1
|
Samuel BER, Diaz FE, Maina TW, Corbett RJ, Tuggle CK, McGill JL. Evidence of innate training in bovine γδ T cells following subcutaneous BCG administration. Front Immunol 2024; 15:1423843. [PMID: 39100669 PMCID: PMC11295143 DOI: 10.3389/fimmu.2024.1423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.
Collapse
Affiliation(s)
- Beulah Esther Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Fabian E. Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Teresia W. Maina
- Immunology, Cargill Animal Nutrition & Health, Elk River, MN, United States
| | - Ryan J. Corbett
- Center for Data Driven Discovery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Shekarkar Azgomi M, Badami GD, Lo Pizzo M, Tamburini B, Dieli C, La Manna MP, Dieli F, Caccamo N. Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Mycobacterium tuberculosis Latency. Cells 2024; 13:293. [PMID: 38391906 PMCID: PMC10886487 DOI: 10.3390/cells13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells are innate-like lymphocytes that belong to the family of type-1 innate lymphoid cells and rapidly respond to virus-infected and tumor cells. In this study, we have combined scRNA-seq data and bulk RNA-seq data to define the phenotypic and molecular characteristics of peripheral blood NK cells. While the role of NK cells in immune surveillance against virus infections and tumors has been well established, their contribution to protective responses to other intracellular microorganisms, such as Mycobacterium tuberculosis (Mtb), is still poorly understood. In this study, we have combined scRNA-seq data and bulk RNA-seq data to illuminate the molecular characteristics of circulating NK cells in patients with active tuberculosis (TB) disease and subjects with latent Mtb infection (LTBI) and compared these characteristics with those of healthy donors (HDs) and patients with non-TB other pulmonary infectious diseases (ODs). We show here that the NK cell cluster was significantly increased in LTBI subjects, as compared to patients with active TB or other non-TB pulmonary diseases and HD, and this was mostly attributable to the expansion of an NK cell population expressing KLRC2, CD52, CCL5 and HLA-DRB1, which most likely corresponds to memory-like NK2.1 cells. These data were validated by flow cytometry analysis in a small cohort of samples, showing that LTBI subjects have a significant expansion of NK cells characterized by the prevalence of memory-like CD52+ NKG2C+ NK cells. Altogether, our results provide some new information on the role of NK cells in protective immune responses to Mtb.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marianna Lo Pizzo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Suen TK, Moorlag SJCFM, Li W, de Bree LCJ, Koeken VACM, Mourits VP, Dijkstra H, Lemmers H, Bhat J, Xu CJ, Joosten LAB, Schultze JL, Li Y, Placek K, Netea MG. BCG vaccination induces innate immune memory in γδ T cells in humans. J Leukoc Biol 2024; 115:149-163. [PMID: 37672677 DOI: 10.1093/jleuko/qiad103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin vaccine is well known for inducing trained immunity in myeloid and natural killer cells, which can explain its cross-protective effect against heterologous infections. Although displaying functional characteristics of both adaptive and innate immunity, γδ T-cell memory has been only addressed in a pathogen-specific context. In this study, we aimed to determine whether human γδ T cells can mount trained immunity and therefore contribute to the cross-protective effect of the Bacillus Calmette-Guérin vaccine. We investigated in vivo induction of innate memory in γδ T cells by Bacillus Calmette-Guérin vaccination in healthy human volunteers by combining single-cell RNA sequencing technology with immune functional assays. The total number of γδ T cells and membrane markers of activation was not influenced by Bacillus Calmette-Guérin vaccination. In contrast, Bacillus Calmette-Guérin changed γδ T cells' transcriptional programs and increased their responsiveness to heterologous bacterial and fungal stimuli, including lipopolysaccharide and Candida albicans, as simultaneously characterized by higher tumor necrosis factor and interferon γ production, weeks after vaccination. Human γδ T cells in adults display the potential to develop a trained immunity phenotype after Bacillus Calmette-Guérin vaccination.
Collapse
Affiliation(s)
- Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, Cluj-Napoca 400347, Romania
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases, University of Bonn, Venusberg-Campus 1/9953127, Bonn, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| |
Collapse
|
5
|
Morrison AL, Sarfas C, Sibley L, Williams J, Mabbutt A, Dennis MJ, Lawrence S, White AD, Bodman-Smith M, Sharpe SA. IV BCG Vaccination and Aerosol BCG Revaccination Induce Mycobacteria-Responsive γδ T Cells Associated with Protective Efficacy against M. tb Challenge. Vaccines (Basel) 2023; 11:1604. [PMID: 37897006 PMCID: PMC10611416 DOI: 10.3390/vaccines11101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how γδ T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol M. tuberculosis challenge. In the circulation, Vδ2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after M. tb, and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-γ, TNF-α and granulysin. In comparison, Vδ2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When Vδ2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal Vδ2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a γδ profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the Vδ2 phenotype and function in cells isolated from the BAL. These results indicate that Vδ2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated Vδ2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.
Collapse
Affiliation(s)
- Alexandra L. Morrison
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Charlotte Sarfas
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Laura Sibley
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Jessica Williams
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Adam Mabbutt
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mike J. Dennis
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Steve Lawrence
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Andrew D. White
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George’s University of London, London SW17 0BD, UK
| | - Sally A. Sharpe
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
6
|
Xiu NN, Yang XD, Xu J, Ju B, Sun XY, Zhao XC. Leukemic transformation during anti-tuberculosis treatment in aplastic anemia-paroxysmal nocturnal hemoglobinuria syndrome: A case report and review of literature. World J Clin Cases 2023; 11:6908-6919. [PMID: 37901004 PMCID: PMC10600849 DOI: 10.12998/wjcc.v11.i28.6908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Accumulating evidence demonstrates that autoimmune hematopoietic failure and myeloid neoplasms have an intrinsic relationship with regard to clonal hematopoiesis and disease evolution. In approximately 10%-15% of patients with severe aplastic anemia (SAA), the disease phenotype is transformed into myeloid neoplasms following antithymocyte globulin plus cyclosporine-based immunosuppressive therapy. In some of these patients, myeloid neoplasms appear during or shortly after immunosuppressive therapy. Leukemic transformation in SAA patients during anti-tuberculosis treatment has not been reported. CASE SUMMARY A middle-aged Chinese female had a 6-year history of non-SAA and a 2-year history of paroxysmal nocturnal hemoglobinuria (PNH). With aggravation of systemic inflammatory symptoms, severe pancytopenia developed, and her hemoglobinuria disappeared. Laboratory findings in cytological, immunological and cytogenetic analyses of bone marrow samples met the diagnostic criteria for "SAA." Definitive diagnosis of disseminated tuberculosis was made in the search for infectious niches. Remarkable improvement in hematological parameters was achieved within 1 mo of anti-tuberculosis treatment, and complete hematological remission was achieved within 4 mo of treatment. Frustratingly, the hematological response lasted for only 3 mo, and pancytopenia reemerged. At this time, cytological findings (increased bone marrow cellularity and an increased percentage of myeloblasts that accounted for 16.0% of all nucleated hematopoietic cells), immunological findings (increased percentage of cluster of differentiation 34+ cells that accounted for 12.28% of all nucleated hematopoietic cells) and molecular biological findings (identification of somatic mutations in nucleophosmin-1 and casitas B-lineage lymphoma genes) revealed that "SAA" had transformed into acute myeloid leukemia with mutated nucleophosmin-1. The transformation process suggested that the leukemic clones were preexistent but were suppressed in the PNH and SAA stages, as development of symptomatic myeloid neoplasm through acquisition and accumulation of novel oncogenic mutations is unlikely in an interval of only 7 mo. Aggravation of inflammatory stressors due to disseminated tuberculosis likely contributed to the repression of normal and leukemic hematopoiesis, and the relief of inflammatory stressors due to anti-tuberculosis treatment contributed to penetration of neoplastic hematopoiesis. The concealed leukemic clones in the SAA and PNH stages raise the possibility of an inflammatory stress-fueled antileukemic mechanism. CONCLUSION Aggravated inflammatory stressors can repress normal and leukemic hematopoiesis, and relieved inflammatory stressors can facilitate penetration of neoplastic hematopoiesis.
Collapse
Affiliation(s)
- Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Dong Yang
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Jia Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| |
Collapse
|
7
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
8
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Murphy M, Suliman S, Briel L, Veldtsman H, Khomba N, Africa H, Steyn M, Snyders CI, van Rensburg IC, Walzl G, Chegou NN, Hatherill M, Hanekom WA, Scriba TJ, Nemes E. Newborn bacille Calmette-Guérin vaccination induces robust infant interferon-γ-expressing natural killer cell responses to mycobacteria. Int J Infect Dis 2023:S1201-9712(23)00069-3. [PMID: 36842756 DOI: 10.1016/j.ijid.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023] Open
Abstract
OBJECTIVES The bacille Calmette-Guérin (BCG) vaccine is usually administered at birth to protect against severe forms of tuberculosis in children. BCG also confers some protection against other infections, possibly mediated by innate immune training. We investigated whether newborn BCG vaccination modulates myeloid and natural killer (NK) cell responses to mycobacteria. METHODS BCG vaccination was either administered at birth or delayed to 6 or 10 weeks of age in 130 South African infants. Whole blood was stimulated with BCG and clusters of differentiation (CD)4+ T, myeloid, and NK cell responses were measured by flow cytometry; the levels of secreted cytokines were measured by a multiplex bead array. RESULTS Newborn BCG vaccination was associated with significantly higher frequencies of BCG-reactive, cytokine-expressing CD4+ T cells, and interferon (IFN)-γ-expressing NK cells than in unvaccinated infants but no differences in cytokine-expressing CD33+ myeloid cells were observed. The induction of BCG-reactive IFN-γ-expressing NK cells was not associated with the markers of NK cell maturation, differentiation, or cytokine receptor expression. BCG-reactive NK cell responses correlated directly with the levels of secreted interleukin (IL)-2 and IFN-γ and the innate pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor (TNF) in BCG-vaccinated infants only. CONCLUSION We showed that BCG-reactive IFN-γ-expressing NK cells are strongly induced by BCG vaccination in infants and are likely amplified through bystander cytokines.
Collapse
Affiliation(s)
- Melissa Murphy
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Sara Suliman
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Libby Briel
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Helen Veldtsman
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Nondumiso Khomba
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Marcia Steyn
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Candice I Snyders
- Department of Science and Technology, National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilana C van Rensburg
- Department of Science and Technology, National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Department of Science and Technology, National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N Chegou
- Department of Science and Technology, National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Dimova T, Dimitrova V, Grozdanov P, Markova N. Placentа of BCG-Vaccinated Women in early Pregnancy is Colonized with Non-Immunogenic Mycobacterial L-forms. Am J Reprod Immunol 2023; 89:e13650. [PMID: 36331422 DOI: 10.1111/aji.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
PROBLEM Long-lived mycobacterial L-forms (mL-forms) could be detected in the blood of BCG-vaccinated people. We have previously found mL-forms in term placentas and blood of neonates, delivered by healthy BCG-vaccinated mothers as first formal demonstration that BCG vaccination in the childhood of the woman could affect her placentobiome during pregnancy. Of note, the isolated mL-forms reverted to the cell-walled state of the parental BCG bacilli in vitro. METHOD OF STUDY Here, we analyzed triple samples of blood, decidua and chorion taken from BCG-vaccinated pregnant women, directed to elective abortions (6-12 gestation weeks). The colonization of the primary samples with mycobacterial L-forms (mL-forms) was evaluated using microbiological isolation and subsequent identification by real time PCR and morphological characterization by light microscopy and SEM. The potential of early placenta-derived mL-forms to expand mycobacteria-reactive γδ T cells in vitro was assessed using FACS, whereas their immunogenicity in vivo was followed up after i.p. inoculation in rats. RESULTS Our results showed two important findings: 1) viable filterable mL-forms varying in size, shape and proliferation modes are capable of colonizing the gestational tissues of BCG-vaccinated women early in pregnancy and 2) early placenta-derived mL-forms are not as immunogenic as walled M. bovis BCG bacilli, shown by lack of stimulation of mycobacteria-reactive γδ T cells co-cultured with early placenta-derived mL-forms and inefficient internalization of mL-forms by rat's peritoneal phagocytes in vivo. CONCLUSION Although generally thought to be reduced in virulence, mL-forms could provide a reservoir, hidden from the immune system especially in an immune privileged niche like placenta.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Petar Grozdanov
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadya Markova
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
11
|
Esteso G, Felgueres MJ, García-Jiménez ÁF, Reyburn-Valés C, Benguría A, Vázquez E, Reyburn HT, Aguiló N, Martín C, Puentes E, Murillo I, Rodríguez E, Valés-Gómez M. BCG-activation of leukocytes is sufficient for the generation of donor-independent innate anti-tumor NK and γδ T-cells that can be further expanded in vitro. Oncoimmunology 2022; 12:2160094. [PMID: 36567803 PMCID: PMC9788708 DOI: 10.1080/2162402x.2022.2160094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG), the nonpathogenic Mycobacterium bovis strain used as tuberculosis vaccine, has been successfully used as treatment for non-muscle invasive bladder cancer for decades, and suggested to potentiate cellular and humoral immune responses. However, the exact mechanism of action is not fully understood. We previously described that BCG mainly activated anti-tumor cytotoxic NK cells with upregulation of CD56 and a CD16+ phenotype. Now, we show that stimulation of human peripheral blood mononuclear cells with iBCG, a preparation based on BCG-Moreau, expands oligoclonal γδ T-cells, with a cytotoxic phenotype, together with anti-tumor CD56high CD16+ NK cells. We have used scRNA-seq, flow cytometry, and functional assays to characterize these BCG-activated γδ T-cells in detail. They had a high IFNγ secretion signature with expression of CD27+ and formed conjugates with bladder cancer cells. BCG-activated γδ T-cells proliferated strongly in response to minimal doses of cytokines and had anti-tumor functions, although not fully based on degranulation. BCG was sufficient to stimulate proliferation of γδ T-cells when cultured with other PBMC; however, BCG alone did not stimulate expansion of purified γδ T-cells. The characterization of these non-donor restricted lymphocyte populations, which can be expanded in vitro, could provide a new approach to prepare cell-based immunotherapy tools.
Collapse
Affiliation(s)
- Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Christina Reyburn-Valés
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Alberto Benguría
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vázquez
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragon; Zaragoza, Spain
| | - Eugenia Puentes
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Ingrid Murillo
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Esteban Rodríguez
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain,CONTACT Mar Valés-Gómez Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
12
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
13
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
14
|
Bitencourt J, Peralta-Álvarez MP, Wilkie M, Jacobs A, Wright D, Salman Almujri S, Li S, Harris SA, Smith SG, Elias SC, White AD, Satti I, Sharpe SS, O’Shea MK, McShane H, Tanner R. Induction of Functional Specific Antibodies, IgG-Secreting Plasmablasts and Memory B Cells Following BCG Vaccination. Front Immunol 2022; 12:798207. [PMID: 35069580 PMCID: PMC8767055 DOI: 10.3389/fimmu.2021.798207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a major global health problem and the only currently-licensed vaccine, BCG, is inadequate. Many TB vaccine candidates are designed to be given as a boost to BCG; an understanding of the BCG-induced immune response is therefore critical, and the opportunity to relate this to circumstances where BCG does confer protection may direct the design of more efficacious vaccines. While the T cell response to BCG vaccination has been well-characterized, there is a paucity of literature on the humoral response. We demonstrate BCG vaccine-mediated induction of specific antibodies in different human populations and macaque species which represent important preclinical models for TB vaccine development. We observe a strong correlation between antibody titers in serum versus plasma with modestly higher titers in serum. We also report for the first time the rapid and transient induction of antibody-secreting plasmablasts following BCG vaccination, together with a robust and durable memory B cell response in humans. Finally, we demonstrate a functional role for BCG vaccine-induced specific antibodies in opsonizing mycobacteria and enhancing macrophage phagocytosis in vitro, which may contribute to the BCG vaccine-mediated control of mycobacterial growth observed. Taken together, our findings indicate that the humoral immune response in the context of BCG vaccination merits further attention to determine whether TB vaccine candidates could benefit from the induction of humoral as well as cellular immunity.
Collapse
Affiliation(s)
- Julia Bitencourt
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM/Fiocruz), Salvador, Brazil
| | | | - Morven Wilkie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ashley Jacobs
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Salem Salman Almujri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shuailin Li
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven G. Smith
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Division of Biosciences, Brunel University, London, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew D. White
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sally S. Sharpe
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Matthew K. O’Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kumar P. A Perspective on the Success and Failure of BCG. Front Immunol 2022; 12:778028. [PMID: 34970263 PMCID: PMC8712472 DOI: 10.3389/fimmu.2021.778028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
TB continues to be one of the major public health threats. BCG is the only available vaccine against TB and confers significant protection against the childhood disease. However, the protective efficacy of BCG against adult pulmonary TB, which represents a larger burden of disease, is highly variable. It has been suggested that prior exposure to environmental mycobacteria (EMb) mitigates the anti-TB efficacy of BCG by blocking its duplication or masking its immunogenicity. However, its effectiveness against childhood TB and failure of repeated administration to provide additional benefit against pulmonary TB, suggest of some other mechanisms for the variable efficacy of BCG against the pulmonary disease. Importantly, TB is a heterogeneous disease occurring in different forms and having distinct mechanisms of pathogenesis. While inability of the immune system to contain the bacilli is responsible for TB pathogenesis in infants, an aggravated immune response to Mtb has been blamed for the development of adult pulmonary TB. Available data suggest that EMb play a key role in heightening the immune response against Mtb. In this article, differential efficacy of BCG against childhood and adult TB is explained by taking into account the heterogeneity of TB, mechanisms of TB pathogenesis, and the effect of EMb on anti-Mtb immunity. It is believed that a refined understanding of the success and failure of BCG will help in the development of effective anti-TB vaccines.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Preventive Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Ji N, Mukherjee N, Shu ZJ, Reyes RM, Meeks JJ, McConkey DJ, Gelfond JA, Curiel TJ, Svatek RS. γδ T Cells Support Antigen-Specific αβ T cell-Mediated Antitumor Responses during BCG Treatment for Bladder Cancer. Cancer Immunol Res 2021; 9:1491-1503. [PMID: 34607803 PMCID: PMC8691423 DOI: 10.1158/2326-6066.cir-21-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the most effective intravesical agent at reducing recurrence for patients with high-grade, non-muscle-invasive bladder cancer. Nevertheless, response to BCG is variable and strategies to boost BCG efficacy have not materialized. Prior work demonstrated a requirement for either conventional αβ or nonconventional γδ T cells in mediating BCG treatment efficacy, yet the importance of T-cell antigen specificity for BCG's treatment effect is unclear. Here, we provide direct evidence to show that BCG increases the number of tumor antigen-specific αβ T cells in patients with bladder cancer and protects mice from subsequent same-tumor challenge, supporting BCG induction of tumor-specific memory and protection. Adoptive T-cell transfers of antigen-specific αβ T cells into immunodeficient mice challenged with syngeneic MB49 bladder tumors showed that both tumor and BCG antigen-specific αβ T cells contributed to BCG efficacy. BCG-specific antitumor immunity, however, also required nonconventional γδ T cells. Prior work shows that the mTOR inhibitor rapamycin induces the proliferation and effector function of γδ T cells. Here, rapamycin increased BCG efficacy against both mouse and human bladder cancer in vivo in a γδ T cell-dependent manner. Thus, γδ T cells augment antitumor adaptive immune effects of BCG and support rapamycin as a promising approach to boost BCG efficacy in the treatment of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Ryan M Reyes
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Gelfond
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
17
|
Warimwe GM, Francis MJ, Bowden TA, Thumbi SM, Charleston B. Using cross-species vaccination approaches to counter emerging infectious diseases. Nat Rev Immunol 2021; 21:815-822. [PMID: 34140665 PMCID: PMC8211312 DOI: 10.1038/s41577-021-00567-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
Since the initial use of vaccination in the eighteenth century, our understanding of human and animal immunology has greatly advanced and a wide range of vaccine technologies and delivery systems have been developed. The COVID-19 pandemic response leveraged these innovations to enable rapid development of candidate vaccines within weeks of the viral genetic sequence being made available. The development of vaccines to tackle emerging infectious diseases is a priority for the World Health Organization and other global entities. More than 70% of emerging infectious diseases are acquired from animals, with some causing illness and death in both humans and the respective animal host. Yet the study of critical host-pathogen interactions and the underlying immune mechanisms to inform the development of vaccines for their control is traditionally done in medical and veterinary immunology 'silos'. In this Perspective, we highlight a 'One Health vaccinology' approach and discuss some key areas of synergy in human and veterinary vaccinology that could be exploited to accelerate the development of effective vaccines against these shared health threats.
Collapse
Affiliation(s)
- George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- The Pirbright Institute, Woking, UK.
| | | | - Thomas A Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford, UK
| | - Samuel M Thumbi
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Center for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
18
|
Trauer JM, Kawai A, Coussens AK, Datta M, Williams BM, McBryde ES, Ragonnet R. Timing of Mycobacterium tuberculosis exposure explains variation in BCG effectiveness: a systematic review and meta-analysis. Thorax 2021; 76:1131-1141. [PMID: 33893231 PMCID: PMC8526882 DOI: 10.1136/thoraxjnl-2020-216794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 11/04/2022]
Abstract
RATIONALE The heterogeneity in efficacy observed in studies of BCG vaccination is not fully explained by currently accepted hypotheses, such as latitudinal gradient in non-tuberculous mycobacteria exposure. METHODS We updated previous systematic reviews of the effectiveness of BCG vaccination to 31 December 2020. We employed an identical search strategy and inclusion/exclusion criteria to these earlier reviews, but reclassified several studies, developed an alternative classification system and considered study demography, diagnostic approach and tuberculosis (TB)-related epidemiological context. MAIN RESULTS Of 21 included trials, those recruiting neonates and children aged under 5 were consistent in demonstrating considerable protection against TB for several years. Trials in high-burden settings with shorter follow-up also showed considerable protection, as did most trials in settings of declining burden with longer follow-up. However, the few trials performed in high-burden settings with longer follow-up showed no protection, sometimes with higher case rates in the vaccinated than the controls in the later follow-up period. CONCLUSIONS The most plausible explanatory hypothesis for these results is that BCG protects against TB that results from exposure shortly after vaccination. However, we found no evidence of protection when exposure occurs later from vaccination, which would be of greater importance in trials in high-burden settings with longer follow-up. In settings of declining burden, most exposure occurs shortly following vaccination and the sustained protection observed for many years thereafter represents continued protection against this early exposure. By contrast, in settings of continued intense transmission, initial protection subsequently declines with repeated exposure to Mycobacterium tuberculosis or other pathogens.
Collapse
Affiliation(s)
- James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Kawai
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna K Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Bridget M Williams
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Romain Ragonnet
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Messina NL, Pittet LF, Gardiner K, Freyne B, Francis KL, Zufferey C, Abruzzo V, Morrison C, Allen KJ, Flanagan KL, Ponsonby AL, Robins-Browne R, Shann F, South M, Vuillermin P, Donath S, Casalaz D, Curtis N. Neonatal BCG vaccination and infections in the first year of life: the MIS BAIR randomised controlled trial. J Infect Dis 2021; 224:1115-1127. [PMID: 34146093 DOI: 10.1093/infdis/jiab306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacille Calmette-Guérin (BCG) vaccination has beneficial off-target effects that may include protecting against non-mycobacterial infectious diseases. We aimed to determine whether neonatal BCG vaccination reduces lower respiratory tract infections (LRTI) in infants in the MIS BAIR trial. METHODS In this investigator-blinded trial, neonates in Australia were randomised to receive BCG-Denmark vaccination or no BCG at birth. Episodes of LRTI were determined by symptoms reported in parent-completed 3-monthly questionnaires over the first year of life. Data were analysed by intention-to-treat using binary regression. Clinicaltrials.gov (NCT01906853). RESULTS From August 2013 to September 2016, 1272 neonates were randomised to the BCG vaccination (n=637) or control (n=635) group. The proportion of participants with an episode of LRTI in the first year of life among BCG-vaccinated infants was 54.8% compared to 58.0% in the control group, resulting in a risk difference of -3.2 (95% CI -9.0 to 2.6) after multiple imputation. There was no interaction observed between the primary outcome and sex, maternal BCG or the other pre-specified effect modifiers. CONCLUSIONS Based on the findings of this trial, there is insufficient evidence to support the use of neonatal BCG vaccination to prevent LRTI in the first year of life in high-income settings.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laure F Pittet
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kaya Gardiner
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Bridget Freyne
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Institute of Infection & Global Health University of Liverpool & Malawi-Liverpool Wellcome Trust Research Programme, Liverpool, UK
| | - Kate L Francis
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Christel Zufferey
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Veronica Abruzzo
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Clare Morrison
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Katrina J Allen
- Formerly of Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.,School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roy Robins-Browne
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Shann
- Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mike South
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Peter Vuillermin
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia.,Child health research unit, Barwon Health, Geelong, Victoria, Australia
| | - Susan Donath
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dan Casalaz
- Neonatal Intensive Care Unit, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
21
|
Freyne B, Messina NL, Donath S, Germano S, Bonnici R, Gardiner K, Casalaz D, Robins-Browne RM, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Reduces Interferon-γ Responsiveness to Heterologous Pathogens in Infants From a Randomized Controlled Trial. J Infect Dis 2021; 221:1999-2009. [PMID: 31990350 PMCID: PMC7289544 DOI: 10.1093/infdis/jiaa030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background BCG vaccination has beneficial nonspecific (heterologous) effects that protect against nonmycobacterial infections. We have previously reported that BCG vaccination at birth alters in vitro cytokine responses to heterologous stimulants in the neonatal period. This study investigated heterologous responses in 167 infants in the same trial 7 months after randomization. Methods A whole-blood assay was used to interrogate in vitro cytokine responses to heterologous stimulants (killed pathogens) and Toll-like receptor (TLR) ligands. Results Compared to BCG-naive infants, BCG-vaccinated infants had increased production of interferon gamma (IFN-γ) and monokine induced by gamma interferon (MIG) (CXCL9) in response to mycobacterial stimulation and decreased production of IFN-γ in response to heterologous stimulation and TLR ligands. Reduced IFN-γ responses were attributable to a decrease in the proportion of infants who mounted a detectable IFN-γ response. BCG-vaccinated infants also had increased production of MIG (CXCL9) and interleukin-8 (IL-8), and decreased production of IL-10, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, the pattern of which varied by stimulant. IL-1Ra responses following TLR1/2 (Pam3CYSK4) stimulation were increased in BCG-vaccinated infants. Both sex and maternal BCG vaccination status influenced the effect of neonatal BCG vaccination. Conclusions BCG vaccination leads to changes in IFN-γ responsiveness to heterologous stimulation. BCG-induced changes in other cytokine responses to heterologous stimulation vary by pathogen.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Institute of Infection and Global Health, The University of Liverpool and The Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Susan Donath
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Australia
| | - Susie Germano
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Rhian Bonnici
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- University of Tasmania, Launceston, Australia.,Monash University, Clayton, Australia
| | - Toby Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
22
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Castillo-González R, Cibrian D, Sánchez-Madrid F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol 2020; 147:2030-2042. [PMID: 33259837 DOI: 10.1016/j.jaci.2020.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
γδ T cells are much less common than αβ T cells, accounting for 0.5% to 5% of all T lymphocytes in the peripheral blood and lymphoid tissues in mice and humans. However, they are the most abundant T-lymphocyte subset in some epithelial barriers such as mouse skin. γδ T cells are considered innate lymphocytes because of their non-MHC restricted antigen recognition, as well as because of their rapid response to cytokines, invading pathogens, and malignant cells. Exacerbated expansion and activation of γδ T cells in the skin is a common feature of acute and chronic skin inflammation such as psoriasis and contact or atopic dermatitis. Different γδ T-cell subsets showing differential developmental and functional features are found in mouse and human skin. This review discusses the state of the art of research and future perspectives about the role of the different subsets of γδ T-cells detected in the skin in steady-state, psoriasis, dermatitis, infection, and malignant skin diseases. Also, we highlight the differences between human and mouse γδ T cells in skin homeostasis and inflammation, as understanding the differential role of each subtype of skin γδ T cells will improve the discovery of new therapies.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
24
|
Fritschi N, Curtis N, Ritz N. Bacille Calmette Guérin (BCG) and new TB vaccines: Specific, cross-mycobacterial and off-target effects. Paediatr Respir Rev 2020; 36:57-64. [PMID: 32958428 PMCID: PMC7439992 DOI: 10.1016/j.prrv.2020.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
The Bacille Calmette Guérin (BCG) vaccine was developed over a century ago and has become one of the most used vaccines without undergoing a modern vaccine development life cycle. Despite this, the vaccine has protected many millions from severe and disseminated forms of tuberculosis (TB). In addition, BCG has cross-mycobacterial effects against non-tuberculous mycobacteria and off-target (also called non-specific or heterologous) effects against other infections and diseases. More recently, BCG's effects on innate immunity suggest it might improve the immune response against viral respiratory infections including SARS-CoV-2. New TB vaccines, developed over the last 30 years, show promise, particularly in prevention of progression to disease from TB infection in young adults. The role of BCG in the context of new TB vaccines remains uncertain as most participants included in trials have been previously BCG immunised. BCG replacement vaccines are in efficacy trials and these may also have off-target effects.
Collapse
Affiliation(s)
- Nora Fritschi
- Infectious Unit and Mycobacterial Research Group, University Children's Hospital and Department of Clinical Research, University of Basel, Switzerland
| | - Nigel Curtis
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Nicole Ritz
- Infectious Unit and Mycobacterial Research Group, University Children's Hospital and Department of Clinical Research, University of Basel, Switzerland; Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia; University of Basel Children's Hospital, Infectious Diseases Unit Basel, Switzerland.
| |
Collapse
|
25
|
Papadopoulou M, Dimova T, Shey M, Briel L, Veldtsman H, Khomba N, Africa H, Steyn M, Hanekom WA, Scriba TJ, Nemes E, Vermijlen D. Fetal public Vγ9Vδ2 T cells expand and gain potent cytotoxic functions early after birth. Proc Natl Acad Sci U S A 2020; 117:18638-18648. [PMID: 32665435 PMCID: PMC7414170 DOI: 10.1073/pnas.1922595117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vγ9Vδ2 T cells are a major human blood γδ T cell population that respond in a T cell receptor (TCR)-dependent manner to phosphoantigens which are generated by a variety of microorganisms. It is not clear how Vγ9Vδ2 T cells react toward the sudden microbial exposure early after birth. We found that human Vγ9Vδ2 T cells with a public/shared fetal-derived TCR repertoire expanded within 10 wk postpartum. Such an expansion was not observed in non-Vγ9Vδ2 γδ T cells, which possessed a private TCR repertoire. Furthermore, only the Vγ9Vδ2 T cells differentiated into potent cytotoxic effector cells by 10 wk of age, despite their fetal origin. Both the expansion of public fetal Vγ9Vδ2 T cells and their functional differentiation were not affected by newborn vaccination with the phosphoantigen-containing bacillus Calmette-Guérin (BCG) vaccine. These findings suggest a strong and early priming of the public fetal-derived Vγ9Vδ2 T cells promptly after birth, likely upon environmental phosphoantigen exposure.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), 1050 Brussels, Belgium
- U-CRI, 6041 Gosselies, Belgium
| | - Tanya Dimova
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Muki Shey
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Libby Briel
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Helen Veldtsman
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Nondumiso Khomba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Marcia Steyn
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), 1050 Brussels, Belgium
- U-CRI, 6041 Gosselies, Belgium
| |
Collapse
|
26
|
Ogongo P, Steyn AJ, Karim F, Dullabh KJ, Awala I, Madansein R, Leslie A, Behar SM. Differential skewing of donor-unrestricted and γδ T cell repertoires in tuberculosis-infected human lungs. J Clin Invest 2020; 130:214-230. [PMID: 31763997 PMCID: PMC6934215 DOI: 10.1172/jci130711] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Unconventional T cells that recognize mycobacterial antigens are of great interest as potential vaccine targets against tuberculosis (TB). This includes donor-unrestricted T cells (DURTs), such as mucosa-associated invariant T cells (MAITs), CD1-restricted T cells, and γδ T cells. We exploited the distinctive nature of DURTs and γδ T cell receptors (TCRs) to investigate the involvement of these T cells during TB in the human lung by global TCR sequencing. Making use of surgical lung resections, we investigated the distribution, frequency, and characteristics of TCRs in lung tissue and matched blood from individuals infected with TB. Despite depletion of MAITs and certain CD1-restricted T cells from the blood, we found that the DURT repertoire was well preserved in the lungs, irrespective of disease status or HIV coinfection. The TCRδ repertoire, in contrast, was highly skewed in the lungs, where it was dominated by Vδ1 and distinguished by highly localized clonal expansions, consistent with the nonrecirculating lung-resident γδ T cell population. These data show that repertoire sequencing is a powerful tool for tracking T cell subsets during disease.
Collapse
Affiliation(s)
- Paul Ogongo
- Africa Health Research Institute and.,School of Laboratory Medicine, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | | | | | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ismael Awala
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute and.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Bickett TE, McLean J, Creissen E, Izzo L, Hagan C, Izzo AJ, Silva Angulo F, Izzo AA. Characterizing the BCG Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Front Immunol 2020; 11:1202. [PMID: 32625209 PMCID: PMC7314953 DOI: 10.3389/fimmu.2020.01202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b+F4/80+ monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.
Collapse
Affiliation(s)
- Thomas E Bickett
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer McLean
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Creissen
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Linda Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Cassidy Hagan
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Antonio J Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Fabiola Silva Angulo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Angelo A Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
28
|
Abstract
Tuberculosis (TB) host defense depends on cellular immunity, including macrophages and adaptively acquired CD4+ and CD8+ T cells. More recently, roles for new immune components, including neutrophils, innate T cells, and B cells, have been defined, and the understanding of the function of macrophages and adaptively acquired T cells has been advanced. Moreover, the understanding of TB immunology elucidates TB infection and disease as a spectrum. Finally, determinates of TB host defense, such as age and comorbidities, affect clinical expression of TB disease. Herein, the authors comprehensively review TB immunology with an emphasis on new advances.
Collapse
Affiliation(s)
- David M Lewinsohn
- Oregon Health and Science University, 3710 Southwest U.S. Veterans Road, Portland, OR 97239, USA
| | - Deborah A Lewinsohn
- Oregon Health and Science University, 707 Southwest Gaines Road, Portland, OR 97239, USA.
| |
Collapse
|
29
|
Sorgi S, Bonezi V, Dominguez MR, Gimenez AM, Dobrescu I, Boscardin S, Nakaya HI, Bargieri DY, Soares IS, Silveira ELV. São Paulo School of Advanced Sciences on Vaccines: an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190061. [PMID: 32362926 PMCID: PMC7187638 DOI: 10.1590/1678-9199-jvatitd-2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.
Collapse
Affiliation(s)
- Sara Sorgi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Dipartimento di Biotecnologie Mediche, Universita’ degli Studi di Siena, Siena, Italia
| | - Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irina Dobrescu
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Silvia Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
30
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
31
|
Jensen KJ, Biering-Sørensen S, Ursing J, Kofoed PEL, Aaby P, Benn CS. Seasonal variation in the non-specific effects of BCG vaccination on neonatal mortality: three randomised controlled trials in Guinea-Bissau. BMJ Glob Health 2020; 5:e001873. [PMID: 32201619 PMCID: PMC7059430 DOI: 10.1136/bmjgh-2019-001873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022] Open
Abstract
The BCG vaccine protects non-specifically against other diseases than tuberculosis. Three randomised controlled trials of early BCG in Guinea-Bissau found a 38% reduction in all-cause neonatal mortality. Little is known about the underlying mechanisms. In Guinea-Bissau, prevalent infectious diseases display distinct seasonality. Revisiting the three trials (>6500 infants) comparing early BCG versus no early BCG in low weight infants on all-cause neonatal mortality over 12 consecutive years, we explored the seasonal variation in BCG’s effect on mortality. In a subgroup of participants, adaptive and innate cytokine responses were measured 4 weeks after randomisation. Consistently over the course of the three trials and 12 years, the effect of BCG on all-cause neonatal mortality was particularly beneficial when administered in November to January, coincident with peaking malaria infections. During these months, BCG was also associated with stronger proinflammatory responses to heterologous challenge. Recent studies have suggested a protective effect of BCG against malaria. BCG may also ameliorate immune-compromising fatal effects of placental malaria in the newborn.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Johan Ursing
- Department of Infectious Diseases, Danderyd University Hospital, Stockholm, Sweden.,Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Poul-Erik Lund Kofoed
- Department of Pediatrics, Kolding Hospital, Kolding, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Peter Aaby
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
32
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
33
|
Tanner R, Villarreal-Ramos B, Vordermeier HM, McShane H. The Humoral Immune Response to BCG Vaccination. Front Immunol 2019; 10:1317. [PMID: 31244856 PMCID: PMC6579862 DOI: 10.3389/fimmu.2019.01317] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Bacillus Calmette Guérin (BCG) is the only currently available vaccine against tuberculosis (TB), but it confers incomplete and variable protection against pulmonary TB in humans and bovine TB (bTB) in cattle. Insights into the immune response induced by BCG offer an underexploited opportunity to gain knowledge that may inform the design of a more efficacious vaccine, which is urgently needed to control these major global epidemics. Humoral immunity in TB and bTB has been neglected, but recent studies supporting a role for antibodies in protection against TB has driven a growing interest in determining their relevance to vaccine development. In this manuscript we review what is known about the humoral immune response to BCG vaccination and re-vaccination across species, including evidence for the induction of specific B cells and antibodies; and how these may relate to protection from TB or bTB. We discuss potential explanations for often conflicting findings and consider how factors such as BCG strain, manufacturing methodology and route of administration influence the humoral response. As novel vaccination strategies include BCG prime-boost regimens, the literature regarding off-target immunomodulatory effects of BCG vaccination on non-specific humoral immunity is also reviewed. Overall, reported outcomes to date are inconsistent, but indicate that humoral responses are heterogeneous and may play different roles in different species, populations, or individual hosts. Further study is warranted to determine whether a new TB vaccine could benefit from the targeting of humoral as well as cell-mediated immunity.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - H. Martin Vordermeier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Pöyhönen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity. J Clin Immunol 2019; 39:376-390. [PMID: 31123910 DOI: 10.1007/s10875-019-00642-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/β and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain "idiopathic," in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.
Collapse
Affiliation(s)
- Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
35
|
Basu Roy R, Whittaker E, Seddon JA, Kampmann B. Tuberculosis susceptibility and protection in children. THE LANCET. INFECTIOUS DISEASES 2019; 19:e96-e108. [PMID: 30322790 PMCID: PMC6464092 DOI: 10.1016/s1473-3099(18)30157-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Children represent both a clinically important population susceptible to tuberculosis and a key group in whom to study intrinsic and vaccine-induced mechanisms of protection. After exposure to Mycobacterium tuberculosis, children aged under 5 years are at high risk of progressing first to tuberculosis infection, then to tuberculosis disease and possibly disseminated forms of tuberculosis, with accompanying high risks of morbidity and mortality. Children aged 5-10 years are somewhat protected, until risk increases again in adolescence. Furthermore, neonatal BCG programmes show the clearest proven benefit of vaccination against tuberculosis. Case-control comparisons from key cohorts, which recruited more than 15 000 children and adolescents in total, have identified that the ratio of monocytes to lymphocytes, activated CD4 T cell count, and a blood RNA signature could be correlates of risk for developing tuberculosis. Further studies of protected and susceptible populations are necessary to guide development of novel tuberculosis vaccines that could facilitate the achievement of WHO's goal to eliminate deaths from tuberculosis in childhood.
Collapse
Affiliation(s)
- Robindra Basu Roy
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Vaccines and Immunity Theme MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Elizabeth Whittaker
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - James A Seddon
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Vaccines and Immunity Theme MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
36
|
Bothamley G. What next? Basic research, new treatments and a patient-centred approach in controlling tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10026118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Age-related waning of immune responses to BCG in healthy children supports the need for a booster dose of BCG in TB endemic countries. Sci Rep 2018; 8:15309. [PMID: 30333506 PMCID: PMC6193026 DOI: 10.1038/s41598-018-33499-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
In the absence of a more effective vaccine against TB and in the interest of developing one, it is essential to understand immune responses associated with BCG protection. We comprehensively characterized T cell populations in BCG-vaccinated children over time. Blood from 78 healthy, BCG-vaccinated children representing four age groups (<1 yr, ≥1 yr <2 yr, ≥2 yr <5 yr, ≥5 yr), was stimulated in vitro for 24 hours and 6 days with live BCG to induce effector and central memory responses. Antigen-specific CD4, CD8, γδ and regulatory T cell populations were phenotyped and intracellular and secreted cytokines measured by flow cytometry and multiplex ELISA respectively. Our results demonstrated that populations of naïve T cells predominated in infants, compared to older children. However, BCG-specific effector CD4 T cell responses were equivalent and antigen-specific CD4 T cell proliferative capacity was increased in infants compared to older children. Increases in innate immune responses including γδ T cell responses and secreted pro-inflammatory cytokines were noted with increasing age. In conclusion, we identified that the capacity to expand and differentiate effector T cells in response to BCG stimulation wanes with increasing age, which may indicate waning central memory immunity. Booster vaccination could be considered to maintain the antigen-specific central memory pool and possibly enhance the duration of protection.
Collapse
|
38
|
Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018; 7:e1010. [PMID: 29484187 PMCID: PMC5822400 DOI: 10.1002/cti2.1010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Jason P Mooney
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Eleanor M Riley
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Martin R Goodier
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
39
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
40
|
Contribution of intercellular adhesion molecule 1 (ICAM-1) to control Mycobacterium avium infection. Microbes Infect 2017; 19:527-535. [DOI: 10.1016/j.micinf.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
|
41
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
42
|
Hamilton CA, Mahan S, Entrican G, Hope JC. Interactions between natural killer cells and dendritic cells favour T helper1-type responses to BCG in calves. Vet Res 2016; 47:85. [PMID: 27530534 PMCID: PMC4988014 DOI: 10.1186/s13567-016-0367-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/29/2016] [Indexed: 08/24/2023] Open
Abstract
Vaccination of neonatal calves with BCG induces a significant level of protection from infection with Mycobacterium bovis, the causative agent of bovine tuberculosis. Since neonatal vaccination of humans with BCG induces activation of NK cells, and young calves have high circulating numbers of these cells, we hypothesised that NK cells are important in the protective response to BCG. Furthermore, since NK cells play a role in shaping adaptive immune responses through interactions with DCs, we investigated the interactions between NK cells and DCs in the context of BCG. DCs infected with BCG expressed significantly higher levels of MHC class II and the co-stimulatory molecules CD40 and CD80, alongside augmented production of the Th1 polarising cytokine IL-12, when compared with uninfected DCs. Following in vitro co-culture with BCG-infected DCs, NK cells increased their expression of the activatory molecule CD25, with preferential activation of the CD2- NK cell subset. NK cell effector function, as measured by production of IFN-γ, was also significantly enhanced following co-culture with BCG-infected DCs. This study provides novel evidence to demonstrate that NK cells phenotypically and functionally mature after interactions with DCs in the context of BCG. Furthermore, through the production of IFN-γ and IL-12 by NK cells and DCs respectively, this interaction may drive protective Th1-type immune responses to Mycobacteria.
Collapse
Affiliation(s)
- Carly A Hamilton
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Suman Mahan
- Zoetis, Portage Street, Kalamazoo, MI, 49007, USA
| | - Gary Entrican
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, Scotland, UK
| | - Jayne C Hope
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
43
|
Suliman S, Geldenhuys H, Johnson JL, Hughes JE, Smit E, Murphy M, Toefy A, Lerumo L, Hopley C, Pienaar B, Chheng P, Nemes E, Hoft DF, Hanekom WA, Boom WH, Hatherill M, Scriba TJ. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1100-1110. [PMID: 27412415 PMCID: PMC4976036 DOI: 10.4049/jimmunol.1501996] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
Abstract
One third of the global population is estimated to be latently infected with Mycobacterium tuberculosis We performed a phase I randomized controlled trial of isoniazid preventive therapy (IPT) before revaccination with bacillus Calmette-Guérin (BCG) in healthy, tuberculin skin test-positive (≥15-mm induration), HIV-negative South African adults. We hypothesized that preclearance of latent bacilli with IPT modulates BCG immunogenicity following revaccination. Frequencies and coexpression of IFN-γ, TNF-α, IL-2, IL-17, and/or IL-22 in CD4 T cells and IFN-γ-expressing CD8 T, γδ T, CD3(+)CD56(+) NKT-like, and NK cells in response to BCG were measured using whole blood intracellular cytokine staining and flow cytometry. We analyzed 72 participants who were revaccinated with BCG after IPT (n = 33) or without prior IPT (n = 39). IPT had little effect on frequencies or cytokine coexpression patterns of M. tuberculosis- or BCG-specific responses. Revaccination transiently boosted BCG-specific Th1 cytokine-expressing CD4, CD8, and γδ T cells. Despite high frequencies of IFN-γ-expressing BCG-reactive CD3(+)CD56(+) NKT-like cells and CD3(-)CD56(dim) and CD3(-)CD56(hi) NK cells at baseline, BCG revaccination boosted these responses, which remained elevated up to 1 y after revaccination. Such BCG-reactive memory NK cells were induced by BCG vaccination in infants, whereas in vitro IFN-γ expression by NK cells upon BCG stimulation was dependent on IL-12 and IL-18. Our data suggest that isoniazid preclearance of M. tuberculosis bacilli has little effect on the magnitude, persistence, or functional attributes of lymphocyte responses boosted by BCG revaccination. Our study highlights the surprising durability of BCG-boosted memory NKT-like and NK cells expressing antimycobacterial effector molecules, which may be novel targets for tuberculosis vaccines.
Collapse
Affiliation(s)
- Sara Suliman
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - John L. Johnson
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, U.S.A
| | - Jane E. Hughes
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Melissa Murphy
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Asma Toefy
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lesedi Lerumo
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Christiaan Hopley
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bernadette Pienaar
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Phalkun Chheng
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, U.S.A
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Daniel F. Hoft
- Division of Immunobiology, Departments of Internal Medicine and Molecular Biology, Saint Louis University Medical Center, and Center for Vaccine Development, Saint Louis, MO, USA
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - W. Henry Boom
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, U.S.A
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Corresponding Author
| |
Collapse
|
44
|
Li C, Jiang X, Luo M, Feng G, Sun Q, Chen Y. Mycobacterium vaccae Nebulization Can Protect against Asthma in Balb/c Mice by Regulating Th9 Expression. PLoS One 2016; 11:e0161164. [PMID: 27518187 PMCID: PMC4982628 DOI: 10.1371/journal.pone.0161164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. CD4(+) T-helper 9 (Th9) cells are closely linked to asthma, helping to regulate inflammation and immunity. Epidemiological studies showed that mycobacteria infections are negatively associated with asthma. Our previous research showed that inactivated Mycobacterium phlei nebulization alleviated the airway hyperresponsiveness and inflammation of asthma. However, the relationship between Th9 cells and mycobacteria remains unknown. Here, we evaluated the relationship between Mycobacterium vaccae nebulization and Th9 cells in asthmatic mice. Eighteen Balb/c mice were randomized into 3 groups of 6 mice each (normal control group, asthma control group, and nebulization asthma group [Neb. group]). The Neb. group was nebulized with M. vaccae one month before establishment of the asthmatic model with ovalbumin (OVA) sensitization, and the normal and asthma control groups were nebulized with phosphate-buffered saline. The hyperresponsiveness of the mouse airways was assessed using a non-invasive lung function machine. Lung airway inflammation was evaluated by hematoxylin and eosin and periodic acid-Schiff staining. Cytokine interlukin-9 (IL-9) concentration and OVA-specific IgE in the bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assays. The percentages of γδTCR+ CD3+, IL-9+CD3+, IL-10+CD3+ lymphocytes, and IL9+γδT and IL-10+γδT cells were detected by flow cytometry. The airway inflammation and concentration of IL-9 and OVA-specific IgE were significantly reduced in the Neb. group compared to the asthma control group. The Neb. group had lower airway hyperresponsiveness, percentages of γδTCR+CD3+ and IL-9+CD3+ lymphocytes, and IL9+γδT cells, and higher percentages of IL-10+CD3+ lymphocytes and IL-10+γδT cells compared to the asthma control group. Thus, mouse bronchial asthma could be prevented by M. vaccae nebulization. The mechanism could involve M. vaccae-mediated effects on induction of IL-9 secretion and suppression of IL-10 secretion from γδT cells. γδT cells showed prominent IL-10 expression, indicating that they possibly belong to the Th9 family.
Collapse
Affiliation(s)
- Chaoqian Li
- Department of Respiratory Medicine, Guangxi Medical College, Nanning, Guangxi, China
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| | - Mingjie Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangyi Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qixiang Sun
- The Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiping Chen
- Department of Geriatric Disease, The National Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
45
|
Ritz N, Casalaz D, Donath S, Tebruegge M, Dutta B, Connell TG, Robins-Browne R, Britton WJ, Hanekom WA, Curtis N. Comparable CD4 and CD8 T cell responses and cytokine release after at-birth and delayed BCG immunisation in infants born in Australia. Vaccine 2016; 34:4132-4139. [PMID: 27396518 DOI: 10.1016/j.vaccine.2016.06.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND More than 120 million doses of BCG vaccine are administered worldwide each year. Most infants are given BCG at birth in accordance with WHO recommendations. However, the effect of the maturing neonatal immune system on the immune response and protection conferred by BCG remains uncertain. Previous studies investigating the influence of age at immunisation on the immune response induced by BCG have reported conflicting results. This study compared BCG given at birth and at two months of age in infants in Australia. METHODS Infants born in Melbourne were randomly allocated to immunisation with BCG-Denmark at birth or two months of age. Ten weeks after immunisation, anti-mycobacterial immune responses were measured in a whole blood assay using intracellular cytokine assays and xMAP multiplex cytokine analysis. RESULTS Result from 98 BCG-immunised infants were included in the final analysis. BCG immunisation at birth (n=54) and at 2months of age (n=44) induced comparable proportions of mycobacteria-specific cytokine-producing CD4 and CD8 T cells, as well as comparable proportions of polyfunctional (TNF(+) IL-2(+) IFN-γ(+)) CD4 T cells. Concentrations of cytokines in supernatants were also similar in both groups. CONCLUSIONS Cellular immunity measured 10weeks after BCG immunisation was similar in infants given BCG at birth and in those given BCG at 2months of age. Although definitive correlates of protection against TB remain uncertain, these results suggest that delaying BCG immunisation does not confer any immunological advantage in cellular immunity.
Collapse
Affiliation(s)
- Nicole Ritz
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; University of Basel Children's Hospital Basel, Infectious Diseases Unit and Paediatric Pharmacology, Basel, Switzerland.
| | - Dan Casalaz
- Department of Paediatrics, The Mercy Hospital for Women, Heidelberg, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Marc Tebruegge
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Binita Dutta
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Tom G Connell
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Roy Robins-Browne
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Warwick J Britton
- Centenary Institute of Cancer Medicine and Cell Biology and Department of Medicine, University of Sydney, Camperdown, Australia
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| |
Collapse
|
46
|
Induction of Unconventional T Cells by a Mutant Mycobacterium bovis BCG Strain Formulated in Cationic Liposomes Correlates with Protection against Mycobacterium tuberculosis Infections of Immunocompromised Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:638-47. [PMID: 27226281 DOI: 10.1128/cvi.00232-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Earlier studies aimed at defining protective immunity induced by Mycobacterium bovis BCG immunization have largely focused on the induction of antituberculosis CD4(+) and CD8(+) T cell responses. Here we describe a vaccine consisting of a BCGΔmmaA4 deletion mutant formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with d-(+)-trehalose 6,6'-dibehenate (TDB) (DDA/TDB) adjuvant (A4/Adj) that protected TCRδ(-/-) mice depleted of CD4(+), CD8(+), and NK1.1(+) T cells against an aerosol challenge with M. tuberculosis These mice were significantly protected relative to mice immunized with a nonadjuvanted BCGΔmmaA4 (BCG-A4) mutant and nonvaccinated controls at 2 months and 9 months postvaccination. In the absence of all T cells following treatment with anti-Thy1.2 antibody, the immunized mice lost the ability to control the infection. These results indicate that an unconventional T cell population was mediating protection in the absence of CD4(+), CD8(+), NK1.1(+), and TCRγδ T cells and could exhibit memory. Focusing on CD4(-) CD8(-) double-negative (DN) T cells, we found that these cells accumulated in the lungs postchallenge significantly more in A4/Adj-immunized mice and induced significantly greater frequencies of pulmonary gamma interferon (IFN-γ)-producing cells than were seen in the nonvaccinated or nonadjuvanted BCG control groups. Moreover, pulmonary DN T cells from the A4/Adj group exhibited significantly higher IFN-γ integrated median fluorescence intensity (iMFI) values than were seen in the control groups. We also showed that enriched DN T cells from mice immunized with A4/Adj could control mycobacterial growth in vitro significantly better than naive whole-spleen cells. These results suggest that formulating BCG in DDA/TDB adjuvant confers superior protection in immunocompromised mice and likely involves the induction of long-lived memory DN T cells.
Collapse
|
47
|
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144:171-85. [PMID: 25262977 DOI: 10.1111/imm.12394] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022] Open
Abstract
Diabetes has been recognized as an important risk factor for a variety of intracellular bacterial infections, but research into the dysregulated immune mechanisms contributing to the impaired host-pathogen interactions is in its infancy. Diabetes is characterized by a chronic state of low-grade inflammation due to activation of pro-inflammatory mediators and increased formation of advanced glycation end products. Increased oxidative stress also exacerbates the chronic inflammatory processes observed in diabetes. The reduced phagocytic and antibacterial activity of neutrophils and macrophages provides an intracellular niche for the pathogen to replicate. Phagocytic and antibacterial dysfunction may be mediated directly through altered glucose metabolism and oxidative stress. Furthermore, impaired activation of natural killer cells contributes to decreased levels of interferon-γ, required for promoting macrophage antibacterial mechanisms. Together with impaired dendritic cell function, this impedes timely activation of adaptive immune responses. Increased intracellular oxidation of antigen-presenting cells in individuals with diabetes alters the cytokine profile generated and the subsequent balance of T-cell immunity. The establishment of acute intracellular bacterial infections in the diabetic host is associated with impaired T-cell-mediated immune responses. Concomitant to the greater intracellular bacterial burden and potential cumulative effect of chronic inflammatory processes, late hyper-inflammatory cytokine responses are often observed in individuals with diabetes, contributing to systemic pathology. The convergence of intracellular bacterial infections and diabetes poses new challenges for immunologists, providing the impetus for multidisciplinary research.
Collapse
Affiliation(s)
- Kelly Hodgson
- Infectious Diseases and Immunopathogenesis Research Group, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Quest for correlates of protection against tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:258-66. [PMID: 25589549 DOI: 10.1128/cvi.00721-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A major impediment to tuberculosis (TB) vaccine development is the lack of reliable correlates of immune protection or biomarkers that would predict vaccine efficacy. Gamma interferon (IFN-γ) produced by CD4(+) T cells and, recently, multifunctional CD4(+) T cells secreting IFN-γ, tumor necrosis factor (TNF), and interleukin-2 (IL-2) have been used in vaccine studies as a measurable immune parameter, reflecting activity of a vaccine and potentially predicting protection. However, accumulating experimental evidence suggests that host resistance against Mycobacterium tuberculosis infection is independent of IFN-γ and TNF secretion from CD4(+) T cells. Furthermore, the booster vaccine MVA85A, despite generating a high level of multifunctional CD4(+) T cell response in the host, failed to confer enhanced protection in vaccinated subjects. These findings suggest the need for identifying reliable correlates of protection to determine the efficacy of TB vaccine candidates. This article focuses on alternative pathways that mediate M. tuberculosis control and their potential for serving as markers of protection. The review also discusses the significance of investigating the natural human immune response to M. tuberculosis to identify the correlates of protection in vaccination.
Collapse
|
49
|
Kumral A, İşcan B, Tuzun F, Micili SC, Arslan MK, Tugyan K, Duman N, Ozkan H. Bacillus Calmette-Guerín vaccination: a novel therapeutic approach to preventing hyperoxic lung injury. J Matern Fetal Neonatal Med 2015; 28:1950-6. [PMID: 25586318 DOI: 10.3109/14767058.2014.973396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE A growing body of evidence suggests that vaccinations play a role in the normal maturation of the immune system and in both the development and balance of immune regulatory pathways that can impact health later in life. This study aimed to evaluate the effects of Bacillus Calmette-Guerín (BCG) vaccine on the hyperoxia-induced neonatal rat lung injury. METHODS Four groups were defined as hyperoxia-exposed BCG-vaccinated, hyperoxia-exposed placebo, room air-exposed control and room air-exposed BCG-vaccinated group. The validity of the hyperoxia-induced lung injury model used in this study was confirmed by histological and immunohistochemical test. Gene expression related with cytokine and growth factor was evaluated by real-time reverse transcription polymerase chain reaction. RESULT The mean alveolar surface area and quantification of secondary crest formation in the oxygen-exposed placebo group was significantly lower than that of the oxygen-exposed BCG-vaccinated group. Compared to the oxygen-exposed placebo group, the oxygen-exposed BCG-vaccinated group showed a significantly decreased alveolar septal fibrosis and smooth muscle actin expression. The expression of genes VEGF, FGF-BP1, IL-13, and NFκB1 (p50) in the lungs of the hyperoxia-exposed BCG-vaccinated group was significantly higher than that of the hyperoxia-exposed placebo group. CONCLUSION Results suggest that BCG vaccination can protect against neonatal hyperoxic lung injury. These benefits may be interpreted to coincide with its immunomodulatory effects on pro-inflammatory and anti-inflammatory cytokine balance and expression of growth factors.
Collapse
Affiliation(s)
| | - Burçin İşcan
- a Division of Neonatology, Department of Pediatrics and
| | - Funda Tuzun
- a Division of Neonatology, Department of Pediatrics and
| | - Serap Cilaker Micili
- b Faculty of Medicine, Department of Histology , Dokuz Eylul University School of Medicine , Izmir , Turkey
| | | | - Kazim Tugyan
- b Faculty of Medicine, Department of Histology , Dokuz Eylul University School of Medicine , Izmir , Turkey
| | - Nuray Duman
- a Division of Neonatology, Department of Pediatrics and
| | - Hasan Ozkan
- a Division of Neonatology, Department of Pediatrics and
| |
Collapse
|
50
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|