with a diameter less than 2.5 μm (PM2.5), black carbon, and nitrogen dioxide during pregnancy was modeled with a high-resolution air pollution model on the basis of maternal address for each trimester of pregnancy as well as for the entire pregnancy. MAIN OUTCOMES AND MEASURES Circulating total histone H3 levels and specific trimethylation marks (ie, trimethylated H3 lysine 4 and trimethylated H3 lysine 36) in cord blood. RESULTS A total of 609 mother-newborn pairs were included in the study. Mean (SD) maternal age was 29.3 (4.6) years, 391 mothers (64.2%) never smoked, and 314 (51.3%) had a high education level. Overall, 322 newborns (52.4%) were boys, and mean (SD) birth weight was 3414 (485) g. Participants experienced mean (SD) exposure to PM2.5, black carbon, and nitrogen dioxide of 13.4 (2.6) μg/m3, 1.29 (0.31) μg/m3, and 17.98 (4.57) μg/m3, respectively, during their entire pregnancies. Trimethylated H3 lysine 4 and total histone H3 were positively associated with gestational PM2.5 exposure, with a 74.4% increment (95% CI, 26.7% to 140.2%, P < .001) and a 40.2% increment (95% CI, 24.1% to 58.3%, P < .001), respectively, observed for each 5-μg/m3 increase in PM2.5 exposure during the entire pregnancy. For the same exposure window, trimethylated H3 lysine 36 levels were inversely associated with PM2.5 exposure (-34.4%; 95% CI, -50.1% to -13.7%; P = .003). Exposure to black carbon during the entire pregnancy was positively associated with trimethylated H3 lysine 4 (38.4%; 95% CI, 6.2% to 80.3%; P = .003). CONCLUSIONS AND RELEVANCE Associations of ambient air pollution with cord plasma histone H3 modifications during early life might indicate that circulating histones are a risk factor in the development of air pollution-associated disease later in life. Additional study is required to correctly estimate the long-term consequences of our findings.
Collapse
Affiliation(s)
- Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann-Julie Trippas
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | - Bram G. Janssen
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S. Nawrot
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health, Environment and Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Chen L, Yang F, Li T, Xiao P, Han ZJ, Shu LF, Yuan ZZ, Liu WJ, Long YQ. Extracellular Histone Promotes Prostate Cancer Migration and Epithelial-Mesenchymal Transition through NF-κB-Mediated Inflammatory Responses. Chemotherapy 2020; 64:177-186. [PMID: 31935733 DOI: 10.1159/000504247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2019] [Accepted: 10/20/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to explore the relationship betweenextracellular histone and prostate cancer and its mechanism. METHODS Migration of prostate cancer cells was detected by Transwell. Inflammatory factor expression was investigated by ELISA. Epithelial-mesenchymal transition and expression of NF-κB pathway-related proteins were investigated using Western blotting. RESULTS Under the induction of extracellular histones, the migration rate of prostate cancer cells and the levels of IL-1β, TNF-α, and IL-6 were notably enhanced. Then, expression of E-cadherin was significantly down-regulated, while levels of N-cadherin, vimentin, β-catenin, Snail, p-p65 and p-IκBα were significantly up-regulated, which was reversed by PDTC (pyrrolidine dithiocarbamate). CONCLUSION Extracellular histone significantly promotes the progression of prostate cancer cells via NF-κB pathway-mediated inflammatory responses, which may serve as a novel target for treating prostate cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Fan Yang
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Tao Li
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Pin Xiao
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Jun Han
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Lin-Fei Shu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Zhou Yuan
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Wen-Jin Liu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Yong-Qi Long
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China,
| |
Collapse
|
11
|
Wang H, Liu B, Tang Y, Chang P, Yao L, Huang B, Lodato RF, Liu Z. Improvement of Sepsis Prognosis by Ulinastatin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2019; 10:1370. [PMID: 31849646 PMCID: PMC6893897 DOI: 10.3389/fphar.2019.01370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Ulinastatin has been prescribed to treat sepsis. However, there is doubt regarding the extent of any improvement in outcomes to guide future decision making. Objectives: To evaluate the effects of ulinastatin on mortality and related outcomes in sepsis patients. Methods: Thirteen randomized controlled trials and two prospective studies published before September 1, 2018, that included 1358 patients with sepsis, severe sepsis, or septic shock were evaluated. The electronic databases searched in this study were PubMed, Medline, Embase, and China National Knowledge Infrastructure (CNKI) for Chinese Technical Periodicals. Results: Ulinastatin significantly decreased the all-cause mortality {odds ratio (OR) = 0.48, 95% confidence interval (CI) [0.35-0.66], p < 0.00001, I2 = 13%}, Acute Physiology, Age, Chronic Health Evaluation II (APACHE II) score {mean difference (MD) = -2.40, 95% CI [-4.37, -0.44], p = 0.02, I2 = 66%}, and reduced the incidence of multiple organ dysfunction syndrome (MODS) (OR = 0.3, 95% CI [0.18, 0.49], p < 0.00001, I2 = 0%). Ulinastatin also decreased the serum levels of IL-6 (MD = -88.5, 95% CI [-123.97, -53.04], p < 0.00001), TNF-α (MD = -56.22, 95% CI [-72.11, -40.33], p < 0.00001), and increased the serum levels of IL-10 (MD = 37.73, 95% CI [16.92, 58.54], p = 0.0004). Ulinastatin administration did not lead to any difference in the occurrence of adverse events. Conclusions: Ulinastatin improved all-cause mortality and other related outcomes in patients with sepsis or septic shock. The results of this meta-analysis suggest that ulinastatin may be an effective treatment for sepsis and septic shock.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lishuai Yao
- Department of Thoracic and Cardiovascular Surgical, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Huang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Robert F Lodato
- Department of Pulmonary, Critical Care, and Sleep Medicine, Medical School, University of Texas Health Science Center at Houston, TX, United States
| | - Zhanguo Liu
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 2018; 22:4617-4629. [PMID: 30085397 PMCID: PMC6156248 DOI: 10.1111/jcmm.13797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Histones are positively charged nuclear proteins that facilitate packaging of DNA into nucleosomes common to all eukaryotic cells. Upon cell injury or cell signalling processes, histones are released passively through cell necrosis or actively from immune cells as part of extracellular traps. Extracellular histones function as microbicidal proteins and are pro‐thrombotic, limiting spread of infection or isolating areas of injury to allow for immune cell infiltration, clearance of infection and initiation of tissue regeneration and repair. Histone toxicity, however, is not specific to microbes and contributes to tissue and end‐organ injury, which in cases of systemic inflammation may lead to organ failure and death. This review details the processes of histones release in acute inflammation, the mechanisms of histone‐related tissue toxicity and current and future strategies for therapy targeting histones in acute inflammatory diseases.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, China
| | - David Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Szatmary P, Liu T, Abrams ST, Voronina S, Wen L, Chvanov M, Huang W, Wang G, Criddle DN, Tepikin AV, Toh CH, Sutton R. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology 2017; 17:884-892. [PMID: 29102149 DOI: 10.1016/j.pan.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/24/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clinical and experimental acute pancreatitis feature histone release within the pancreas from innate immune cells and acinar cell necrosis. In this study, we aimed to detail the source of circulating histones and assess their role in the pathogenesis of acute pancreatitis. METHODS Circulating nucleosomes were measured in patient plasma, taken within 24 and 48 h of onset of acute pancreatitis and correlated with clinical outcomes. Using caerulein hyperstimulation, circulating histones were measured in portal, systemic venous and systemic arterial circulation in mice, and the effects of systemic administration of histones in this model were assessed. The sites of actions of circulating histones were assessed by administration of FITC-labelled histones. The effects of histones on isolated pancreatic acinar cells were further assessed by measuring acinar cell death and calcium permeability in vitro. RESULTS Cell-free histones were confirmed to be abundant in human acute pancreatitis and found to derive from pancreatitis-associated liver injury in a rodent model of the disease. Fluorescein isothianate-labelled histones administered systemically targeted the pancreas and exacerbated injury in experimental acute pancreatitis. Histones induce charge- and concentration-dependent plasmalemma leakage and necrosis in isolated pancreatic acinar cells, independent of extracellular calcium. CONCLUSION We conclude that histones released systemically in acute pancreatitis concentrate within the inflamed pancreas and exacerbate injury. Circulating histones may provide meaningful biomarkers and targets for therapy in clinical acute pancreatitis.
Collapse
Affiliation(s)
- Peter Szatmary
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tingting Liu
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK; Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Li Wen
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wei Huang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - David N Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Alexey V Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK; Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK
| |
Collapse
|
14
|
Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 2017; 274:330-353. [PMID: 27782333 DOI: 10.1111/imr.12499] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Sepsis occurs when an infection exceeds local tissue containment and induces a series of dysregulated physiologic responses that result in organ dysfunction. A subset of patients with sepsis progress to septic shock, defined by profound circulatory, cellular, and metabolic abnormalities, and associated with a greater mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the complex interplay between the initial inflammatory and later anti-inflammatory responses. With advances in intensive care medicine and goal-directed interventions, early 30-day sepsis mortality has diminished, only to steadily escalate long after "recovery" from acute events. As so many sepsis survivors succumb later to persistent, recurrent, nosocomial, and secondary infections, many investigators have turned their attention to the long-term sepsis-induced alterations in cellular immune function. Sepsis clearly alters the innate and adaptive immune responses for sustained periods of time after clinical recovery, with immune suppression, chronic inflammation, and persistence of bacterial representing such alterations. Understanding that sepsis-associated immune cell defects correlate with long-term mortality, more investigations have centered on the potential for immune modulatory therapy to improve long-term patient outcomes. These efforts are focused on more clearly defining and effectively reversing the persistent immune cell dysfunction associated with long-term sepsis mortality.
Collapse
Affiliation(s)
- Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Maestraggi Q, Lebas B, Clere-Jehl R, Ludes PO, Chamaraux-Tran TN, Schneider F, Diemunsch P, Geny B, Pottecher J. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7897325. [PMID: 28589148 PMCID: PMC5447268 DOI: 10.1155/2017/7897325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
Abstract
Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF) at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called "cytopathic hypoxia," perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs). In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system ("immunoparalysis") translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.
Collapse
Affiliation(s)
- Quentin Maestraggi
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Benjamin Lebas
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Raphaël Clere-Jehl
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre-Olivier Ludes
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Thiên-Nga Chamaraux-Tran
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Francis Schneider
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service de Réanimation Médicale, avenue Molière, 67098 Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
| | - Pierre Diemunsch
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Physiologie et d'Explorations Fonctionnelles, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | - Julien Pottecher
- Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil 3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, 11 rue Human, 67000 Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, avenue Molière, 67098 Strasbourg Cedex, France
| |
Collapse
|
16
|
Chang P, Mo B, Cauvi DM, Yu Y, Guo Z, Zhou J, Huang Q, Yan Q, Chen G, Liu Z. Grape seed proanthocyanidin extract protects lymphocytes against histone-induced apoptosis. PeerJ 2017; 5:e3108. [PMID: 28344907 PMCID: PMC5363264 DOI: 10.7717/peerj.3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Apoptosis of lymphocytes is associated with immunosuppression and poor prognosis in sepsis. Our previous report showed that histones, nuclear proteins released from damaged or dying cells in sepsis, can mediate lymphocyte apoptosis via mitochondria damage. Grape seed proanthocyanidin extract (GSPE), a natural substance with protective properties against oxidative stress, plays a vital role in cell and mitochondria protection. We thus hypothesized that GSPE may play a protective role in histone-induced lymphocyte apoptosis through its anti-oxidative properties. In this study, we investigated the protective efficacy of GSPE on lymphocyte apoptosis induced by extracellular histones, a main contributor of death in sepsis. Human blood lymphocytes were treated with 50 μg/ml histones, 2 μg/ml GSPE, or a combination of both. A total of 100 μM N-acetylcysteine (NAC), a reactive oxygen species (ROS) inhibitor, was used as a positive control for GSPE. Apoptosis, intracellular ROS levels, mitochondrial membrane potential, Bcl-2 expression, and caspase-3 cleavage were measured. Our data clearly indicate that GSPE significantly inhibited lymphocyte apoptosis, generation of ROS, the loss of mitochondrial membrane potential, the decrease in Bcl-2 expression, and caspase-3 activation induced by extracellular histones. In conclusion, we show that GSPE has a protective effect on lymphocyte apoptosis induced by extracellular histones. This study suggests GSPE as a potential therapeutic agent that could help reduce lymphocyte apoptosis, and thus the state of immunosuppression was observed in septic patients.
Collapse
Affiliation(s)
- Ping Chang
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - Bing Mo
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - David M Cauvi
- Department of Surgery, University of California San Diego , La Jolla, CA , USA
| | - Ying Yu
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - Zhenhui Guo
- Department of MICU, General Hospital of Guangzhou Military Command , Guangzhou, Guangdong , China
| | - Jian Zhou
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - Qiong Huang
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - Qitao Yan
- Department of MICU, General Hospital of Guangzhou Military Command , Guangzhou, Guangdong , China
| | - Guiming Chen
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| | - Zhanguo Liu
- Department of ICU, Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong , China
| |
Collapse
|
17
|
Okeke EB, Uzonna JE. In Search of a Cure for Sepsis: Taming the Monster in Critical Care Medicine. J Innate Immun 2016; 8:156-70. [PMID: 26771196 DOI: 10.1159/000442469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
In spite of over half a century of research, sepsis still constitutes a major problem in health care delivery. Although advances in research have significantly increased our knowledge of the pathogenesis of sepsis and resulted in better prognosis and improved survival outcome, sepsis still remains a major challenge in modern medicine with an increase in occurrence predicted and a huge socioeconomic burden. It is generally accepted that sepsis is due to an initial hyperinflammatory response. However, numerous efforts aimed at targeting the proinflammatory cytokine network have been largely unsuccessful and the search for novel potential therapeutic targets continues. Recent studies provide compelling evidence that dysregulated anti-inflammatory responses may also contribute to sepsis mortality. Our previous studies on the role of regulatory T cells and phosphoinositide 3-kinases in sepsis highlight immunological approaches that could be explored for sepsis therapy. In this article, we review the current and emerging concepts in sepsis, highlight novel potential therapeutic targets and immunological approaches for sepsis treatment and propose a biphasic treatment approach for management of the condition.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Man., Canada
| | | |
Collapse
|
18
|
Abstract
Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases.
Collapse
|
19
|
Kim DY, Simeone KA, Simeone TA, Pandya JD, Wilke JC, Ahn Y, Geddes JW, Sullivan PG, Rho JM. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 2015; 78:77-87. [PMID: 25899847 DOI: 10.1002/ana.24424] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism. METHODS We studied the effects of both the KD and KB in spontaneously epileptic Kcna1-null mice using a combination of behavioral, planar multielectrode, and standard cellular electrophysiological techniques. Thresholds for mitochondrial permeability transition (mPT) were determined in acutely isolated brain mitochondria. RESULTS KB alone were sufficient to: (1) exert antiseizure effects in Kcna1-null mice, (2) restore intrinsic impairment of hippocampal long-term potentiation and spatial learning-memory defects in Kcna1-null mutants, and (3) raise the threshold for calcium-induced mPT in acutely prepared mitochondria from hippocampi of Kcna1-null animals. Targeted deletion of the cyclophilin D subunit of the mPT complex abrogated the effects of KB on mPT, and in vivo pharmacological inhibition and activation of mPT were found to mirror and reverse, respectively, the antiseizure effects of the KD in Kcna1-null mice. INTERPRETATION The present data reveal the first direct link between mPT and seizure control, and provide a potential mechanistic explanation for the KD. Given that mPT is increasingly being implicated in diverse neurological disorders, our results suggest that metabolism-based treatments and/or metabolic substrates might represent a worthy paradigm for therapeutic development.
Collapse
Affiliation(s)
- Do Young Kim
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Julianne C Wilke
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Younghee Ahn
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Jong M Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Luan YY, Yao YM, Xiao XZ, Sheng ZY. Insights into the apoptotic death of immune cells in sepsis. J Interferon Cytokine Res 2015; 35:17-22. [PMID: 25007137 PMCID: PMC4291200 DOI: 10.1089/jir.2014.0069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022] Open
Abstract
Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.
Collapse
Affiliation(s)
- Ying-yi Luan
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-ming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xian-zhong Xiao
- Department of Pathophysiology, Xiang-Ya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Zhi-yong Sheng
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
21
|
Grailer JJ, Fattahi F, Dick RS, Zetoune FS, Ward PA. Cutting edge: critical role for C5aRs in the development of septic lymphopenia in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:868-72. [PMID: 25539817 DOI: 10.4049/jimmunol.1401193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
In the early stages of sepsis, lymphocytes undergo apoptosis, resulting in lymphopenia and immunosuppression. The trigger for septic lymphopenia is unknown. Using the polymicrobial model of murine sepsis, we investigated the role of C5a receptors in septic lymphopenia. In wild-type mice, cecal ligation and puncture resulted in splenocyte apoptosis and significant lymphopenia after 3 d, which was not observed in C5aR1(-/-) or C5aR2(-/-) mice. Our data show that mouse neutrophils exposed to recombinant mouse C5a cause release of histones in a dose-dependent and time-dependent manner. Histone levels in spleen were significantly elevated following cecal ligation and puncture but were reduced by the absence of C5aR1. Histones induced significant lymphocyte apoptosis in vitro. Ab-mediated neutralization of histones prevented the development of lymphopenia in sepsis. Together, these results describe a new pathway of septic lymphopenia involving complement and extracellular histones. Targeting of this pathway may have therapeutic benefit for patients with sepsis or other serious illness.
Collapse
Affiliation(s)
- Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Rachel S Dick
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Wu CL, Wu QY, Du JJ, Zeng JY, Li TT, Xu CQ, Sun YH. Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Mol Immunol 2014; 63:337-42. [PMID: 25256599 DOI: 10.1016/j.molimm.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/29/2022]
Abstract
Calcium-sensing receptor (CaSR) is a member of the G protein-coupled receptor superfamily that existed in lymphocytes and promoted cytokine secretion. Lymphocytes are also involved in sepsis. However, the role of CaSR in lymphocytes in sepsis is unclear. In this study, we want to examine whether the CaSR in lymphocytes in sepsis is involved in the cytokine secretions and apoptosis and make clear the relationship between NF-κB and MAPK signal transduction pathways. We investigated the issues mentioned earlier using Western blotting, ELISA, and Flow Cytometry. The sepsis was remodeled by cecal ligation and puncture (CLP). We found that CaSR protein expression increased in the peripheral blood T lymphocytes in CLP rats. The calcimimetic R568 (NPS R568) promoted, whereas the calcilytic NPS 2143 attenuated, signaling pathways proteins P65 (subunit of NF-κB), ERK1/2, and JNK (one subgroup of MAPKs) phosphorylation. However, P-P38 and P-JAKs exhibit no significant changes. Furthermore, the production TNF-α and IL-4 was greater in CLP rats than in normal rats, and NPS R568 promoted secretion of these cytokines. Simultaneously, the apoptotic ratio of T cells in CLP increased, and NPS R 568 exacerbated the apoptosis degree. However, these effects could also be inhibited by U0126 or SP600125 (MAPKs pathway inhibitor) or Bay-11-7082 or (NF-κB pathway inhibitor). From these results, we can conclude that, in the sepsis, CaSR activation promoted T-cell apoptosis and the secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-4 probably through NF-κB and partial MAPK signal transduction pathways.
Collapse
Affiliation(s)
- Chun-li Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiu-yue Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-jing Du
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-ya Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ting-ting Li
- Department of Clinical Laboratory, Daqing Affiliated School of Harbin Medical University, Daqing 150000, China
| | - Chang-qing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Yi-hua Sun
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
23
|
Wang Y, He QY, Chiu JF. Dioscin induced activation of p38 MAPK and JNK via mitochondrial pathway in HL-60 cell line. Eur J Pharmacol 2014; 735:52-8. [PMID: 24755146 DOI: 10.1016/j.ejphar.2014.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Saponins have shown promise in cancer prevention and therapy; however, little is known about the detailed signaling pathways underlying their anticancer activities. In the present study, we examined the mechanisms of action of dioscin, a glucosides saponin isolated from Polygonatum zanlanscianense pump, in human myeloblast leukemia HL-60 cells. Dioscin suppressed HL-60 cell growth in a dose-dependent manner. This inhibition was due to the induction of apoptosis as revealed by the externalization of phosphatidylserine, and cleavages of lamin A/C and PARP-1. Treatment with dioscin induced apoptosis through activation of caspases 3, 7, 8, 9, and 10. Phosphorylation of p38 MAPK and JNK contributed to dioscin-induced apoptosis upstream of caspase activation. Using various inhibitors and antioxidant agents, we found that mitochondrial derived reactive oxygen species and depletion of mitochondrial transmembrane potential lead to the phosphorylation of p38 MAPK and JNK. Taken together, our results demonstrated that dioscin induces apoptosis by activation of p38 MAPK and JNK through the caspase-dependent mitochondrial death pathway. This work suggests that dioscin may be used as a drug lead for the treatment of myeloblast leukemia.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jen-Fu Chiu
- Open Laboratory for Tumor Molecular Biology, Department of Biochemistry, Shantou University Medical College, Shantou, China; Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|