1
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Yoshida Y, Fukuoka K, Sakugawa M, Kurogi M, Hamamura K, Hamasaki K, Tsurusaki F, Sotono K, Nishi T, Fukuda T, Kumamoto T, Oyama K, Ogino T, Tsuruta A, Mayanagi K, Yamashita T, Fuchino H, Kawahara N, Yoshimatsu K, Kawakami H, Koyanagi S, Matsunaga N, Ohdo S. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl Res 2024; 269:31-46. [PMID: 38401836 DOI: 10.1016/j.trsl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Fukuoka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Miyu Sakugawa
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Kurogi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Keika Hamasaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumiaki Tsurusaki
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kurumi Sotono
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nishi
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Fukuda
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taisei Kumamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Oyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ogino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Akito Tsuruta
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Fuchino
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; The Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hitomi Kawakami
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Satoru Koyanagi
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
4
|
Otsugu M, Mine A, Uchida I, Miyake Y, Tachihara R, Fujiwara K, Ichimura A, Sato K, Tomura H. Low pH modulates lipopolysaccharide-induced tumor necrosis factor-alpha expression and macropinocytotic activity in RAW264.7 cells. J Recept Signal Transduct Res 2024; 44:63-71. [PMID: 39175331 DOI: 10.1080/10799893.2024.2395310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Inflammation triggers various types of diseases that need to be addressed. Macrophages play important roles in the inflammatory responses. As atherosclerosis progresses, macrophages transform into foam cells. Extracellular acidification is observed at and around bacterial infection and atherosclerotic sites. However, the effects of acidification on the inflammatory response of macrophages and the progression of atherosclerosis have not been fully understood. This study investigates the impact of extracellular acidification on lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) expression and macropinocytotic activity in RAW264.7 cells. TNF-α expression is measured by real-time polymerase chain reaction (relative value to glyceraldehyde-3-phosphate dehydrogenase expression). Macropinocytotic activity is measured by neutral red uptake (absorbance at 540 nm). Results show that TNF-α expression increased with decreasing extracellular pH in both un-foamed and foamed cells. Macropinocytotic activity was upregulated at pH 6.8 in un-foamed cells, but downregulated in foamed cells stimulated at low pH. Proton-sensing G protein-coupled receptors (GPCRs) were involved in the expression of TNF-α and in the macropinocytotic activity of foamed cells. In conclusion, this study reveals that extracellular acidification differently affect various inflammatory responses such as LPS-induced TNF-α expression and macropinocytotic activity of RAW264.7 cells and different proton-sensing GPCRs are involved in the different inflammatory responses.
Collapse
Affiliation(s)
- Miku Otsugu
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ayumi Mine
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Izumi Uchida
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuta Miyake
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Tachihara
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kurumi Fujiwara
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ayako Ichimura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Institute of Endocrinology, Meiji University, Kawasaki, Japan
| |
Collapse
|
5
|
Whittington AM, Turner FS, Baark F, Templeman S, Kirwan DE, Roufosse C, Krishnan N, Robertson BD, Chong DLW, Porter JC, Gilman RH, Friedland JS. An acidic microenvironment in Tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog 2023; 19:e1011495. [PMID: 37418488 PMCID: PMC10355421 DOI: 10.1371/journal.ppat.1011495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/19/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection causes marked tissue inflammation leading to lung destruction and morbidity. The inflammatory extracellular microenvironment is acidic, however the effect of this acidosis on the immune response to M.tb is unknown. Using RNA-seq we show that acidosis produces system level transcriptional change in M.tb infected human macrophages regulating almost 4000 genes. Acidosis specifically upregulated extracellular matrix (ECM) degradation pathways with increased expression of Matrix metalloproteinases (MMPs) which mediate lung destruction in Tuberculosis. Macrophage MMP-1 and -3 secretion was increased by acidosis in a cellular model. Acidosis markedly suppresses several cytokines central to control of M.tb infection including TNF-α and IFN-γ. Murine studies demonstrated expression of known acidosis signaling G-protein coupled receptors OGR-1 and TDAG-8 in Tuberculosis which are shown to mediate the immune effects of decreased pH. Receptors were then demonstrated to be expressed in patients with TB lymphadenitis. Collectively, our findings show that an acidic microenvironment modulates immune function to reduce protective inflammatory responses and increase extracellular matrix degradation in Tuberculosis. Acidosis receptors are therefore potential targets for host directed therapy in patients.
Collapse
Affiliation(s)
| | - Frances S. Turner
- Edinburgh Genomics, University of Edinburgh, Edinburgh, United Kingdom
| | - Friedrich Baark
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sam Templeman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Daniela E. Kirwan
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Candice Roufosse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Deborah L. W. Chong
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation & Tissue Repair, Respiratory Medicine, University College London, London, United Kingdom
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jon S. Friedland
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| |
Collapse
|
6
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
7
|
Liu X, Liu Y, Yang RX, Ding XJ, Liang ES. Loss of myeloid Tsc2 predisposes to angiotensin II-induced aortic aneurysm formation in mice. Cell Death Dis 2022; 13:972. [PMID: 36400753 PMCID: PMC9674579 DOI: 10.1038/s41419-022-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Genetic studies have proved the involvement of Tuberous sclerosis complex subunit 2 (Tsc2) in aortic aneurysm. However, the exact role of macrophage Tsc2 in the vascular system remains unclear. Here, we examined the potential function of macrophage Tsc2 in the development of aortic remodeling and aortic aneurysms. METHODS AND RESULTS Conditional gene knockout strategy combined with histology and whole-transcriptomic analysis showed that Tsc2 deficiency in macrophages aggravated the progression of aortic aneurysms along with an upregulation of proinflammatory cytokines and matrix metallopeptidase-9 in the angiotensin II-induced mouse model. G protein-coupled receptor 68 (Gpr68), a proton-sensing receptor for detecting the extracellular acidic pH, was identified as the most up-regulated gene in Tsc2 deficient macrophages compared with control macrophages. Additionally, Tsc2 deficient macrophages displayed higher glycolysis and glycolytic inhibitor 2-deoxy-D-glucose treatment partially attenuated the level of Gpr68. We further demonstrated an Tsc2-Gpr68-CREB network in macrophages that regulates the inflammatory response, proteolytic degradation and vascular homeostasis. Gpr68 inhibition largely abrogated the progression of aortic aneurysms caused by Tsc2 deficiency in macrophages. CONCLUSIONS The findings reveal that Tsc2 deficiency in macrophages contributes to aortic aneurysm formation, at least in part, by upregulating Gpr68 expression, which subsequently drives proinflammatory processes and matrix metallopeptidase activation. The data also provide a novel therapeutic strategy to limit the progression of the aneurysm resulting from Tsc2 mutations.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-Xue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang-Jiu Ding
- Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Deai M, Oya R, Saso N, Tanaka A, Uchida I, Miyake Y, Tachihara R, Otsugu M, Mine A, Sato K, Tomura H. Ethylenediaminetetraacetic acid (EDTA) enhances cAMP production in human TDAG8-expressing cells. Biochem Biophys Res Commun 2022; 626:15-20. [PMID: 35964552 DOI: 10.1016/j.bbrc.2022.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that binds tightly to metal ions. We found that cAMP response element (CRE)-driven promoter activity by protons was enhanced by EDTA in human T-cell death-associated gene 8 (TDAG8)-overexpressed HEK293T cells. The enhancing action by EDTA was also detected by proton-induced cAMP production that is located upstream from the CRE-driven promoter activity even at physiological proton concentration pH7.4. The proton-induced CRE-driven promoter activity was not enhanced by other chelating agents, ethylene glycol tetraacetic acid (EGTA) and sodium citrate. The enhanced CRE-driven promoter activity by EDTA was not attenuated by increasing the extracellular calcium ion concentration. These results indicate that the EDTA-enhancing action may not be due to its chelating action but might rather be another EDTA-specific effect. Enhanced cAMP production by EDTA was also detected in a human leukemia cell line HL-60, in which TDAG8 and OGR1 (ovarian cancer G-protein-coupled receptor 1) were endogenously expressed, suggesting that the medical use of EDTA would influence the physiological and pathophysiological functions of hematopoietic cells.
Collapse
Affiliation(s)
- Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Rin Oya
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Naosi Saso
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Asahi Tanaka
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Izumi Uchida
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Yuta Miyake
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Ryo Tachihara
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Miku Otsugu
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Ayumi Mine
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan; Institute of Endocrinology, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
9
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Hyperresponsiveness to Extracellular Acidification-Mediated Contraction in Isolated Bronchial Smooth Muscles of Murine Experimental Asthma. Lung 2022; 200:591-599. [PMID: 35930050 DOI: 10.1007/s00408-022-00558-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation. The extracellular proton-sensing mechanisms are inherent in various cells including airway structural cells, although their physiological and pathophysiological roles in bronchial smooth muscles (BSMs) are not fully understood. In the present study, to explore the functional role of extracellular acidification on the BSM contraction, the isolated mouse BSMs were exposed to acidic pH under contractile stimulation. METHODS AND RESULTS The RT-PCR analyses revealed that the proton-sensing G protein-coupled receptors were expressed both in mouse BSMs and cultured human BSM cells. In the mouse BSMs, change in the extracellular pH from 8.0 to 6.8 caused an augmentation of contraction induced by acetylcholine. Interestingly, the acidic pH-induced BSM hyper-contraction was further augmented in the mice that were sensitized and repeatedly challenged with ovalbumin antigen. In this animal model of asthma, upregulations of G protein-coupled receptor 68 (GPR68) and GPR65, that were believed to be coupled with Gq and Gs proteins respectively, were observed, indicating that the acidic pH could cause hyper-contraction probably via an activation of GPR68. However, psychosine, a putative antagonist for GPR68, failed to block the acidic pH-induced responses. CONCLUSION These findings suggest that extracellular acidification contributes to the airway hyperresponsiveness, a characteristic feature of bronchial asthma. Further studies are required to identify the receptor(s) responsible for sensing extracellular protons in BSM cells.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
10
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Imenez Silva PH, Câmara NO, Wagner CA. Role of proton-activated G protein-coupled receptors in pathophysiology. Am J Physiol Cell Physiol 2022; 323:C400-C414. [PMID: 35759438 DOI: 10.1152/ajpcell.00114.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequelae of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH-sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, are upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Niels Olsen Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| |
Collapse
|
12
|
Imenez Silva PH, Wagner CA. Physiological relevance of proton-activated GPCRs. Pflugers Arch 2022; 474:487-504. [PMID: 35247105 PMCID: PMC8993716 DOI: 10.1007/s00424-022-02671-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The detection of H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-specialized pH-sensing mechanisms. The proton-activated G protein-coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 (Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal adaption to changes in acid-base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these receptors in physiological processes and will briefly discuss some implications for disease processes.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
13
|
Nogueira PAS, Moura-Assis A, Razolli DS, Bombassaro B, Zanesco AM, Gaspar JM, Donato Junior J, Velloso LA. The orphan receptor GPR68 is expressed in the hypothalamus and is involved in the regulation of feeding. Neurosci Lett 2022; 781:136660. [PMID: 35489647 DOI: 10.1016/j.neulet.2022.136660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Currently, up to 35% off all drugs approved for the treatment of human diseases belong to the G-protein-coupled receptor (GPCR) family. Out of the almost 800 existing GPCRs, 25% have no known endogenous ligands and are regarded as orphan receptors; many of these are currently under investigation as potential pharmacological targets. Here, we hypothesised that orphan GPCRs expressed in the hypothalamus could be targets for the treatment of obesity and other metabolic diseases. Using bioinformatic tools, we identified 78 class A orphan GPCRs that are expressed in the hypothalamus of mice. Initially, we selected two candidates and determined their responsivities to nutritional interventions: GPR162, the GPCR with highest expression in the hypothalamus, and GPR68, a GPCR with intermediate expression in the hypothalamus and that has never been explored for its potential involvement in metabolic regulation. GPR162 expression was not modified by fasting/feeding or by the consumption of a high-fat diet, and was therefore not subsequently evaluated. Conversely, GPR68 expression increased in response to the consumption of a high-fat diet and reduced under fasting conditions. Using immunofluorescence, GPR68 was identified in both proopiomelanocortin-expressing and agouti-related peptide-expressing neurons in the hypothalamic arcuate nucleus. Acute inhibition of GPR68 with an allosteric modulator promoted an increase in the expression of the orexigenic agouti-related peptide and neuropeptide Y, whereas 4- and 12-h inhibition of GPR68 resulted in increased caloric intake. Thus, GPR68 has emerged as an orphan GPCR that is expressed in the hypothalamus and is involved in the regulation of feeding.
Collapse
Affiliation(s)
- Pedro A S Nogueira
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Daniela S Razolli
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ariane M Zanesco
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joana M Gaspar
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Jose Donato Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil; National Institute of Science and Technology on Neuroimmunomodulation, Brazil.
| |
Collapse
|
14
|
Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Ansoleaga N, Hidalgo MA, Burgos RA. Role of Lactate in Inflammatory Processes: Friend or Foe. Front Immunol 2022; 12:808799. [PMID: 35095895 PMCID: PMC8795514 DOI: 10.3389/fimmu.2021.808799] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
During an inflammatory process, shift in the cellular metabolism associated with an increase in extracellular acidification are well-known features. This pH drop in the inflamed tissue is largely attributed to the presence of lactate by an increase in glycolysis. In recent years, evidence has accumulated describing the role of lactate in inflammatory processes; however, there are differences as to whether lactate can currently be considered a pro- or anti-inflammatory mediator. Herein, we review these recent advances on the pleiotropic effects of lactate on the inflammatory process. Taken together, the evidence suggests that lactate could exert differential effects depending on the metabolic status, cell type in which the effects of lactate are studied, and the pathological process analyzed. Additionally, various targets, including post-translational modifications, G-protein coupled receptor and transcription factor activation such as NF-κB and HIF-1, allow lactate to modulate signaling pathways that control the expression of cytokines, chemokines, adhesion molecules, and several enzymes associated with immune response and metabolism. Altogether, this would explain its varied effects on inflammatory processes beyond its well-known role as a waste product of metabolism.
Collapse
Affiliation(s)
- Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra I. Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Nicolás Ansoleaga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Angélica Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
15
|
Kadowaki M, Sato K, Kamio H, Kumagai M, Sato R, Nyui T, Umeda Y, Waseda Y, Anzai M, Aoki-Saito H, Koga Y, Hisada T, Tomura H, Okajima F, Ishizuka T. Metal-Stimulated Interleukin-6 Production Through a Proton-Sensing Receptor, Ovarian Cancer G Protein-Coupled Receptor 1, in Human Bronchial Smooth Muscle Cells: A Response Inhibited by Dexamethasone. J Inflamm Res 2021; 14:7021-7034. [PMID: 34955648 PMCID: PMC8694576 DOI: 10.2147/jir.s326964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Human bronchial smooth muscle cells (BSMCs) contribute to airway obstruction and hyperresponsiveness in patients with bronchial asthma. BSMCs also generate cytokines and matricellular proteins in response to extracellular acidification through the ovarian cancer G protein-coupled receptor 1 (OGR1). Cobalt (Co) and nickel (Ni) are occupational agents, which cause occupational asthma. We examined the effects of Co and Ni on interleukin-6 (IL-6) secretion by human BSMCs because these metals may act as ligands of OGR1. Methods Human BSMCs were incubated in Dulbecco's Modified Eagle Medium (DMEM) containing 0.1% bovine serum albumin (BSA) (0.1% BSA-DMEM) for 16 hours and stimulated for the indicated time by exchanging the medium with 0.1% BSA-DMEM containing any of the metals or pH-adjusted 0.1% BSA-DMEM. IL-6 mRNA expression was quantified via reverse transcription polymerase chain reaction (RT-PCR) using the real-time TaqMan technology. IL-6 was measured using an enzyme-linked immunosorbent assay. Dexamethasone (DEX) was added 30 minutes before each stimulation. To knock down the expression of OGR1 in BSMCs, small interfering RNA (siRNA) targeting OGR1 (OGR1-siRNA) was transfected to the cells and non-targeting siRNA (NT-siRNA) was used as a control. Results Co and Ni both significantly increased IL-6 secretion in human BSMCs at 300 μM. This significant increase in IL-6 mRNA expression was observed 5 hours after stimulation. BSMCs transfected with OGR1-siRNA produced less IL-6 than BSMCs transfected with NT-siRNA in response to either Co or Ni stimulation. DEX inhibited Co- and Ni-stimulated IL-6 secretion by human BSMCs as well as pH 6.3-stimulated IL-6 secretion in a dose-dependent manner. DEX did not decrease phosphorylation of ERK1/2, p38 MAP kinase, and NF-κB p65 induced by either Co or Ni stimulation. Conclusion Co and Ni induce secretion of IL-6 in human BSMCs through activation of OGR1. Co- and Ni-stimulated IL-6 secretion is inhibited by DEX.
Collapse
Affiliation(s)
- Maiko Kadowaki
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebeshi, 371-8512, Japan
| | - Hisashi Kamio
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| | - Makoto Kumagai
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| | - Rikishi Sato
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| | - Takafumi Nyui
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| | - Yukihiro Umeda
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Yuko Waseda
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Masaki Anzai
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebeshi, 371-8511, Japan
| | - Yasuhiko Koga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebeshi, 371-8511, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Maebeshi, 371-8514, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Division of Life Science, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
16
|
Nayak AP, Deshpande DA, Shah SD, Villalba DR, Yi R, Wang N, Penn RB. OGR1-dependent regulation of the allergen-induced asthma phenotype. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1044-L1054. [PMID: 34668419 PMCID: PMC8715030 DOI: 10.1152/ajplung.00200.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
The proton-sensing receptor, ovarian cancer G protein-coupled receptor (OGR1), has been shown to be expressed in airway smooth muscle (ASM) cells and is capable of promoting ASM contraction in response to decreased extracellular pH. OGR1 knockout (OGR1KO) mice are reported to be resistant to the asthma features induced by inhaled allergen. We recently described certain benzodiazepines as OGR1 activators capable of mediating both procontractile and prorelaxant signaling in ASM cells. Here we assess the effect of treatment with the benzodiazepines lorazepam or sulazepam on the asthma phenotype in wild-type (WT) and OGR1KO mice subjected to inhaled house dust mite (HDM; Dermatophagoides pteronyssius) challenge for 3 wk. In contrast to previously published reports, both WT and OGR1KO mice developed significant allergen-induced lung inflammation and airway hyperresponsiveness (AHR). In WT mice, treatment with sulazepam (a Gs-biased OGR1 agonist), but not lorazepam (a balanced OGR1 agonist), prevented allergen-induced AHR, although neither drug inhibited lung inflammation. The protection from development of AHR conferred by sulazepam was absent in OGR1KO mice. Treatment of WT mice with sulazepam also resulted in significant inhibition of HDM-induced collagen accumulation in the lung tissue. These findings suggest that OGR1 expression is not a requirement for development of the allergen-induced asthma phenotype, but OGR1 can be targeted by the Gs-biased OGR1 agonist sulazepam (but not the balanced agonist lorazepam) to protect from allergen-induced AHR, possibly mediated via suppression of chronic bronchoconstriction and airway remodeling in the absence of effects on airway inflammation.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic R Villalba
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Roslyn Yi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nadan Wang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B Penn
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M, Gao R. Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 2021; 46:228. [PMID: 34476504 DOI: 10.3892/or.2021.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
Collapse
Affiliation(s)
- Lin Cao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Tianqiao Huang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaohong Chen
- Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
| | - Weisha Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Xingjiu Yang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Wenlong Zhang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Mengyuan Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Ran Gao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| |
Collapse
|
18
|
Sisignano M, Fischer MJM, Geisslinger G. Proton-Sensing GPCRs in Health and Disease. Cells 2021; 10:cells10082050. [PMID: 34440817 PMCID: PMC8392051 DOI: 10.3390/cells10082050] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence:
| | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria;
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Inhibition of host Ogr1 enhances effector CD8 + T-cell function by modulating acidic microenvironment. Cancer Gene Ther 2021; 28:1213-1224. [PMID: 34158625 PMCID: PMC8571096 DOI: 10.1038/s41417-021-00354-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Immunotherapies for cancer, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to a long-lasting clinical response. But the therapeutic response rate remains low on account of many tumors that have evolved sophisticated strategies to evade immune surveillance. Solid tumors are characterized by the highly acidic microenvironment, which may weaken the effectiveness of antitumor immunity. Here, we explored a promising therapeutic development deployed by pH manipulation for avoiding immunoevasion. The highly acidified microenvironment of melanoma induces the expression of G-protein-coupled receptor (Ogr1) in T cells, which weakened their effective function and promote tumor growth. Ogr1 inhibition reactivate CD8+ T cells and have a cytotoxic role by reducing the activity of high glycolysis, resulting in comparatively low acidification of the tumor microenvironment, and leads to tumor suppression. In addition, the adoptive transfer of Ogr1-/--CD8+ T cells enhanced the antitumor responses, with the potential for immediate clinical transformation.
Collapse
|
20
|
He X, Hawkins C, Lawley L, Freeman K, Phan TM, Zhang J, Xu Y, Fang J. Whole body deletion of Gpr68 does not change hematopoietic stem cell function. Stem Cell Res 2020; 47:101869. [PMID: 32592951 PMCID: PMC7749853 DOI: 10.1016/j.scr.2020.101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 68 (GPR68) responds to extracellular protons, thus called the proton-sensing G protein-coupled receptor (GPCR), leading to activation of the phospholipase C-β (PLCβ)/calcium (Ca2+) pathway or the adenylyl cyclase (AC)/cyclic AMP (cAMP) pathway. We recently found that whole body deletion of Gpr68 (Gpr68-/- mice) reduced the number of B lymphocytes with age and during hematopoietic regeneration, such as in response to fluorouracil (5-FU) administration. This prompted us to characterize the hematopoietic stem cell (HSC) phenotype in Gpr68-/- mice. Despite high level of Gpr68 protein expression on HSC in bone marrow (BM), the pool size of HSC was unaltered in Gpr68-/- mice either under steady state or upon stress, including aging and 5-FU treatment. HSC from Gpr68-/- mice exhibited comparable cellular features, such as cell cycle quiescence and cell survival. HSC from Gpr68-/- mice also exhibited comparable competitiveness after serial transplantation. Surprisingly, cytosolic Ca2+ accumulation was increased in HSC from Gpr68-/- mice. In contrast, cAMP levels were reduced in hematopoietic stem and progenitor cells (HSPC) from Gpr68-/- mice. Intriguingly, we found high level of Gpr68 protein expression on non-hematopoietic cells in BM, especially endothelial cells that function as HSC niche. In addition, expression of other proton-sensing GPCR was upregulated in HSPC from Gpr68-/- mice. Our studies suggest that Gpr68-/- mice display insignificant phenotype on HSC biology, possibly due to the function of Gpr68 in non-hematopoietic cells and/or the compensatory effects from other proton-sensing GPCR.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Kennedy Freeman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Tra Mi Phan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA.
| |
Collapse
|
21
|
Hashim H, Maruyama H, Akita Y, Arai F. Hydrogel Fluorescence Microsensor with Fluorescence Recovery for Prolonged Stable Temperature Measurements. SENSORS 2019; 19:s19235247. [PMID: 31795304 PMCID: PMC6928776 DOI: 10.3390/s19235247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
This work describes a hydrogel fluorescence microsensor for prolonged stable temperature measurements. Temperature measurement using microsensors has the potential to provide information about cells, tissues, and the culture environment, with optical measurement using a fluorescent dye being a promising microsensing approach. However, it is challenging to achieve stable measurements over prolonged periods with conventional measurement methods based on the fluorescence intensity of fluorescent dye because the excited fluorescent dye molecules are bleached by the exposure to light. The decrease in fluorescence intensity induced by photobleaching causes measurement errors. In this work, a photobleaching compensation method based on the diffusion of fluorescent dye inside a hydrogel microsensor is proposed. The factors that influence compensation in the hydrogel microsensor system are the interval time between measurements, material, concentration of photo initiator, and the composition of the fluorescence microsensor. These factors were evaluated by comparing a polystyrene fluorescence microsensor and a hydrogel fluorescence microsensor, both with diameters of 20 µm. The hydrogel fluorescence microsensor made from 9% poly (ethylene glycol) diacrylate (PEGDA) 575 and 2% photo initiator showed excellent fluorescence intensity stability after exposure (standard deviation of difference from initial fluorescence after 100 measurement repetitions: within 1%). The effect of microsensor size on the stability of the fluorescence intensity was also evaluated. The hydrogel fluorescence microsensors, with sizes greater than the measurement area determined by the axial resolution of the confocal microscope, showed a small decrease in fluorescence intensity, within 3%, after 900 measurement repetitions. The temperature of deionized water in a microchamber was measured for 5400 s using both a thermopile and the hydrogel fluorescence microsensor. The results showed that the maximum error and standard deviation of error between these two sensors were 0.5 °C and 0.3 °C, respectively, confirming the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Hairulazwan Hashim
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.M.); (Y.A.); (F.A.)
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Malaysia
- Correspondence: or ; Tel.: +81-52-789-5026; Fax: +81-52-789-5104
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.M.); (Y.A.); (F.A.)
| | - Yusuke Akita
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.M.); (Y.A.); (F.A.)
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.M.); (Y.A.); (F.A.)
| |
Collapse
|
22
|
Comprehensive Assessment of GPR68 Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2019; 20:ijms20215261. [PMID: 31652823 PMCID: PMC6862545 DOI: 10.3390/ijms20215261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
GPR68 (OGR1) belongs to the proton-sensing G protein-coupled receptors that are involved in cellular adaptations to pH changes during tumour development. Although expression of GPR68 has been described in many tumour cell lines, little is known about its presence in human tumour entities. We characterised the novel rabbit monoclonal anti-human GPR68 antibody 16H23L16 using various cell lines and tissue specimens. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. Antibody specificity was demonstrated in a Western blot analysis of GPR68-expressing cells using specific siRNAs. Immunocytochemical experiments revealed pH-dependent changes in subcellular localisation of the receptor and internalisation after stimulation with lorazepam. In normal tissue, GPR68 was present in glucagon-producing islet cells, neuroendocrine cells of the intestinal tract, gastric glands, granulocytes, macrophages, muscle layers of arteries and arterioles, and capillaries. GPR68 was also expressed in neuroendocrine tumours, where it may be a positive prognostic factor, in pheochromocytomas, cervical adenocarcinomas, and endometrial cancer, as well as in paragangliomas, medullary thyroid carcinomas, gastrointestinal stromal tumours, and pancreatic adenocarcinomas. Often, tumour capillaries were also strongly GPR68-positive. The novel antibody 16H23L16 will be a valuable tool for basic research and for identifying GPR68-expressing tumours during histopathological examinations.
Collapse
|
23
|
Kojima R, Horiguchi K, Mochimaru Y, Musha S, Murakami S, Deai M, Mogi C, Sato K, Okajima F, Tomura H. Characterization of molecular mechanisms of extracellular acidification-induced intracellular Ca 2+ increase in LβT2 cells. Biochem Biophys Res Commun 2019; 517:636-641. [PMID: 31400852 DOI: 10.1016/j.bbrc.2019.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LβΤ2 cells, which are used as a model of gonadotropic cells. When we reduced extracellular pH, a transient intracellular Ca2+ increase was detected in LβT2 cells. The Ca2+ increase was inhibited by a Gq/11 inhibitor and Cu2+, which is known as an OGR1 antagonist. We also found that extracellular acidification enhanced GnRH-induced Gaussia luciferase secretion from LβT2 cells. These results suggest that OGR1 may play a role in the regulation of gonadotropic cell function such as its hormone secretion.
Collapse
Affiliation(s)
- Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, 192-8503, Japan
| | - Yuta Mochimaru
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Chihiro Mogi
- Laboratory of Integrated Signaling Systems, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Koichi Sato
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori, 030-0943, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan; Institute of Endocrinology, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
24
|
Yu X, Huang XP, Kenakin TP, Slocum ST, Chen X, Martini ML, Liu J, Jin J. Design, Synthesis, and Characterization of Ogerin-Based Positive Allosteric Modulators for G Protein-Coupled Receptor 68 (GPR68). J Med Chem 2019; 62:7557-7574. [PMID: 31298539 DOI: 10.1021/acs.jmedchem.9b00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptor 68 (GPR68) is an understudied orphan G protein-coupled receptor (GPCR). It is expressed most abundantly in the brain, potentially playing important roles in learning and memory. Pharmacological studies with GPR68 have been hindered by lack of chemical tools that can selectively modulate its activity. We previously reported the first small-molecule positive allosteric modulator (PAM), ogerin (1), and showed that 1 can potentiate proton activity at the GPR68-Gs pathway. Here, we report the first comprehensive structure-activity relationship (SAR) study on the scaffold of 1. Our lead compound resulted from this study, MS48107 (71), displayed 33-fold increased allosteric activity compared to 1. Compound 71 demonstrated high selectivity over closely related proton GPCRs and 48 common drug targets, and was bioavailable and brain-penetrant in mice. Thus, our SAR study has resulted in an improved GPR68 PAM for investigating the physiological and pathophysiological roles of GPR68 in vitro and in vivo.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | | | | | - Xin Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Michael L Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
25
|
Mochimaru Y, Negishi J, Murakami S, Musha S, Sato K, Okajima F, Tomura H. Metals Differentially Activate Ovarian Cancer G Protein-Coupled Receptor 1 in Various Species. Zoolog Sci 2019; 35:109-114. [PMID: 29623784 DOI: 10.2108/zs170145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human, mouse, and zebrafish ovarian cancer G protein-coupled receptors (OGR1s) are activated by both metals and extracellular protons. In the present study, we examined whether pig, rat, chicken, and Xenopus OGR1 homologs could sense and be activated by protons and metals. We found that all homologs stimulated serum response element (SRE)-driven promoter activities when they are stimulated by protons. On the other hand, metals differentially activated the homologs. The results using chimeric receptors of human and zebrafish OGR1s indicate that the specificity of the metal-induced activation lies in the extracellular region. These results suggest that protons are an evolutionally conserved agonist of OGR1. However, the types of metals that activated the receptor differed among the homologs.
Collapse
Affiliation(s)
- Yuta Mochimaru
- 1 Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Jun Negishi
- 1 Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Syo Murakami
- 1 Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Shiori Musha
- 1 Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Koichi Sato
- 2 Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Fumikazu Okajima
- 3 Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori 030-0943, Japan
| | - Hideaki Tomura
- 1 Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.,4 Institute of Endocrinology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
26
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Kim MJ, Im DS. Suppressive effects of type I angiotensin receptor antagonists, candesartan and irbesartan on allergic asthma. Eur J Pharmacol 2019; 852:25-33. [PMID: 30797786 DOI: 10.1016/j.ejphar.2019.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The effects of candesartan and irbesartan, antagonists of the type I angiotensin II receptor, were investigated on allergic asthma. The antigen-induced degranulation was measured by evaluating β-hexosaminidase activity in vitro. Additionally, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy. It was observed that while candesartan inhibited the antigen-induced degranulation in rat RBL-2H3 mast cells, irbesartan did not. Administration of candesartan and irbesartan decreased the number of immune cells in the bronchoalveolar lavage fluid and reduced the expression of Th2 (IL-4, IL-5, and IL-13) and Th1 cytokines (IL-2 and IFN-γ) in the lung tissues of mice with ovalbumin-induced allergic asthma. Histological studies revealed that both antagonists reduced inflammation and mucin production in the lungs. Therefore, these findings provide evidence that candesartan and irbesartan could have potential applications as anti-allergic agents.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
GPR68 Senses Flow and Is Essential for Vascular Physiology. Cell 2019; 173:762-775.e16. [PMID: 29677517 DOI: 10.1016/j.cell.2018.03.076] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 12/26/2022]
Abstract
Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.
Collapse
|
29
|
Heo JY, Im DS. Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int Immunopharmacol 2018; 67:69-77. [PMID: 30537633 DOI: 10.1016/j.intimp.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
Salvia miltiorrhiza root has been used in Asian traditional medicine for the treatment of cardiovascular diseases, asthma, and other conditions. Salvianolic acid B from S. miltiorrhiza extracts has been shown to improve airway hyperresponsiveness. We investigated the effects of salvianolic acid A, tanshinone I, and tanshinone IIA from S. miltiorrhiza in allergic asthma by using rat RBL-2H3 mast cells and female Balb/c mice. Antigen-induced degranulation was assessed by measuring β-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of salvianolic acid A and tanshinone IIA. Tanshinone I and tanshinone IIA inhibited antigen-induced degranulation of mast cells, but salvianolic acid A did not. Administration of salvianolic acid A and tanshinone IIA decreased the number of immune cells, particularly eosinophils in allergic asthma-induced mice. Histological studies showed that salvianolic acid A and tanshinone IIA reduced mucin production and inflammation in the lungs. Administration of salvianolic acid A and tanshinone IIA reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. These findings provide evidence that salvianolic acid A and tanshinone IIA may be potential anti-allergic therapeutics.
Collapse
Affiliation(s)
- Jae-Yeong Heo
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
30
|
Huang J, Su M, Lee BK, Kim MJ, Jung JH, Im DS. Suppressive Effect of 4-Hydroxy-2-(4-Hydroxyphenethyl) Isoindoline-1,3-Dione on Ovalbumin-Induced Allergic Asthma. Biomol Ther (Seoul) 2018; 26:539-545. [PMID: 29665659 PMCID: PMC6254637 DOI: 10.4062/biomolther.2018.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
4-Hydroxy-2-(4-hydroxyphenethyl)isoindoline-1,3-dione (PD1) is a synthetic phthalimide derivative of a marine compound. PD1 has peroxisome proliferator-activated receptor (PPAR) γ agonistic and anti-inflammatory effects. This study aimed to investigate the effect of PD1 on allergic asthma using rat basophilic leukemia (RBL)-2H3 mast cells and an ovalbumin (OVA)-induced asthma mouse model. In vitro, PD1 suppressed β-hexosaminidase activity in RBL-2H3 cells. In the OVA-induced allergic asthma mouse model, increased inflammatory cells and elevated Th2 and Th1 cytokine levels were observed in bronchoalveolar lavage fluid (BALF) and lung tissue. PD1 administration decreased the numbers of inflammatory cells, especially eosinophils, and reduced the mRNA and protein levels of the Th2 cytokines including interleukin (IL)-4 and IL-13, in BALF and lung tissue. The severity of inflammation and mucin secretion in the lungs of PD1-treated mice was also less. These findings indicate that PD1 could be a potential compound for anti-allergic therapy.
Collapse
Affiliation(s)
- Jin Huang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mingzhi Su
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Bo-Kyung Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mee-Jeong Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jee H Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
31
|
Lee BK, Park SJ, Nam SY, Kang S, Hwang J, Lee SJ, Im DS. Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:256-261. [PMID: 29158156 DOI: 10.1016/j.jep.2017.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussurea costus (Falc.) Lipsch. root has been used in Asian traditional medicine for the treatment of asthma, rheumatism, and other conditions. S. costus extracts were shown to alleviate house dust mite-induced atopic-like dermatitis in Nc/Nga mice; besides, sesquiterpene lactones were isolated from S. costus extracts. AIMS OF THE STUDY We aimed to investigate the effects of sesquiterpene lactones (alantolactone, costunolide, and dehydrocostuslactone) in allergic asthma using female Balb/c mice and rat RBL-2H3 mast cells. MATERIALS AND METHODS Antigen-induced degranulation was assessed by measuring β-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of sesquiterpene lactones. RESULTS Sesquiterpene lactones inhibited antigen-induced degranulation, wherein dehydrocostuslactone > costunolide > alantolactone in potency. Administration of sesquiterpene lactones decreased the number of immune cells, particularly eosinophils, and reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. Histological studies showed that sesquiterpene lactones reduced inflammation and mucin production in the lungs. Similar to the in vitro study, dehydrocostuslactone showed the highest potency, followed by costunolide and alantolactone. CONCLUSION These findings provide evidence that sesquiterpene lactones might be potential anti-allergic therapeutics.
Collapse
Affiliation(s)
- Bo-Kyung Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - So-Yeon Nam
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Hwang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Seung-Jin Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Negishi J, Omori Y, Shindo M, Takanashi H, Musha S, Nagayama S, Hirayama J, Nishina H, Nakakura T, Mogi C, Sato K, Okajima F, Mochimaru Y, Tomura H. Manganese and cobalt activate zebrafish ovarian cancer G-protein-coupled receptor 1 but not GPR4. J Recept Signal Transduct Res 2017; 37:401-408. [PMID: 28270026 DOI: 10.1080/10799893.2017.1298130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian ovarian G-protein-coupled receptor 1 (OGR1) is activated by some metals in addition to extracellular protons and coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebrafish OGR1, zebrafish GPR4, and human GPR4 (zOGR1, zGPR4, and hGPR4, respectively) could sense the metals and activate the intracellular signaling pathways. On one hand, we found that only manganese and cobalt of the tested metals stimulated SRE-promoter activities in zOGR1-overexpressed HEK293T cells. On the other hand, none of the metals tested stimulated the promoter activities in zGPR4- and hGPR4-overexpressed cells. The OGR1 mutant (H4F), which is lost to activation by extracellular protons, did not stimulate metal-induced SRE-promoter activities. These results suggest that zOGR1, but not GPR4, is also a metal-sensing G-protein-coupled receptor in addition to a proton-sensing G-protein-coupled receptor, although not all metals that activate hOGR1 activated zOGR1.
Collapse
Affiliation(s)
- Jun Negishi
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Yuka Omori
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Mami Shindo
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Hayate Takanashi
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Shiori Musha
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Suminori Nagayama
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Jun Hirayama
- b Department of Developmental and Regenerative Biology , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Hiroshi Nishina
- b Department of Developmental and Regenerative Biology , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Takashi Nakakura
- c Department of Anatomy, Graduate School of Medicine , Teikyo University , Tokyo , Japan
| | - Chihiro Mogi
- d Laboratory of Signal Transduction, Department of Molecular Medicine , Institute for Molecular and Cellular Regulation, Gunma University , Maebashi , Japan
| | - Koichi Sato
- d Laboratory of Signal Transduction, Department of Molecular Medicine , Institute for Molecular and Cellular Regulation, Gunma University , Maebashi , Japan
| | - Fumikazu Okajima
- e Laboratory of Pathophysiology, Department of Pharmacy, Faculty of Pharmaceutical Sciences , Aomori University , Aomori , Japan
| | - Yuta Mochimaru
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan
| | - Hideaki Tomura
- a Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture , Meiji University , Kawasaki , Japan.,f Institute of Endocrinology, Meiji University , Kawasaki , Japan
| |
Collapse
|
33
|
Lee AY, Kang S, Park SJ, Huang J, Im DS. Anti-Allergic Effect of Oroxylin A from Oroxylum indicum Using in vivo and in vitro Experiments. Biomol Ther (Seoul) 2016; 24:283-90. [PMID: 27133260 PMCID: PMC4859791 DOI: 10.4062/biomolther.2016.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/18/2022] Open
Abstract
Oroxylum indicum has long been used in Asian traditional medicine to prevent and treat respiratory diseases, diabetes, diarrhea and other conditions. Oroxylin A is a flavone that is present in Oroxylum indicum and in Scutellaria baicalensis. Because the root extracts of both plants have been shown to have anti-allergic effects, the authors investigated whether oroxylin A is likely to have beneficial effects on allergic asthma using female Balb/c mice and rat RBL-2H3 mast cells. Antigen-induced degranulation was measured in vitro by measuring β-hexosaminidase activity. A murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of oroxylin A. Sensitization and challenge of ovalbumin induced allergic asthma responses, the accumulations of eosinophils and Th2 cytokine levels in bronchoalveolar lavage fluid and lung tissues. Oroxylin A administration decreased numbers of inflammatory cells, especially eosinophils, and reduced the expression and secretion of Th2 cytokines, including IL-4 and IL-13, in lung tissues and bronchoalveolar lavage fluid. Histologic studies showed oroxylin A reduced inflammatory signs and mucin production in lungs. These findings provide evidence that oroxylin A has potential use as an anti-allergic therapeutic.
Collapse
Affiliation(s)
- Ae-Yeon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Huang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
34
|
D’Souza CA, Zhao FL, Li X, Xu Y, Dunn SE, Zhang L. OGR1/GPR68 Modulates the Severity of Experimental Autoimmune Encephalomyelitis and Regulates Nitric Oxide Production by Macrophages. PLoS One 2016; 11:e0148439. [PMID: 26828924 PMCID: PMC4735495 DOI: 10.1371/journal.pone.0148439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.
Collapse
Affiliation(s)
- Cheryl A. D’Souza
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fei Linda Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Xujian Li
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shannon E. Dunn
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women’s College Research Institute, Toronto, Ontario, Canada
- * E-mail: (LZ); (SED)
| | - Li Zhang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (LZ); (SED)
| |
Collapse
|
35
|
Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury. Int J Mol Sci 2015; 16:28931-42. [PMID: 26690120 PMCID: PMC4691092 DOI: 10.3390/ijms161226145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/22/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.
Collapse
|
36
|
Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 2015; 527:477-83. [PMID: 26550826 DOI: 10.1038/nature15699] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.
Collapse
Affiliation(s)
- Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Joel Karpiak
- Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Hu Zhu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | - Sheryl S Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Kara A Saddoris
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Martilias S Farrell
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Thomas J Mangano
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Deepak A Deshpande
- Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Alice Jiang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Raymond B Penn
- Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| |
Collapse
|
37
|
de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, Ludwig MG, Okoniewski M, Eloranta JJ, Kullak-Ublick GA, Wagner CA, Rogler G, Seuwen K. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol 2015. [PMID: 26206859 DOI: 10.1152/ajpgi.00408.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms.
Collapse
Affiliation(s)
- Cheryl de Vallière
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Solange Vidal
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ieuan Clay
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Giorgia Jurisic
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Irina Tcymbarevich
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Michal Okoniewski
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Jyrki J Eloranta
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
38
|
Kamide Y, Ishizuka T, Tobo M, Tsurumaki H, Aoki H, Mogi C, Nakakura T, Yatomi M, Ono A, Koga Y, Sato K, Hisada T, Dobashi K, Yamada M, Okajima F. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells. Biochem Biophys Res Commun 2015. [PMID: 26196745 DOI: 10.1016/j.bbrc.2015.07.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation.
Collapse
Affiliation(s)
- Yosuke Kamide
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan.
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroaki Tsurumaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan; Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Haruka Aoki
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Masakiyo Yatomi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiro Ono
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuhiko Koga
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takeshi Hisada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kunio Dobashi
- Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
39
|
Tobo A, Tobo M, Nakakura T, Ebara M, Tomura H, Mogi C, Im DS, Murata N, Kuwabara A, Ito S, Fukuda H, Arisawa M, Shuto S, Nakaya M, Kurose H, Sato K, Okajima F. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses. PLoS One 2015; 10:e0129334. [PMID: 26070068 PMCID: PMC4466532 DOI: 10.1371/journal.pone.0129334] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/07/2015] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.
Collapse
Affiliation(s)
- Ayaka Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masayuki Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takashi Nakakura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masashi Ebara
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideaki Tomura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Naoya Murata
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Atsushi Kuwabara
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Saki Ito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Hayato Fukuda
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail: (FO); (KS)
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail: (FO); (KS)
| |
Collapse
|
40
|
Mochimaru Y, Azuma M, Oshima N, Ichijo Y, Satou K, Matsuda K, Asaoka Y, Nishina H, Nakakura T, Mogi C, Sato K, Okajima F, Tomura H. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish. Biochem Biophys Res Commun 2015; 457:493-9. [DOI: 10.1016/j.bbrc.2014.12.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 02/02/2023]
|
41
|
Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma. Mediators Inflamm 2014; 2014:712962. [PMID: 25197168 PMCID: PMC4147257 DOI: 10.1155/2014/712962] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022] Open
Abstract
An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.
Collapse
|
42
|
Acidic pH increases cGMP accumulation through the OGR1/phospholipase C/Ca(2+)/neuronal NOS pathway in N1E-115 neuronal cells. Cell Signal 2014; 26:2326-32. [PMID: 25025574 DOI: 10.1016/j.cellsig.2014.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/29/2022]
Abstract
Neuronal NO synthase (nNOS)-mediated cGMP accumulation has been shown to affect a variety of neuronal cell activities, regardless of whether they are detrimental or beneficial, depending on the amount of their levels, under the physiological and pathological situations. In the present study, we examined the role of proton-sensing G protein-coupled receptors (GPCRs), which have been identified as new pH sensors, in the acidic pH-induced nNOS/cGMP activity in N1E-115 neuronal cells. In this cell line, ovarian cancer G protein-coupled receptor 1 (OGR1) and G protein-coupled receptor 4 (GPR4) mRNAs are expressed. An extracellular acidic pH increased cGMP accumulation, which was inhibited by nNOS-specific inhibitors. Acidic pH also activated phospholipase C/Ca(2+) pathways and Akt-induced phosphorylation of nNOS at S1412, both of which have been shown to be critical regulatory mechanisms for nNOS activation. The acidic pH-induced activation of the phospholipase C/Ca(2+) pathway, but not Akt/nNOS phosphorylation, was inhibited by small interfering RNA specific to OGR1 and YM-254890, an inhibitor of Gq/11 proteins, in association with the inhibition of cGMP accumulation. Moreover cGMP accumulation was inhibited by 2-aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate channel; however, it was not by wortmannin, a phosphatidylinositol 3-kinase inhibitor, which inhibited Akt/nNOS phosphorylation. In conclusion, acidic pH stimulates cGMP accumulation preferentially through the OGR1/Gq/11 proteins/phospholipase C/Ca(2+)/nNOS in N1E-115 neuronal cells. Akt-mediated phosphorylation of nNOS, however, does not appreciably contribute to the acidification-induced accumulation of cGMP.
Collapse
|