1
|
Anne S, Friudenberg AD, Peterson RL. Characterization of a High-Affinity Copper Transporter CTR1a in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. J Fungi (Basel) 2024; 10:729. [PMID: 39452681 PMCID: PMC11509074 DOI: 10.3390/jof10100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a can efficiently traffic Cu ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| |
Collapse
|
2
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Zhelyazkova VL, Fischer NM, Puechmaille SJ. Bat white-nose disease fungus diversity in time and space. Biodivers Data J 2024; 12:e109848. [PMID: 38348182 PMCID: PMC10859861 DOI: 10.3897/bdj.12.e109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/26/2023] [Indexed: 02/15/2024] Open
Abstract
White-nose disease (WND), caused by the psychrophilic fungus Pseudogymnoascusdestructans, represents one of the greatest threats for North American hibernating bats. Research on molecular data has significantly advanced our knowledge of various aspects of the disease, yet more studies are needed regarding patterns of P.destructans genetic diversity distribution. In the present study, we investigate three sites within the native range of the fungus in detail: two natural hibernacula (karst caves) in Bulgaria, south-eastern Europe and one artificial hibernaculum (disused cellar) in Germany, northern Europe, where we conducted intensive surveys between 2014 and 2019. Using 18 microsatellite and two mating type markers, we describe how P.destructans genetic diversity is distributed between and within sites, the latter including differentiation across years and seasons of sampling; across sampling locations within the site; and between bats and hibernaculum walls. We found significant genetic differentiation between hibernacula, but we could not detect any significant differentiation within hibernacula, based on the variables examined. This indicates that most of the pathogen's movement occurs within sites. Genotypic richness of P.destructans varied between sites within the same order of magnitude, being approximately two times higher in the natural caves (Bulgaria) compared to the disused cellar (Germany). Within all sites, the pathogen's genotypic richness was higher in samples collected from hibernaculum walls than in samples collected from bats, which corresponds with the hypothesis that hibernacula walls represent the environmental reservoir of the fungus. Multiple pathogen genotypes were commonly isolated from a single bat (i.e. from the same swab sample) in all study sites, which might be important to consider when studying disease progression.
Collapse
Affiliation(s)
- Violeta L Zhelyazkova
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History, Bulgarian Academy of SciencesSofiaBulgaria
| | - Nicola M. Fischer
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, FranceISEM, University of Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Zoological Institute and Museum, University of Greifswald, Greifswald, GermanyZoological Institute and Museum, University of GreifswaldGreifswaldGermany
| | - Sebastien J Puechmaille
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, FranceISEM, University of Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Zoological Institute and Museum, University of Greifswald, Greifswald, GermanyZoological Institute and Museum, University of GreifswaldGreifswaldGermany
- Institut Universitaire de France, Paris, FranceInstitut Universitaire de FranceParisFrance
| |
Collapse
|
4
|
Bush DS, Calla B, Berenbaum MR. An Aspergillus flavus strain from bee bread of the Western honey bee ( Apis mellifera) displays adaptations to distinctive features of the hive environment. Ecol Evol 2024; 14:e10918. [PMID: 38389995 PMCID: PMC10883247 DOI: 10.1002/ece3.10918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fungi are ubiquitous inhabitants of colonies of the western honey bee (Apis mellifera), where they interact with bees in associations ranging from parasitism to possible mutualism. Aspergillus Flavi fungi are frequently found in bee bread (pollen processed for longterm storage) and are thought to contribute to food preparation, processing, preservation, and digestion. Conditions in the hive are challenging for fungi due, in part, to xeric and acidic properties of bee bread and the omnipresence of propolis, an antimicrobial product manufactured by bees from plant resins. We used quantitative and qualitative assays to determine whether A. flavus isolated from bee bread demonstrates tolerance for hive environmental conditions in terms of temperature, pH, osmotic pressure, and propolis exposure. Comparisons made use of three strains of A. flavus: a fungal biocontrol product not known from beehives (AF36), a strain isolated from bee bread (AFBB) in hives from central Illinois, and a pathogenic strain from a honey bee colony displaying symptoms of stonebrood (AFPA). Strain AFBB displayed higher tolerance of acidic conditions, low matric potential (simulating xeric substrate), and propolis exposure than did other strains. A genomic comparison between this new strain and the reference NRRL-3357 showed that AFBB, like AF36, might be blocked from carrying out aflatoxin biosynthesis. Sequence comparisons also revealed several missense variants in genes that encode proteins regulating osmotolerance and osmotic pressure in Aspergillus spp., including SakA, SskB, GfdA, and TcsB/Sln1. Collectively, results of our laboratory assays and genetic analyses are consistent with the suggestion that the strain isolated from bee bread is adapted to the bee bread environment and may have persisted due to a coevolutionary relationship between Aspergillus and A. mellifera. This finding bolsters recent concerns about the effects of fungicide use near bee colonies and broadens the ecological importance of highly adaptable fungal strains.
Collapse
Affiliation(s)
- Daniel S. Bush
- Deparment of EntomologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Bernarda Calla
- USDA‐ARS Pacific Shellfish Research UnitCorvallisOregonUSA
| | | |
Collapse
|
5
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Sewall BJ, Turner GG, Scafini MR, Gagnon MF, Johnson JS, Keel MK, Anis E, Lilley TM, White JP, Hauer CL, Overton BE. Environmental control reduces white‐nose syndrome infection in hibernating bats. Anim Conserv 2023. [DOI: 10.1111/acv.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- B. J. Sewall
- Department of Biology Temple University Philadelphia PA USA
| | | | | | - M. F. Gagnon
- Department of Biology Temple University Philadelphia PA USA
| | - J. S. Johnson
- Department of Biological Sciences Ohio University Athens OH USA
- School of Information Technology University of Cincinnati Cincinnati OH USA
| | - M. K. Keel
- School of Veterinary Medicine University of California Davis CA USA
| | - E. Anis
- Department of Pathobiology University of Pennsylvania, School of Veterinary Medicine, New Bolton Center Kennett Square PA USA
| | - T. M. Lilley
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - J. P. White
- Wisconsin Department of Natural Resources Madison WI USA
| | - C. L. Hauer
- Department of Biology Temple University Philadelphia PA USA
| | - B. E. Overton
- Department of Biology Commonwealth University of Pennsylvania Lock Haven PA USA
| |
Collapse
|
7
|
Meteyer CU, Dutheil JY, Keel MK, Boyles JG, Stukenbrock EH. Plant pathogens provide clues to the potential origin of bat white-nose syndrome Pseudogymnoascus destructans. Virulence 2022; 13:1020-1031. [PMID: 35635339 PMCID: PMC9176227 DOI: 10.1080/21505594.2022.2082139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
White-nose syndrome has killed millions of bats, yet both the origins and infection strategy of the causative fungus, Pseudogymnoascus destructans, remain elusive. We provide evidence for a novel hypothesis that P. destructans emerged from plant-associated fungi and retained invasion strategies affiliated with fungal pathogens of plants. We demonstrate that P. destructans invades bat skin in successive biotrophic and necrotrophic stages (hemibiotrophic infection), a mechanism previously only described in plant fungal pathogens. Further, the convergence of hyphae at hair follicles suggests nutrient tropism. Tropism, biotrophy, and necrotrophy are often associated with structures termed appressoria in plant fungal pathogens; the penetrating hyphae produced by P. destructans resemble appressoria. Finally, we conducted a phylogenomic analysis of a taxonomically diverse collection of fungi. Despite gaps in genetic sampling of prehistoric and contemporary fungal species, we estimate an 88% probability the ancestral state of the clade containing P. destructans was a plant-associated fungus.
Collapse
Affiliation(s)
- Carol Uphoff Meteyer
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin 53711
| | - Julien Y. Dutheil
- Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - M. Kevin Keel
- School of Veterinary Medicine, Dept of Pathology, Microbiology & Immunology, University of California, Davis, California 95616
| | - Justin G. Boyles
- Cooperative Wildlife Research Laboratory and School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901
| | - Eva H. Stukenbrock
- Environmental Genomics Group, Botanical Institute, Christian-Albrechts University of Kiel, Kiel, Germany and Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
8
|
Keratinophilic and Keratinolytic Fungi in Cave Ecosystems: A Culture-Based Study of Brestovská Cave and Demänovská Ľadová and Slobody Caves (Slovakia). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite speleomycological research going back to the 1960s, the biodiversity of many specific groups of micromycetes in underground sites still remains unknown, including keratinolytic and keratinophilic fungi. These fungi are a frequent cause of infections in humans and animals. Since subterranean ecosystems are inhabited by various animals and are a great tourist attraction, the goal of our research was to provide the first report of keratinophilic and keratinolytic fungal species isolated from three caves in Tatra Mts., Slovakia (Brestovská, Demänovská Ľadová and Demänovská Slobody). Speleomycological investigation was carried out inside and outside the explored caves by combining culture-based techniques with genetic and phenotypic identifications. A total of 67 fungal isolates were isolated from 24 samples of soil and sediment using Vanbreuseghem hair bait and identified as 18 different fungal species. The study sites located inside the studied caves displayed much more fungal species (17 species) than outside the underground (3 species), and the highest values of the Shannon diversity index of keratinophilic and keratinolytic fungi were noted for the study sites inside the Demänovská Slobody Cave. Overall, Arthroderma quadrifidum was the most common fungal species in all soil and/or sediment samples. To the best of our knowledge, our research has allowed for the first detection of fungal species such as Arthroderma eboreum, Arthrodermainsingulare, Chrysosporiumeuropae, Chrysosporiumsiglerae, Keratinophytonwagneri, and Penicillium charlesii in underground sites. We also showed that the temperature of soil and sediments was negatively correlated with the number of isolated keratinophilic and keratinolytic fungal species in the investigated caves.
Collapse
|
9
|
|
10
|
Vanderwolf KJ, Kyle CJ, Faure PA, McAlpine DF, Davy CM. Skin pH varies among bat species and seasons and between wild and captive bats. CONSERVATION PHYSIOLOGY 2021; 9:coab088. [PMID: 34925845 PMCID: PMC8672241 DOI: 10.1093/conphys/coab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Skin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables. Increased skin alkalinity is associated with a predisposition to cutaneous infections in humans and dogs, and inter-specific and inter-individual variation in skin pH is implicated in differential susceptibility to some skin diseases. The cutaneous pH of bats has not been characterized but is postulated to play a role in susceptibility to white-nose syndrome (WNS), a fungal infection that has decimated several Nearctic bat species. We used non-invasive probes to measure the pH of bat flight membranes in five species with differing susceptibility to WNS. Skin pH ranged from 4.67 to 8.59 and varied among bat species, geographic locations, body parts, age classes, sexes and seasons. Wild Eptesicus fuscus were consistently more acidic than wild Myotis lucifugus, Myotis leibii and Perimyotis subflavus. Juvenile bats had more acidic skin than adults during maternity season but did not differ during swarming. Male M. lucifugus were more acidic than females during maternity season, yet this trend reversed during swarming. Bat skin was more acidic in summer compared to winter, a pattern also reported in humans. Skin pH was more acidic in captive than wild E. fuscus, suggesting environmental impacts on skin pH. The pH of roosting substrates affects skin pH in captive bats and may partially explain seasonal patterns in wild bats that use different roost types across seasons. Future research on the influence of pH on microbial pathogenic factors and skin barrier function may provide valuable insights on new therapeutic targets for treating bat skin conditions.
Collapse
Affiliation(s)
- Karen J Vanderwolf
- Corresponding author: Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Canada.
| | - Christopher J Kyle
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Forensic Science Department, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Donald F McAlpine
- Department of Natural History, New Brunswick Museum, 277 Douglas Ave, Saint John, E2K 1E5, New Brunswick, Canada
| | - Christina M Davy
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Current affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
11
|
Meierhofer MB, Lilley TM, Ruokolainen L, Johnson JS, Parratt SR, Morrison ML, Pierce BL, Evans JW, Anttila J. Ten-year projection of white-nose syndrome disease dynamics at the southern leading-edge of infection in North America. Proc Biol Sci 2021; 288:20210719. [PMID: 34074117 PMCID: PMC8170204 DOI: 10.1098/rspb.2021.0719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Predicting the emergence and spread of infectious diseases is critical for the effective conservation of biodiversity. White-nose syndrome (WNS), an emerging infectious disease of bats, has resulted in high mortality in eastern North America. Because the fungal causative agent Pseudogymnoascus destructans is constrained by temperature and humidity, spread dynamics may vary by geography. Environmental conditions in the southern part of the continent are different than the northeast, where disease dynamics are typically studied, making it difficult to predict how the disease will manifest. Herein, we modelled WNS pathogen spread in Texas based on cave densities and average dispersal distances of hosts, projecting these results out to 10 years. We parameterized a predictive model of WNS epidemiology and its effects on bat populations with observed cave environmental data. Our model suggests that bat populations in northern Texas will be more affected by WNS mortality than southern Texas. As such, we recommend prioritizing the preservation of large overwintering colonies of bats in north Texas through management actions. Our model illustrates that infectious disease spread and infectious disease severity can become uncoupled over a gradient of environmental variation and highlight the importance of understanding host, pathogen and environmental conditions across a breadth of environments.
Collapse
Affiliation(s)
- Melissa B Meierhofer
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA.,Natural Resources Institute, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA.,Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland
| | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Steven R Parratt
- Department of Ecology and Evolution, University of Liverpool, Liverpool L69 7BE, UK
| | - Michael L Morrison
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| | - Brian L Pierce
- Natural Resources Institute, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| | - Jonah W Evans
- Wildlife Diversity Program, Texas Parks and Wildlife, 4200 Smith School Road, Austin, TX 78744, USA
| | - Jani Anttila
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
12
|
Tranchida MC, Pelizza SA, Elíades LA. The use of fungi in forensic science, a brief overview. CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2021. [DOI: 10.1080/00085030.2020.1869390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. C. Tranchida
- Instituto de Botánica Spegazzini. Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-CCt-La Plata), Buenos Aires, Argentina
| | - S. A. Pelizza
- Instituto de Botánica Spegazzini. Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-CCt-La Plata), Buenos Aires, Argentina
| | - L. A. Elíades
- Instituto de Botánica Spegazzini. Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-CCt-La Plata), Buenos Aires, Argentina
| |
Collapse
|
13
|
Urbina J, Chestnut T, Allen JM, Levi T. Pseudogymnoascus destructans growth in wood, soil and guano substrates. Sci Rep 2021; 11:763. [PMID: 33436940 PMCID: PMC7804951 DOI: 10.1038/s41598-020-80707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding how a pathogen can grow on different substrates and how this growth impacts its dispersal are critical to understanding the risks and control of emerging infectious diseases. Pseudogymnoascus destructans (Pd) causes white-nose syndrome (WNS) in many bat species and can persist in, and transmit from, the environment. We experimentally evaluated Pd growth on common substrates to better understand mechanisms of pathogen persistence, transmission and viability. We inoculated autoclaved guano, fresh guano, soil, and wood with live Pd fungus and evaluated (1) whether Pd grows or persists on each (2) if spores of the fungus remain viable 4 months after inoculation on each substrate, and (3) whether detection and quantitation of Pd on swabs is sensitive to the choice to two commonly used DNA extraction kits. After inoculating each substrate with 460,000 Pd spores, we collected ~ 0.20 g of guano and soil, and swabs from wood every 16 days for 64 days to quantify pathogen load through time using real-time qPCR. We detected Pd on all substrates over the course of the experiment. We observed a tenfold increase in pathogen loads on autoclaved guano and persistence but not growth in fresh guano. Pathogen loads increased marginally on wood but declined ~ 60-fold in soil. After four months, apparently viable spores were harvested from all substrates but germination did not occur from fresh guano. We additionally found that detection and quantitation of Pd from swabs of wood surfaces is sensitive to the DNA extraction method. The commonly used PrepMan Ultra Reagent protocol yielded substantially less DNA than did the QIAGEN DNeasy Blood and Tissue Kit. Notably the PrepMan Ultra Reagent failed to detect Pd in many wood swabs that were detected by QIAGEN and were subsequently found to contain substantial live conidia. Our results indicate that Pd can persist or even grow on common environmental substrates with results dependent on whether microbial competitors have been eliminated. Although we observed clear rapid declines in Pd on soil, viable spores were harvested four months after inoculation. These results suggest that environmental substrates and guano can in general serve as infectious environmental reservoirs due to long-term persistence, and even growth, of live Pd. This should inform management interventions to sanitize or modify structures to reduce transmission risk as well early detection rapid response (EDRR) planning.
Collapse
Affiliation(s)
- Jenny Urbina
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA.
| | - Tara Chestnut
- National Park Service, Mount Rainier National Park, Ashford, WA, USA
| | - Jennifer M Allen
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA
| | - Taal Levi
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
14
|
Veselská T, Homutová K, García Fraile P, Kubátová A, Martínková N, Pikula J, Kolařík M. Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans. Sci Rep 2020; 10:16530. [PMID: 33020524 PMCID: PMC7536203 DOI: 10.1038/s41598-020-73619-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.
Collapse
Affiliation(s)
- Tereza Veselská
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Karolína Homutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Paula García Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences (CAS), Květná 8, 60365, Brno, Czech Republic
| | - Jiří Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
15
|
Graf TN, Kao D, Rivera-Chávez J, Gallagher JM, Raja HA, Oberlies NH. Drug Leads from Endophytic Fungi: Lessons Learned via Scaled Production. PLANTA MEDICA 2020; 86:988-996. [PMID: 32219776 PMCID: PMC7511429 DOI: 10.1055/a-1130-4856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recently, the isolation and elucidation of a series of polyhydroxyanthraquinones were reported from an organic extract of a solid phase culture of an endophytic fungus, Penicillium restrictum (strain G85). One of these compounds, ω-hydroxyemodin (1: ), showed promising quorum-sensing inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) in both in vitro and in vivo models. The initial supply of 1: was 19 mg, and this amount needed to be scaled by a factor of 30 to 50 times, in order to generate material for further in vivo studies. To do so, improvements were implemented to enhance both the fermentation of the fungal culture and the isolation of this compound, with the target of generating > 800 mg of study materials in a period of 13 wk. Valuable insights, both regarding chemistry and mycology, were gained during the targeted production of 1: on the laboratory-scale. In addition, methods were modified to make the process more environmentally friendly by judicious choice of solvents, implementing procedures for solvent recycling, and minimizing the use of halogenated solvents.
Collapse
Affiliation(s)
- Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Diana Kao
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Natural Products, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jacklyn M. Gallagher
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
16
|
Ren P, Rajkumar SS, Zhang T, Sui H, Masters PS, Martinkova N, Kubátová A, Pikula J, Chaturvedi S, Chaturvedi V. A common partitivirus infection in United States and Czech Republic isolates of bat white-nose syndrome fungal pathogen Pseudogymnoascus destructans. Sci Rep 2020; 10:13893. [PMID: 32807800 PMCID: PMC7431587 DOI: 10.1038/s41598-020-70375-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The psychrophilic (cold-loving) fungus Pseudogymnoascus destructans was discovered more than a decade ago to be the pathogen responsible for white-nose syndrome, an emerging disease of North American bats causing unprecedented population declines. The same species of fungus is found in Europe but without associated mortality in bats. We found P. destructans was infected with a mycovirus [named Pseudogymnoascus destructans partitivirus 1 (PdPV-1)]. The virus is bipartite, containing two double-stranded RNA (dsRNA) segments designated as dsRNA1 and dsRNA2. The cDNA sequences revealed that dsRNA1 dsRNA is 1,683 bp in length with an open reading frame (ORF) that encodes 539 amino acids (molecular mass of 62.7 kDa); dsRNA2 dsRNA is 1,524 bp in length with an ORF that encodes 434 amino acids (molecular mass of 46.9 kDa). The dsRNA1 ORF contains motifs representative of RNA-dependent RNA polymerase (RdRp), whereas the dsRNA2 ORF sequence showed homology with the putative capsid proteins (CPs) of mycoviruses. Phylogenetic analyses with PdPV-1 RdRp and CP sequences indicated that both segments constitute the genome of a novel virus in the family Partitiviridae. The purified virions were isometric with an estimated diameter of 33 nm. Reverse transcription PCR (RT-PCR) and sequencing revealed that all US isolates and a subset of Czech Republic isolates of P. destructans were infected with PdPV-1. However, PdPV-1 appears to be not widely dispersed in the fungal genus Pseudogymnoascus, as non-pathogenic fungi P. appendiculatus (1 isolate) and P. roseus (6 isolates) tested negative. P. destructans PdPV-1 could be a valuable tool to investigate fungal biogeography and the host-pathogen interactions in bat WNS.
Collapse
Affiliation(s)
- Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA. .,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Sunanda S Rajkumar
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,ICMR Medical Research Institute, Puducherry, India
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haixin Sui
- Cellular and Molecular Basis of Diseases Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA
| | - Paul S Masters
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA.,Viral Replication and Vector Biology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Natalia Martinkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA. .,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA.
| |
Collapse
|
17
|
Population Connectivity Predicts Vulnerability to White-Nose Syndrome in the Chilean Myotis ( Myotis chiloensis) - A Genomics Approach. G3-GENES GENOMES GENETICS 2020; 10:2117-2126. [PMID: 32327452 PMCID: PMC7263680 DOI: 10.1534/g3.119.401009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385
Collapse
|
18
|
Fletcher QE, Webber QMR, Willis CKR. Modelling the potential efficacy of treatments for white‐nose syndrome in bats. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Quinn E. Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
| | - Quinn M. R. Webber
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
- Cognitive and Behavioural Ecology Interdisciplinary Program Memorial University of Newfoundland St. John's NL Canada
| | - Craig K. R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
| |
Collapse
|
19
|
Gabriel KT, Neville JJ, Pierce GE, Cornelison CT. Lipolytic Activity and the Utilization of Fatty Acids Associated with Bat Sebum by Pseudogymnoascus destructans. Mycopathologia 2019; 184:625-636. [PMID: 31529298 DOI: 10.1007/s11046-019-00381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/28/2019] [Indexed: 01/13/2023]
Abstract
Pseudogymnoascus destructans is the causative agent of a fungal infection of bats known as white-nose syndrome (WNS). Since its discovery in 2006, it has been responsible for precipitous declines of several species of cave-dwelling North American bats. While numerous advancements in the understanding of the disease processes underlying WNS have been made in recent years, there are still many aspects of WNS, particularly with respect to pathogen virulence, that remain unknown. In this preliminary investigation, we sought to further elucidate the disease cycle by concentrating on the pathogen, with specific focus on its ability to utilize lipids that compose bat wing sebum and are found in wing membranes, as a substrate for energy and growth. In vitro growth experiments were conducted with the three most common fatty acids that comprise bat sebum: oleic, palmitic, and stearic acids. None of the fatty acids were observed to contribute a significant difference in mean growth from controls grown on SDA, although morphological differences were observed in several instances. Additionally, as an accompaniment to the growth experiments, bat wing explants from Perimyotis subflavus and Eptesicus fuscus were fluorescently stained to visualize the difference in distribution of 16- and 18-carbon chain fatty acids in the wing membrane. Which substrates contribute to the growth of P. destructans is important to understanding the progressive impact P. destructans has on bat health through the course of the disease cycle.
Collapse
Affiliation(s)
- Kyle T Gabriel
- Division of Research and Advanced Studies, Kennesaw State University, Kennesaw, GA, USA.
| | - John J Neville
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - George E Pierce
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
20
|
Singh A, Lasek-Nesselquist E, Chaturvedi V, Chaturvedi S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. MICROBIOME 2018; 6:139. [PMID: 30089518 PMCID: PMC6083572 DOI: 10.1186/s40168-018-0512-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/02/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), has led to the deaths of millions of hibernating bats in the United States of America (USA) and Canada. Efficient strategies are needed to decontaminate Pd from the bat hibernacula to interrupt the disease transmission cycle without affecting the native microbes. Previously, we discovered a novel Trichoderma polysporum (Tp) strain (WPM 39143), which inhibited the growth of Pd in autoclaved soil samples. In the present investigation, we used culture-based approaches to determine Tp-induced killing of native and enriched Pd in the natural soil of two bat hibernacula. We also assessed the impact of Tp treatment on native microbial communities by metagenomics. RESULTS Our results demonstrated that Tp at the concentration of 105 conidia/g soil caused 100% killing of native Pd in culture within 5 weeks of incubation. A 10-fold higher concentration of Tp (106 conidia/g soil) killed an enriched Pd population (105 conidia/g soil). The 12,507 fungal operational taxonomic units (OTUs, dominated by Ascomycota and Basidiomycota) and 27,427 bacterial OTUs (dominated by Acidobacteria and Proteobacteria) comprised the native soil microbes of the two bat hibernacula. No significant differences in fungal and bacterial relative abundances were observed between untreated and Tp-treated soil (105 Tp conidia/g soil, p ≤ 0.05). CONCLUSIONS Our results suggest that Tp-induced killing of Pd is highly specific, with minimal to no impact on the indigenous microbes present in the soil samples. These findings provide the scientific rationale for the field trials of Tp in the WNS-affected hibernacula for the effective decontamination of Pd and the control of WNS.
Collapse
Affiliation(s)
- Amanpreet Singh
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
| | | | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
21
|
Phenotypic Divergence along Geographic Gradients Reveals Potential for Rapid Adaptation of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans, in North America. Appl Environ Microbiol 2018; 84:AEM.00863-18. [PMID: 29915107 DOI: 10.1128/aem.00863-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
White-nose syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains was investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of time. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion.IMPORTANCE The causal agent of white-nose syndrome in bats is Pseudogymnoascus destructans, a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last 10 years. It is not clear how the disease is spread, as the pathogen is unable to grow above 23°C and ambient temperature can act as a barrier when hosts disperse. Here, we explore the patterns of phenotypic diversity and the germination of the fungal asexual spores, arthroconidia, from strains across a sizeable area of the epizootic range. Our analyses revealed evidence of adaptation along geographic gradients during its expansion. The results have implications for understanding the diversification of P. destructans and the limits of WNS spread in North America. Given the rapidly expanding distribution of WNS, a detailed understanding of the genetic bases for phenotypic variations in growth, reproduction, and dispersal of P. destructans is urgently needed to help control this disease.
Collapse
|
22
|
Lilley TM, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas M. Lilley
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Finnish Museum of Natural HistoryUniversity of Helsinki Helsinki Finland
| | - Jani Anttila
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | | |
Collapse
|
23
|
Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Res 2018; 7:665. [PMID: 30026932 PMCID: PMC6039956 DOI: 10.12688/f1000research.15067.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 09/29/2023] Open
Abstract
Background:Pseudogymnoascusdestructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results:P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen sources (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous sources and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans validated in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| | - Holland DeFiglio
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| |
Collapse
|
24
|
Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Res 2018; 7:665. [PMID: 30026932 PMCID: PMC6039956 DOI: 10.12688/f1000research.15067.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background:Pseudogymnoascusdestructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results:P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen compounds (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous compounds and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans was compatible with in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| | - Holland DeFiglio
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| |
Collapse
|
25
|
Donaldson ME, Davy CM, Vanderwolf KJ, Willis CKR, Saville BJ, Kyle CJ. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: implications in identifying virulence factors. Mycologia 2018; 110:300-315. [PMID: 29737946 DOI: 10.1080/00275514.2018.1438223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.
Collapse
Affiliation(s)
- Michael E Donaldson
- a Environmental and Life Sciences Graduate Program , Trent University , 2140 East Bank Drive, Peterborough , Ontario , K9L 1Z8, Canada
| | - Christina M Davy
- a Environmental and Life Sciences Graduate Program , Trent University , 2140 East Bank Drive, Peterborough , Ontario , K9L 1Z8, Canada.,b Wildlife Research and Monitoring Section , Ontario Ministry of Natural Resources and Forestry , 2140 East Bank Drive, Peterborough , Ontario , K9L 1Z8, Canada
| | - Karen J Vanderwolf
- c New Brunswick Museum , 277 Douglas Avenue, Saint John , New Brunswick , E2K 1E5, Canada.,d Department of Pathobiological Sciences , University of Wisconsin-Madison , 2015 Linden Drive, Madison , Wisconsin 53706
| | - Craig K R Willis
- e Department of Biology , University of Winnipeg , 515 Portage Avenue, Winnipeg , Manitoba , R3B 2E9, Canada
| | - Barry J Saville
- a Environmental and Life Sciences Graduate Program , Trent University , 2140 East Bank Drive, Peterborough , Ontario , K9L 1Z8, Canada.,f Forensic Science Department , Trent University , 2140 East Bank Drive, Peterborough , Ontario, K9L 1Z8 , Canada
| | - Christopher J Kyle
- a Environmental and Life Sciences Graduate Program , Trent University , 2140 East Bank Drive, Peterborough , Ontario , K9L 1Z8, Canada.,f Forensic Science Department , Trent University , 2140 East Bank Drive, Peterborough , Ontario, K9L 1Z8 , Canada
| |
Collapse
|
26
|
Verant ML, Bohuski EA, Richgels KLD, Olival KJ, Epstein JH, Blehert DS. Determinants of Pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome. J Appl Ecol 2018; 55:820-829. [PMID: 29610540 DOI: 10.1111/1365-2664.13070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.
Collapse
Affiliation(s)
- Michelle L Verant
- School of Veterinary Medicine, University of Wisconsin-Madison and U.S. Geological Survey - National Wildlife Health Center
| | | | | | | | | | | |
Collapse
|
27
|
Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS One 2017; 12:e0178968. [PMID: 28617823 PMCID: PMC5472292 DOI: 10.1371/journal.pone.0178968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/21/2017] [Indexed: 11/22/2022] Open
Abstract
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
Collapse
Affiliation(s)
- Michael B. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Amanda H. Freiborg
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine E. Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, Sánchez-Carbente MDR, Sánchez-Reyes A, Dobson ADW, Folch-Mallol JL. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 2017; 12:e0173750. [PMID: 28339473 PMCID: PMC5365110 DOI: 10.1371/journal.pone.0173750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/24/2017] [Indexed: 12/03/2022] Open
Abstract
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.
Collapse
Affiliation(s)
- Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Thomas Sutton
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Edgar Balcázar-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | - Ayixon Sánchez-Reyes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
29
|
Marroquin CM, Lavine JO, Windstam ST. Effect of Humidity on Development ofPseudogymnoascus destructans, the Causal Agent of Bat White-Nose Syndrome. Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Cynthia M. Marroquin
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| | - Jamal O. Lavine
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| | - Sofia T. Windstam
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| |
Collapse
|
30
|
Using a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome. PLoS Pathog 2016; 12:e1006076. [PMID: 28027325 PMCID: PMC5189944 DOI: 10.1371/journal.ppat.1006076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats. Here we report a novel double-stranded RNA virus found in North American isolates of the fungus and show that the virus can be used as a tool to study the epidemiology of White-nose syndrome. The virus, termed Pseudogymnoascus destructans partitivirus-pa, contains 2 genomic segments, dsRNA 1 and dsRNA 2 of 1.76 kbp and 1.59 kbp respectively, each possessing a single open reading frame, and forms isometric particles approximately 30 nm in diameter, characteristic of the genus Gammapartitivirus in the family Partitiviridae. Phylogenetic analysis revealed that the virus is closely related to Penicillium stoloniferum virus S. We were able to cure P. destructans of the virus by treating fungal cultures with polyethylene glycol. Examination of 62 isolates of P. destructans including 35 from United States, 10 from Canada and 17 from Europe showed virus infection only in North American isolates of the fungus. Bayesian phylogenetic analysis using nucleotide sequences of the viral coat protein geographically clustered North American isolates indicating fungal spread followed by local adaptation of P. destructans in different regions of the United States and Canada. This is the first demonstration that a mycovirus potentially can be used to study fungal disease epidemiology. Many species of bats in North America have been severely impacted by a fungal disease, white-nose syndrome, that has killed over 5 million bats since it was first identified in 2006. The fungus is believed to have been introduced into a cave in New York where bats hibernate, and has now spread to 29 states and 4 Canadian provinces. The fungus is nearly identical from all sites where it has been isolated; however, we discovered that the fungus harbors a virus, and the virus varies enough to be able to use it to understand how the fungus has been spreading. This study used samples from infected bats throughout Pennsylvania and New York, and New Brunswick, Canada, as well a few isolates from other northeastern states. The evolution of the virus recapitulates the spread of the virus across these geographical areas, and should be useful for studying the further spread of the fungus.
Collapse
|
31
|
Phylogenomic analysis supports a recent change in nitrate assimilation in the White-nose Syndrome pathogen, Pseudogymnoascus destructans. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Detection of Pseudogymnoascus destructans on Free-flying Male Bats Captured During Summer in the Southeastern USA. J Wildl Dis 2016; 52:922-926. [PMID: 27434413 DOI: 10.7589/2016-02-041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudogymnoascus destructans, the causal agent of white-nose syndrome (WNS), is commonly found on bats captured both inside and outside caves during hibernation, a time when bats are most vulnerable to infection. It has not been documented in the southeast US on bats captured outside caves or on the landscape in summer. We collected 136 skin swabs from 10 species of bats captured at 20 sites on the Tennessee side of Great Smoky Mountains National Park, 12 May-16 August 2015. Three swabs were found positive for P. destructans, one from a male tricolored bat ( Perimyotis subflavus ) and two from male big brown bats ( Eptesicus fuscus ). This detection of P. destructans on free-flying male bats in the southeast US during summer has potential repercussions for the spread of the fungus to novel bat species and environments. Our finding emphasizes the need to maintain rigorous year-round decontamination of field clothing and equipment until more is understood about the viability of P. destructans found on bats captured outside hibernacula during summer, about the potential for males to act as reservoirs of the fungus, and the risk of fungal transmission and spread.
Collapse
|
33
|
Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans. INSECTS 2016; 7:insects7020016. [PMID: 27110827 PMCID: PMC4931428 DOI: 10.3390/insects7020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022]
Abstract
The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.
Collapse
|
34
|
Lučan RK, Bandouchova H, Bartonička T, Pikula J, Zahradníková A, Zukal J, Martínková N. Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasit Vectors 2016; 9:16. [PMID: 26762515 PMCID: PMC4712589 DOI: 10.1186/s13071-016-1302-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/10/2016] [Indexed: 01/16/2023] Open
Abstract
Background Vertebrate ectoparasites frequently play a role in transmission of infectious agents. Pseudogymnoascus destructans is a psychrophilic fungus known to cause white-nose syndrome (WNS), an emerging infectious disease of bats. It is transmitted with direct contact between bats or with contaminated environment. The aim of this study was to examine wing mites from the family Spinturnicidae parasitizing hibernating bats for the presence of P. destructans propagules as another possible transmission route. Methods Wing mites collected from 33 bats at four hibernation sites in the Czech Republic were inspected for the presence and load of pathogen's DNA using quantitative PCR. Simultaneously, wing damage of inspected bats caused by WNS was quantified using ultraviolet light (UV) transillumination and the relationship between fungal load on wing mites and intensity of infection was subjected to correlation analysis. Results All samples of wing mites were positive for the presence of DNA of P. destructans, indicating a high probability of their role in the transmission of the pathogen's propagules between bats. Conclusions Mechanical transport of adhesive P. destructans spores and mycelium fragments on the body of spinturnicid mites is highly feasible. The specialised lifestyle of mites, i.e., living on bat wing membranes, the sites most typically affected by fungal growth, enables pathogen transport. Moreover, P. destructans metabolic traits suggest an ability to grow and sporulate on a range of organic substrates, including insects, which supports the possibility of growth on bat ectoparasites, at least in periods when bats roost in cold environments and enter torpor. In addition to transport of fungal propagules, mites may facilitate entry of fungal hyphae into the epidermis through injuries caused by biting.
Collapse
Affiliation(s)
- Radek K Lučan
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844, Prague, Czech Republic.
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic.
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Jan Zukal
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic. .,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Natália Martínková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Allender MC, Raudabaugh DB, Gleason FH, Miller AN. The natural history, ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-ranging snake populations. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species. Mycopathologia 2015; 180:325-32. [PMID: 26162644 DOI: 10.1007/s11046-015-9921-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
Bat white-nose syndrome, caused by the psychrophilic fungus Pseudogymnoascus destructans, has dramatically reduced the populations of many hibernating North American bat species. The search for effective biological control agents targeting P. destructans is of great importance. We report that the sesquiterpene trans, trans-farnesol, which is also a Candida albicans quorum sensing compound, prevented in vitro conidial germination for at least 14 days and inhibited growth of preexisting hyphae of five P. destructans isolates in filtered potato dextrose broth at 10 °C. Depending on the inoculation concentrations, both spore and hyphal inhibition occurred upon exposure to concentrations as low as 15-20 µM trans, trans-farnesol. In contrast, most North American Pseudogymnoascus isolates were more tolerant to the exposure of trans, trans-farnesol. Our results suggest that some Candida isolates may have the potential to inhibit the growth of P. destructans and that the sesquiterpene trans, trans-farnesol has the potential to be utilized as a biological control agent.
Collapse
|
37
|
Zhang T, Ren P, Chaturvedi V, Chaturvedi S. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum. Fungal Genet Biol 2015; 81:73-81. [PMID: 26051491 DOI: 10.1016/j.fgb.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi.
Collapse
Affiliation(s)
- Tao Zhang
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
38
|
Hoyt JR, Langwig KE, Okoniewski J, Frick WF, Stone WB, Kilpatrick AM. Long-Term Persistence of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome, in the Absence of Bats. ECOHEALTH 2015; 12:330-333. [PMID: 25260801 DOI: 10.1007/s10393-014-0981-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Wildlife diseases have been implicated in the declines and extinctions of several species. The ability of a pathogen to persist outside its host, existing as an "environmental reservoir", can exacerbate the impact of a disease and increase the likelihood of host extinction. Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats, has been found in cave soil during the summer when hibernating bats had likely been absent for several months. However, whether the pathogen can persist over multiple years in the absence of bats is unknown, and long-term persistence of the pathogen can influence whether hibernacula where bats have been locally extirpated due to disease can be subsequently recolonized. Here, we show that P. destructans is capable of long-term persistence in the laboratory in the absence of bats. We cultured P. destructans from dried agar plates that had been kept at 5°C and low humidity conditions (30-40% RH) for more than 5 years. This suggests that P. destructans can persist in the absence of bats for long periods which may prevent the recolonization of hibernation, sites where bat populations were extirpated. This increases the extinction risk of bats affected by this disease.
Collapse
Affiliation(s)
- Joseph R Hoyt
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA.
| | - Kate E Langwig
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Joseph Okoniewski
- Wildlife Pathology Unit, New York State Department of Environmental Conservation, Delmar, NY, 12054, USA
| | - Winifred F Frick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Ward B Stone
- Wildlife Pathology Unit, New York State Department of Environmental Conservation, Delmar, NY, 12054, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
39
|
Pannkuk EL, Risch TS, Savary BJ. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS One 2015; 10:e0120508. [PMID: 25785714 PMCID: PMC4364704 DOI: 10.1371/journal.pone.0120508] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022] Open
Abstract
White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, Jonesboro, Arkansas, United States of America
- * E-mail: (BJS); (ELP)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Brett J. Savary
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, United States of America
- * E-mail: (BJS); (ELP)
| |
Collapse
|
40
|
Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the white-nose syndrome epidemic. J Wildl Dis 2015; 51:318-31. [PMID: 25588008 DOI: 10.7589/2014-06-157] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
White-nose syndrome (WNS) has had a devastating effect on North American bat populations. The causal agent of WNS is the fungal pathogen, Pseudogymnoascus destructans (Pd), which has been shown to persist in caves after the eradication of host populations. As nonpathogenic Pseudogymnoascus spp. display saprophytic growth and are among the most commonly isolated fungi from caves, we examined whether Pd could grow in cave sediments and the contribution such growth could have to WNS disease progression. We inoculated a range of diverse cave sediments and demonstrated the growth of Pd in all sediments tested. These data indicate that environmental growth of Pd could lead to the accumulation of spores above the estimated infection threshold for WNS, allowing environment-to-bat infection. The obtained growth parameters were then used in a susceptible-infected-susceptible mathematic model to determine the possible contribution of environmental Pd growth to WNS disease progression in a colony of little brown bats (Myotis lucifugus). This model suggests that the environmental growth of Pd would increase WNS infection rates, particularly in colonies experiencing longer hibernation periods or in hibernacula with high levels of organic detritus. The model also suggests that once introduced, environmental Pd growth would allow the persistence of this pathogen within infected hibernacula for decades, greatly compromising the success of bat reintroduction strategies. Together these data suggest that Pd is not reliant on its host for survival and is capable of environmental growth and amplification that could contribute to the rapid progression and long-term persistence of WNS in the hibernacula of threatened North American bats.
Collapse
|
41
|
Bandouchova H, Bartonicka T, Berkova H, Brichta J, Cerny J, Kovacova V, Kolarik M, Köllner B, Kulich P, Martínková N, Rehak Z, Turner GG, Zukal J, Pikula J. Pseudogymnoascus destructans: evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound Emerg Dis 2014; 62:1-5. [PMID: 25268034 DOI: 10.1111/tbed.12282] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Indexed: 02/06/2023]
Abstract
While Pseudogymnoascus destructans has been responsible for mass bat mortalities from white-nose syndrome (WNS) in North America, its virulence in Europe has been questioned. To shed the light on the issue of host-pathogen interaction between European bats and P. destructans, we examined seventeen bats emerging from the fungus-positive underground hibernacula in the Czech Republic during early spring 2013. Dual wing-membrane biopsies were taken from Barbastella barbastellus (1), Myotis daubentonii (1), Myotis emarginatus (1), Myotis myotis (11), Myotis nattereri (1) and Plecotus auritus (2) for standard histopathology and transmission electron microscopy. Non-lethal collection of suspected WNS lesions was guided by trans-illumination of the wing membranes with ultraviolet light. All bats selected for the present study were PCR-positive for P. destructans and showed microscopic findings consistent with the histopathological criteria for WNS diagnosis. Ultramicroscopy revealed oedema of the connective tissue and derangement of the fibroblasts and elastic fibres associated with skin invasion by P. destructans. Extensive fungal infection induced a marked inflammatory infiltration by neutrophils at the interface between the damaged part of the wing membrane replaced by the fungus and membrane tissue not yet invaded by the pathogen. There was no sign of keratinolytic activity in the stratum corneum. Here, we show that lesions pathognomonic for WNS are common in European bats and may also include overwhelming full-thickness fungal growth through the wing membrane equal in severity to reports from North America. Inter-continental differences in the outcome of WNS in bats in terms of morbidity/mortality may therefore not be due to differences in the pathogen itself.
Collapse
Affiliation(s)
- H Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Khankhet J, Vanderwolf KJ, McAlpine DF, McBurney S, Overy DP, Slavic D, Xu J. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS One 2014; 9:e104684. [PMID: 25122221 PMCID: PMC4133243 DOI: 10.1371/journal.pone.0104684] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition - dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.
Collapse
Affiliation(s)
- Jordan Khankhet
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karen J. Vanderwolf
- New Brunswick Museum, Saint John, New Brunswick, Canada
- Canadian Wildlife Federation, Kanata, Ontario, Canada
| | | | - Scott McBurney
- Canadian Cooperative Wildlife Health Centre, Atlantic Region, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - David P. Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Nautilus Biosciences Canada Inc., Duffy Research Center, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Durda Slavic
- Laboratory Services, Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|