1
|
Pande S, Guo HC. Structure-guided discovery of aminopeptidase ERAP1 variants capable of processing antigens with novel PC anchor specificities. Immunology 2024; 171:131-145. [PMID: 37858978 PMCID: PMC10841542 DOI: 10.1111/imm.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Present Address: Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
2
|
Papakyriakou A, Mpakali A, Stratikos E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front Immunol 2022; 13:863529. [PMID: 35514997 PMCID: PMC9065437 DOI: 10.3389/fimmu.2022.863529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) play important roles in the generation of antigenic peptides presented by Major Histocompatibility Class I (MHCI) molecules and indirectly regulate adaptive immune responses. Although the discrete function of these enzymes has been extensively characterized, recent reports have suggested that they can also form heterodimers with functional consequences. However, lack of structural characterization of a putative ERAP1/ERAP2 dimer has limited our understanding of its biological role and significance. To address this, we employed computational molecular dynamics calculations to explore the topology of interactions between these two, based on experimentally determined homo-dimerization interfaces observed in crystal structures of ERAP2 or homologous enzymes. Our analysis of 8 possible dimerization models, suggested that the most likely ERAP1/ERAP2 heterodimerization topology involves the exon 10 loop, a non-conserved loop previously implicated in interactions between ERAP1 and the disulfide-bond shuffling chaperone ERp44. This dimerization topology allows access to the active site of both enzymes and is consistent with a previously reported construct in which ERAP1 and ERAP2 were linked by Fos/Jun zipper tags. The proposed model constitutes a tentative structural template to help understand the physiological role and significance of ERAP1/ERAP2 molecular interactions.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anastasia Mpakali
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Efstratios Stratikos
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Sui L, Guo HC. ERAP1 binds peptide C-termini of different sequences and/or lengths by a common recognition mechanism. Immunobiology 2021; 226:152112. [PMID: 34247019 DOI: 10.1016/j.imbio.2021.152112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively. As such ERAP1 can not only monitor substrate's lengths, but also exhibit a degree of sequence specificity at substrates' N- and C-termini. On the other hand, it also allows certain sequence and length flexibility in the middle part of peptide substrates that is critical for shaping MHC restricted immunopeptidomes. Here we report structural and biochemical studies to understand the molecular details on how ERAP1 can accommodate side chains of different anchoring residues at the substrate's C-terminus. We also examine how ERAP1 can accommodate antigen peptide precursors with length flexibility. Based on two newly determined complex structures, we find that ERAP1 binds the C-termini of peptides similarly even with different substrate sequences and/or lengths, by utilizing the same hydrophobic specificity pocket to accommodate peptides with either a Phe or Leu as the C-terminal anchor residue. In addition, SPR (surface plasmon resonance) binding analyses in solution further confirm the biological significance of these peptide-ERAP1 interactions. Similar to the binding mode of MHC-I molecules, ERAP1 accommodates for antigenic peptide length difference by allowing the peptide middle part to kink or bulge at the middle of its substrate binding cleft. This explains how SNP coded variants located at the middle of ERAP1 substrate binding cleft would influence the antigen pool and an individual's susceptibility to diseases.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
4
|
Londono J, Santos AM, Rueda JC, Calvo-Paramo E, Burgos-Vargas R, Vargas-Alarcon G, Martinez-Rodriguez N, Arias-Correal S, Muñoz GN, Padilla D, Cuervo F, Reyes-Martinez V, Bernal-Macías S, Villota-Eraso C, Avila-Portillo LM, Romero C, Medina JF. Association of ERAP2 polymorphisms in Colombian HLA-B27+ or HLA-B15+ patients with SpA and its relationship with clinical presentation: axial or peripheral predominance. RMD Open 2021; 6:rmdopen-2020-001250. [PMID: 32917832 PMCID: PMC7525252 DOI: 10.1136/rmdopen-2020-001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To determine the association between endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 single-nucleotide polymorphisms (SNPs) and human leukocyte antigens (HLA)-B27+ or HLA-B15+ patients with spondyloarthritis (SpA). METHODS 104 patients with SpA according to Assessment of Spondyloarthritis International Society criteria were included in the study. HLA typing was performed by PCR. The polymorphisms were determined by real-time PCR on genomic DNA using customised probes for SNPs rs27044, rs17482078, rs10050860 and rs30187 in ERAP1, and rs2910686, rs2248374 and rs2549782 in ERAP2. RESULTS 70 of the104 patients with SpA were HLA-B27+ and 34 were HLA-B15+. The distribution of ERAP1 and ERAP2 SNPs between the HLA-B15+ and HLA-B27+ patients with SpA did not reveal differences. Likewise, no differences in the frequencies of ERAP1 SNP haplotypes and alleles HLA-B15 or HLA-B27 were found. Interestingly, however, the frequencies of three particular haplotypes formed by ERAP2 SNPs rs2549782/rs2248374/rs2910686 varied between HLA-B15+ and HLA-B27+ patients: the ERAP2 SNPs haplotype TGT was more common in HLA-B15+ patients with SpA (OR 2.943, 95% CI 1.264 to 6.585; P=0.009), whereas the ERAP2 SNP haplotypes TGC and CAT were more associated with HLA-B27+ patients with SpA: (OR 4.483, 95% CI 1.524 to 13.187; p=0.003) and (OR 9.014, 95% CI 1.181 to 68.807; p=0.009), respectively. CONCLUSION An association was found between HLA-B15+ patients with SpA and haplotype TGT of ERAP2 SNPs. On the other hand, HLA-B27+ patients with SpA were associated with ERAP2 haplotypes TGC and CAT. These associations could be related to the clinical presentation of the disease, specifically with a peripheral or axial predominance, respectively.
Collapse
Affiliation(s)
- John Londono
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia .,Department of Rheumatology, Hospital Militar Central, Bogota, Colombia
| | - Ana M Santos
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia
| | - Juan C Rueda
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia
| | | | | | - Gilberto Vargas-Alarcon
- Department of Molecular Biology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, Mexico
| | - Nancy Martinez-Rodriguez
- Community Health Research Department, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | | | | | - Diana Padilla
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia
| | - Francy Cuervo
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia
| | | | | | | | - Luz M Avila-Portillo
- Department of Rheumatology, Universidad de la Sabana, Chia, Colombia.,Department of Rheumatology, Hospital Militar Central, Bogota, Colombia
| | - Consuelo Romero
- Department of Rheumatology, Hospital Militar Central, Bogota, Colombia
| | - Juan F Medina
- Clinical Training Unit, School of Medicine, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Hutchinson JP, Temponeras I, Kuiper J, Cortes A, Korczynska J, Kitchen S, Stratikos E. Common allotypes of ER aminopeptidase 1 have substrate-dependent and highly variable enzymatic properties. J Biol Chem 2021; 296:100443. [PMID: 33617882 PMCID: PMC8024916 DOI: 10.1016/j.jbc.2021.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Polymorphic variation of immune system proteins can drive variability of individual immune responses. Endoplasmic reticulum aminopeptidase 1 (ERAP1) generates antigenic peptides for presentation by major histocompatibility complex class I molecules. Coding SNPs in ERAP1 have been associated with predisposition to inflammatory rheumatic disease and shown to affect functional properties of the enzyme, but the interplay between combinations of these SNPs as they exist in allotypes has not been thoroughly explored. We used phased genotype data to estimate ERAP1 allotype frequency in 2504 individuals across five major human populations, generated highly pure recombinant enzymes corresponding to the ten most common ERAP1 allotypes, and systematically characterized their in vitro enzymatic properties. We find that ERAP1 allotypes possess a wide range of enzymatic activities, up to 60-fold, whose ranking is substrate dependent. Strikingly, allotype 10, previously associated with Behçet’s disease, is consistently a low-activity outlier, suggesting that a significant percentage of individuals carry a subactive ERAP1 gene. Enzymatic analysis revealed that ERAP1 allotypes can differ in both catalytic efficiency and substrate affinity, differences that can change intermediate accumulation in multistep trimming reactions. Alterations in efficacy of an allosteric inhibitor that targets the regulatory site suggest that allotypic variation influences the communication between the regulatory and the active site. Our work defines the wide landscape of ERAP1 activity in human populations and demonstrates how common allotypes can induce substrate-dependent variability in antigen processing, thus contributing, in synergy with major histocompatibility complex haplotypes, to immune response variability and predisposition to chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Ioannis Temponeras
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Adrian Cortes
- Human Genetics, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Justyna Korczynska
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Semra Kitchen
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece; Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece.
| |
Collapse
|
6
|
Gao S, Xu T, Mao C, Cheng J, Xun C, Liang W, Sheng W. Lack of Associations between Endoplasmic Reticulum Aminopeptidase 2 Gene Polymorphisms and Ankylosing Spondylitis: A Meta-analysis with Trial Sequential Analysis. Immunol Invest 2021; 51:715-726. [PMID: 33401999 DOI: 10.1080/08820139.2020.1869253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Endoplasmic reticulum aminopeptidase 2 (ERAP2) gene is reported to be associated with inflammation-related diseases. Several studies have investigated the associations of ERAP2 gene polymorphisms and susceptibility to ankylosing spondylitis (AS). However, the findings of those studies were inconsistent. The aim of this study was to elucidate the associations by a meta-analysis with trial sequential analysis (TSA).Methods: Online databases of PubMed, Web of Science, EMBASE, Cochrane Library, Wanfang, and CNKI were searched to identify eligible studies on the associations of ERAP2 gene polymorphisms and AS. Study quality was judged based on the Newcastle-Ottawa scale (NOS). Strengths of associations were presented by P-value, odds ratios (ORs), and 95% confidence intervals (95%CIs). TSA was employed to evaluate the information size and statistical power.Results: A total of six studies encompassing 2774 AS patients and 4119 disease-free controls were eligible for this meta-analysis. Five studies reported rs2248374 polymorphism and three studies reported rs2549782 polymorphism. The pooled data suggested that the two polymorphisms were not significantly associated with AS susceptibility: rs2248374, A vs. G, OR = 0.94, 95%CI 0.86-1.02, P = .14; rs2549782, T vs. G, OR = 1.03, 95%CI 0.95-1.12, P = .45. TSA indicated that the sample sizes appeared to be inadequate to obtain a positive outcome.Conclusion: The present findings of this study do not support any evidence on the associations of rs2248374 and rs2549782 polymorphisms in the ERAP2 gene and susceptibility to AS. Additional well-designed and large-sample studies in diverse ethnicities are encouraged to validate the current findings.
Collapse
Affiliation(s)
- Shutao Gao
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Tao Xu
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Chao Mao
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Jie Cheng
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Chuanhui Xun
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Weidong Liang
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| | - Weibin Sheng
- Department of Spine Surgery, Xinjiang Medical University First Affiliated Hospital, Urumqi, China
| |
Collapse
|
7
|
Modulators of hERAP2 discovered by high-throughput screening. Eur J Med Chem 2020; 211:113053. [PMID: 33359953 DOI: 10.1016/j.ejmech.2020.113053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2, ERAP2, is an emerging pharmacological target in cancer immunotherapy and control of autoinflammatory diseases, as it is involved in antigen processing. It has been linked to the risk of development of spondyloarthritis, and it associates with the immune infiltration of tumours and strongly predicts the overall survival for patients receiving check-point inhibitor therapy. While some selective inhibitors of its homolog ERAP1 are available, no selective modulator of ERAP2 has been disclosed so far. In order to identify such compounds, we screened an in-house focused library of 1920 compounds designed to target metalloenzymes. Structure-Activity Relationships and docking around two hits led to the discovery of selective inhibitors of ERAP2. Amid those, some bind to yet untapped amino-acids in the S1 pocket. Importantly, we disclose also the first activator of small substrates hydrolysis by ERAP2. Inhibitors and activators identified in this study could serve as useful starting points for optimization.
Collapse
|
8
|
Stamatakis G, Samiotaki M, Mpakali A, Panayotou G, Stratikos E. Generation of SARS-CoV-2 S1 Spike Glycoprotein Putative Antigenic Epitopes in Vitro by Intracellular Aminopeptidases. J Proteome Res 2020; 19:4398-4406. [PMID: 32931291 PMCID: PMC7640968 DOI: 10.1021/acs.jproteome.0c00457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Presentation of antigenic peptides by MHCI is central to cellular immune responses against viral pathogens. While adaptive immune responses versus SARS-CoV-2 can be of critical importance to both recovery and vaccine efficacy, how protein antigens from this pathogen are processed to generate antigenic peptides is largely unknown. Here, we analyzed the proteolytic processing of overlapping precursor peptides spanning the entire sequence of the S1 spike glycoprotein of SARS-CoV-2, by three key enzymes that generate antigenic peptides, aminopeptidases ERAP1, ERAP2, and IRAP. All enzymes generated shorter peptides with sequences suitable for binding onto HLA alleles, but with distinct specificity fingerprints. ERAP1 was the most efficient in generating peptides 8-11 residues long, the optimal length for HLA binding, while IRAP was the least efficient. The combination of ERAP1 with ERAP2 greatly limited the variability of peptide sequences produced. Less than 7% of computationally predicted epitopes were found to be produced experimentally, suggesting that aminopeptidase processing may constitute a significant filter to epitope presentation. These experimentally generated putative epitopes could be prioritized for SARS-CoV-2 immunogenicity studies and vaccine design. We furthermore propose that this in vitro trimming approach could constitute a general filtering method to enhance the prediction robustness for viral antigenic epitopes.
Collapse
Affiliation(s)
- George Stamatakis
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Martina Samiotaki
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Anastasia Mpakali
- National
Centre for Scientific Research “Demokritos”, 15310 Agia Paraskevi,
Attica, Greece
| | - George Panayotou
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research “Demokritos”, 15310 Agia Paraskevi,
Attica, Greece
| |
Collapse
|
9
|
Li C, Li Y, Yan Z, Dai S, Liu S, Wang X, Wang J, Zhang X, Shi L, Yao Y. Polymorphisms in endoplasmic reticulum aminopeptidase genes are associated with cervical cancer risk in a Chinese Han population. BMC Cancer 2020; 20:341. [PMID: 32321463 PMCID: PMC7178719 DOI: 10.1186/s12885-020-06832-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Antigen-processing machinery molecules play crucial roles in infectious diseases and cancers. Studies have shown that polymorphisms in endoplasmic reticulum aminopeptidase (ERAP) genes can influence the enzymatic activity of ERAP proteins and are associated with the risk of diseases. In the current study, we evaluated the influence of ERAP gene (ERAP1 and ERAP2) polymorphisms on susceptibility to cervical intraepithelial neoplasia (CIN) and cervical cancer. Methods Six single nucleotide polymorphisms (SNPs) in ERAP1 and 5 SNPs in ERAP2 were selected and genotyped in 556 CIN patients, 1072 cervical cancer patients, and 1262 healthy control individuals. Candidate SNPs were genotyped using SNaPshot assay. And the association of these SNPs with CIN and cervical cancer was analysed. Results The results showed that allelic and genotypic frequencies of rs26653 in ERAP1 were significantly different between cervical cancer and control groups (P = 0.001 and 0.004). The allelic frequencies of rs27044 in ERAP1 and rs2287988 in ERAP2 were significantly different between control and cervical cancer groups (P = 0.003 and 0.004). Inheritance model analysis showed that genotypes of rs27044, rs26618, rs26653 and rs2287988 SNPs may be associated with the risk of cervical cancer (P = 0.003, 0.004, 0.001 and 0.002). Additionally, haplotype analysis results showed that the ERAP1 haplotype, rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was associated with a lower risk of cervical cancer (P = 0.001). The ERAP2 haplotypes rs2549782G- rs2548538A-rs2248374A-rs2287988G-rs1056893T (P = 0.009 and 0.006) and rs2549782T-rs2548538T-rs2248374G-rs2287988A-rs1056893T (P = 0.003 and 0.009) might be associated with cervical cancer and the development from CIN to cervical cancer. Conclusion Our results indicated that rs27044, rs26618 and rs26653 in ERAP1 and rs2287988 in ERAP2 influenced susceptibility to cervical cancer.
Collapse
Affiliation(s)
- Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yaheng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xia Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jun Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
10
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
11
|
Georgiadis D, Mpakali A, Koumantou D, Stratikos E. Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application. Curr Med Chem 2019; 26:2715-2729. [PMID: 29446724 DOI: 10.2174/0929867325666180214111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Athens, Greece
| | - Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Despoina Koumantou
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| |
Collapse
|
12
|
Lorente E, Barriga A, Barnea E, Palomo C, García-Arriaza J, Mir C, Esteban M, Admon A, López D. Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Negl Trop Dis 2019; 13:e0007547. [PMID: 31276466 PMCID: PMC6636782 DOI: 10.1371/journal.pntd.0007547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/17/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Concepción Palomo
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| |
Collapse
|
13
|
Evnouchidou I, van Endert P. Peptide trimming by endoplasmic reticulum aminopeptidases: Role of MHC class I binding and ERAP dimerization. Hum Immunol 2019; 80:290-295. [DOI: 10.1016/j.humimm.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
14
|
Mpakali A, Maben Z, Stern LJ, Stratikos E. Molecular pathways for antigenic peptide generation by ER aminopeptidase 1. Mol Immunol 2018; 113:50-57. [PMID: 29678301 DOI: 10.1016/j.molimm.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that can generate or destroy potential peptide ligands for MHC class I molecules. ERAP1 activity influences the cell-surface immunopeptidome and epitope immunodominance patterns but in complex and poorly understood manners. Two main distinct pathways have been proposed to account for ERAP1's effects on the nature and quantity of MHCI-bound peptides: i) ERAP1 trims peptides in solution, generating the correct length for binding to MHCI or overtrimming peptides so that they are too short to bind, and ii) ERAP1 trims peptides while they are partially bound onto MHCI in manner that leaves the peptide amino terminus accessible. For both pathways, once an appropriate length peptide is generated it could bind conventionally to MHCI, competing with further trimming by ERAP1. The two pathways, although not necessarily mutually exclusive, provide distinct vantage points for understanding of the rules behind the generation of the immunopeptidome. Resolution of the mechanistic details of ERAP1-mediated antigenic peptide generation can have important consequences for pharmacological efforts to regulate the immunopeptidome for therapeutic applications, and for understanding association of ERAP1 alleles with susceptibility to autoimmune disease and cancer. We review current evidence in support of these two pathways and discuss their relative importance and potential complementarity.
Collapse
Affiliation(s)
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| | | |
Collapse
|
15
|
Sanz-Bravo A, Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA. Ranking the Contribution of Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphisms to Shaping the HLA-B*27 Peptidome. Mol Cell Proteomics 2018; 17:1308-1323. [PMID: 29632046 DOI: 10.1074/mcp.ra117.000565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Indexed: 11/06/2022] Open
Abstract
The Endoplasmic reticulum aminopeptidase I (ERAP1) trims peptides to their optimal size for binding to Major Histocompatibility Complex class I proteins. The natural polymorphism of this enzyme is associated with ankylosing spondylitis (AS) in epistasis with the major risk factor for this disease, HLA-B*27, suggesting a direct relationship between AS and HLA-B*27-bound peptides. Three polymorphisms that affect peptide trimming protect from AS: K528R, D575N/R725Q, and Q730E. We characterized and ranked the effects of each mutation, and their various combinations, by quantitative comparisons of the HLA-B*27 peptidomes from cells expressing distinct ERAP1 variants. Five features were examined: peptide length, N-terminal flanking residues, N-terminal residues of the natural ligands, internal sequences and affinity for B*27:05. Polymorphism at residue 528 showed the largest influence, affecting all five features regardless of peptide length. D575N/R725Q showed a much smaller effect. Yet, when co-occurring with K528R, it further decreased ERAP1 activity. Polymorphism at residue 730 showed a significant influence on peptide length, because of distinct effects on trimming of nonamers compared with longer peptides. Accordingly, multiple features were affected by the Q730E mutation in a length-dependent way. The alterations induced in the B*27:05 peptidome by natural ERAP1 variants with different K528R/Q730E combinations reflected separate and additive effects of both mutations. Thus, the influence of ERAP1 on HLA-B*27 is very diverse at the population level, because of the multiplicity and complexity of ERAP1 variants, and to the distinct effects of their co-occurring polymorphisms, leading to significant modulation of disease risk among HLA-B*27-positive individuals.
Collapse
Affiliation(s)
- Alejandro Sanz-Bravo
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Carlos Alvarez-Navarro
- §Instituto de Inmunología, Facultad de Medicina, Universidad Austral del Chile, and Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Valdivia, Chile
| | | | - Eilon Barnea
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
16
|
Di Carluccio AR, Triffon CF, Chen W. Perpetual complexity: predicting human CD8 + T-cell responses to pathogenic peptides. Immunol Cell Biol 2018; 96:358-369. [PMID: 29424002 DOI: 10.1111/imcb.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/17/2023]
Abstract
The accurate prediction of human CD8+ T-cell epitopes has great potential clinical and translational implications in the context of infection, cancer and autoimmunity. Prediction algorithms have traditionally focused on calculated peptide affinity for the binding groove of MHC-I. However, over the years it has become increasingly clear that the ultimate T-cell recognition of MHC-I-bound peptides is governed by many contributing factors within the complex antigen presentation pathway. Recent advances in next-generation sequencing and immunnopeptidomics have increased the precision of HLA-I sub-allele classification, and have led to the discovery of peptide processing events and individual allele-specific binding preferences. Here, we review some of the discoveries that initiated the development of peptide prediction algorithms, and outline some of the current available online tools for CD8+ T-cell epitope prediction.
Collapse
Affiliation(s)
- Anthony R Di Carluccio
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Cristina F Triffon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol 2017; 190:281-290. [PMID: 28759104 DOI: 10.1111/cei.13020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The human leukocyte antigen class I gene HLA-B27 is the strongest risk factor for ankylosing spondylitis (AS), a chronic inflammatory arthritic disorder. More recently, the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 genes have been identified by genome wide association studies (GWAS) as additional susceptibility factors. In the ER, these aminopeptidases trim the peptides to a length suitable to fit into the groove of the major histocompatibility complex (MHC) class I molecules. It is noteworthy that an epistatic interaction between HLA-B27 and ERAP1, but not between HLA-B27 and ERAP2, has been highlighted. However, these observations suggest a paramount centrality for the HLA-B27 peptide repertoire that determines the natural B27 immunological function, i.e. the T cell antigen presentation and, as a by-product, elicits HLA-B27 aberrant behaviours: (i) the misfolding leading to ER stress responses and autophagy and (ii) the surface expression of homodimers acting as ligands for innate immune receptors. In this context, it has been observed that the HLA-B27 carriers, besides being prone to autoimmunity, display a far better surveillance to some viral infections. This review focuses on the ambivalent role of HLA-B27 in autoimmunity and viral protection correlating its functions to the quantitative and qualitative effects of ERAP1 and ERAP2 polymorphisms on their enzymatic activity.
Collapse
Affiliation(s)
- C Vitulano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - V Tedeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - F Paladini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - R Sorrentino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - M T Fiorillo
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Mpakali A, Saridakis E, Harlos K, Zhao Y, Kokkala P, Georgiadis D, Giastas P, Papakyriakou A, Stratikos E. Ligand-Induced Conformational Change of Insulin-Regulated Aminopeptidase: Insights on Catalytic Mechanism and Active Site Plasticity. J Med Chem 2017; 60:2963-2972. [PMID: 28328206 DOI: 10.1021/acs.jmedchem.6b01890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-regulated aminopeptidase (IRAP) is an enzyme with several important biological functions that is known to process a large variety of different peptidic substrates, although the mechanism behind this wide specificity is not clearly understood. We describe a crystal structure of IRAP in complex with a recently developed bioactive and selective inhibitor at 2.53 Å resolution. In the presence of this inhibitor, the enzyme adopts a novel conformation in which domains II and IV are juxtaposed, forming a hollow structure that excludes external solvent access to the catalytic center. A loop adjacent to the enzyme's GAMEN motif undergoes structural reconfiguration, allowing the accommodation of bulky inhibitor side chains. Atomic interactions between the inhibitor and IRAP that are unique to this conformation can explain the strong selectivity compared to homologous aminopeptidases ERAP1 and ERAP2. This conformation provides insight on IRAP's catalytic cycle and reveals significant active-site plasticity that may underlie its substrate permissiveness.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi , Athens 15310, Greece
| | - Emmanuel Saridakis
- National Center for Scientific Research Demokritos, Agia Paraskevi , Athens 15310, Greece
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University , Oxford OX3 7BN, United Kingdom
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University , Oxford OX3 7BN, United Kingdom
| | - Paraskevi Kokkala
- Department of Chemistry, University of Athens , Athens 15771, Greece
| | | | - Petros Giastas
- National Center for Scientific Research Demokritos, Agia Paraskevi , Athens 15310, Greece
| | | | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi , Athens 15310, Greece
| |
Collapse
|
19
|
Sui L, Gandhi A, Guo HC. Crystal structure of a polypeptide's C-terminus in complex with the regulatory domain of ER aminopeptidase 1. Mol Immunol 2016; 80:41-49. [PMID: 27825049 DOI: 10.1016/j.molimm.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is involved in the final processing of peptide precursors to generate the N-termini of MHC class I-restricted epitopes. ERAP1 thus influences immunodominance and cytotoxic immune responses by controlling the peptide repertoire available for cell surface presentation by MHC molecules. To enable this critical role in antigen processing, ERAP1 trims peptides by a unique molecular ruler mechanism that turns on/off hydrolysis activity in a peptide-length and -sequence dependent manner. Thus unlike other aminopeptidases, ERAP1 could recognize both the N- and C-termini of peptides in order to read the substrate's length. To exemplify and validate this molecular ruler mechanism, we have carried out crystallographic studies on molecular recognition of antigenic peptide's C-terminus by ERAP1. In this report, we have determined a 2.8Å-resolution crystal structure of an intermolecular complex between the ERAP1 regulatory domain and a natural epitope's C-terminus displayed in a fusion protein. It reveals the structural details of peptide's C-termini recognition by ERAP1. ERAP1 uses specificity pockets on the regulatory domain to bind the peptide's carboxyl end and side chain of the C-terminal anchoring residue. At the same time, flexibility in length and sequence at the middle of peptides is accommodated by a kink with minimal interactions with ERAP1.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Amit Gandhi
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Current Address: Brigham and Women's Hospital/Harvard Medical School, 20 Shattuck Street Boston, MA 02115, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
20
|
Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem 2015; 290:26021-32. [PMID: 26381406 DOI: 10.1074/jbc.m115.685909] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.
Collapse
Affiliation(s)
- Anastasia Mpakali
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Petros Giastas
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Nikolas Mathioudakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Irene M Mavridis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Emmanuel Saridakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Efstratios Stratikos
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| |
Collapse
|
21
|
Johnstone C, Lorente E, Barriga A, Barnea E, Infantes S, Lemonnier FA, David CS, Admon A, López D. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus. Mol Cell Proteomics 2015; 14:893-904. [PMID: 25635267 DOI: 10.1074/mcp.m114.045401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design.
Collapse
Affiliation(s)
- Carolina Johnstone
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Elena Lorente
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Susana Infantes
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - François A Lemonnier
- ¶Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, Paris Cedex 15, France
| | - Chella S David
- ‖Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Arie Admon
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain;
| |
Collapse
|