1
|
Jin G, Jeong JS, Kim IH, Kim Y. Suppression of a transcriptional regulator, HexA, is essential for triggering the bacterial virulence of the entomopathogen, Xenorhabdus hominickii. J Invertebr Pathol 2024; 207:108219. [PMID: 39393625 DOI: 10.1016/j.jip.2024.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
A nematode-symbiotic bacterium, Xenorhabdus hominickii, exhibits two distinct lifestyles. Upon infection of its host nematode into a target insect, X. hominickii is released into the insect hemocoel and becomes pathogenic. This study examines the critical transformation in bacterial life forms concerning the activity of a transcriptional regulator, HexA. When X. hominickii was cultured in tryptic soy broth, HexA was expressed during the stationary phase of bacterial growth. Conversely, HexA was expressed in the early growth stage within the insect host, Spodoptera exigua, when infected with X. hominickii. The transient expression of HexA was succeeded by the expression of another transcriptional regulator, Lrp, which led to the production of bacterial virulent factors. Expression of HexA was manipulated by replacing its promoter with an inducible promoter controlled by the inducer, l-arabinose. In the absence of the inducer, the mutant bacteria expressed HexA at a low level, resulting in a bacterial culture broth that was more effective at suppressing insect immune responses than the wild type. When the inducer was added, HexA was expressed at high levels, rendering the culture broth ineffective in immunosuppression. Interestingly, expression of HexA inhibited the expression of another transcriptional regulator, Lrp, which in turn induced the expression of a non-ribosomal peptide synthetase, gxpS, leading to the production of an immunosuppressive metabolite, GXP. Suppression of HexA expression in mutant bacteria augmented GXP levels in secondary metabolites. This indicates that infection of X. hominickii into the insect host represses HexA expression and upregulates Lrp expression, leading to GXP production. The GXP metabolites inhibit insect immunity, thus protecting the bacteria-nematode complex. Therefore, the suppression of HexA expression in the insect hemocoel is crucial for the bacteria's transition from a symbiotic to a pathogenic life form.
Collapse
Affiliation(s)
- Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Ji-Seon Jeong
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; Department of Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Il-Hwan Kim
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea.
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
2
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
3
|
Ulgen Gokduman F, Yılmaz S, Bode HB. Enhanced production of trans-cinnamic acid in Photorhabdus luminescens with homolog expression and deletion strategies. J Appl Microbiol 2024; 135:lxae149. [PMID: 38906846 DOI: 10.1093/jambio/lxae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
AIM This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.
Collapse
Affiliation(s)
- Funda Ulgen Gokduman
- Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for terrestrial Microbiology, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Phillips Universität Marburg, 35043 Marburg, Germany
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
4
|
Jin G, Kim IH, Kim Y. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105101. [PMID: 38000489 DOI: 10.1016/j.dci.2023.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. The infective juveniles deliver the symbiotic bacteria to the hemocoel of target insects, in which the bacteria proliferate and help the development of the host nematode. The successful parasitism of the nematode-bacterial complex depends on host immunosuppression by the bacteria via their secondary metabolites. Leucine-responsive regulatory protein (Lrp) is a global bacterial transcriptional factor that plays a crucial role in parasitism. However, its regulatory targets to suppress insect immunity are not clearly understood. This study investigated the bacterial genes regulated by Lrp and the subsequent production of secondary metabolites in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage of the bacteria in a target insect, Spodoptera exigua. A preliminary in silico screening indicated that 3.7% genes among 4075 predicted genes encoded in X. hominickii had the Lrp-response element on their promoters, including two non-ribosomal peptide synthetases (NRPSs). Eight NRPS (NRPS1-NRPS8) genes were predicted in the bacterial genome, in which six NRPS (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites and the NRPS expression levels. The immunosuppressive activities of X. hominickii were dependent on the Lrp expression level. The metabolites produced by Lrp expression included the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (=cPF) was produced by the bacteria at high Lrp expression and inhibited the phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays a crucial role in insect immunosuppression by modulating NRPS expression.
Collapse
Affiliation(s)
- Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Il-Hwan Kim
- Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
5
|
Hadchity L, Houard J, Lanois A, Payelleville A, Nassar F, Gualtieri M, Givaudan A, Abi Khattar Z. The AcrAB efflux pump confers self-resistance to stilbenes in Photorhabdus laumondii. Res Microbiol 2023; 174:104081. [PMID: 37196776 DOI: 10.1016/j.resmic.2023.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The Resistance-nodulation-division (RND)-type AcrAB-TolC efflux pump contributes to multidrug resistance in Gram-negative bacteria. Recently, the bacterium Photorhabdus laumondii TT01 has emerged as a goldmine for novel anti-infective drug discovery. Outside plants, Photorhabdus is the only Gram-negative known to produce stilbene-derivatives including 3,5-dihydroxy-4-ethyl-trans-stilbene and 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS). IPS is a bioactive polyketide which received considerable attention, mainly because of its antimicrobial properties, and is currently in late-stage clinical development as a topical treatment for psoriasis and dermatitis. To date, little is known about how Photorhabdus survives in the presence of stilbenes. We combined genetic and biochemical approaches to assess whether AcrAB efflux pump exports stilbenes in P. laumondii. We demonstrated that the wild-type (WT) exerts an antagonistic activity against its derivative ΔacrA mutant, and that is able to outcompete it in a dual-strain co-culture assay. The ΔacrA mutant also showed high sensitivity to 3,5-dihydroxy-4-ethyl-trans-stilbene and IPS as well as decreased IPS concentrations in its supernatant comparing to the WT. We report here a mechanism of self-resistance against stilbene derivatives of P. laumondii TT01, which enables these bacteria to survive under high concentrations of stilbenes by extruding them out via the AcrAB efflux pump.
Collapse
Affiliation(s)
- Linda Hadchity
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, P.O.Box 90656, Jdeidet El-Metn, Lebanon; DGIMI, Université Montpellier, INRAE, Montpellier, France.
| | | | - Anne Lanois
- DGIMI, Université Montpellier, INRAE, Montpellier, France.
| | - Amaury Payelleville
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Fida Nassar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, P.O.Box 90656, Jdeidet El-Metn, Lebanon.
| | | | - Alain Givaudan
- DGIMI, Université Montpellier, INRAE, Montpellier, France.
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, P.O.Box 90656, Jdeidet El-Metn, Lebanon.
| |
Collapse
|
6
|
Huber EM, Kreling L, Heinrich AK, Dünnebacke M, Pöthig A, Bode HB, Groll M. A set of closely related methyltransferases for site-specific tailoring of anthraquinone pigments. Structure 2023; 31:573-583.e5. [PMID: 36963398 DOI: 10.1016/j.str.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Modification of the polyketide anthraquinone AQ-256 in the entomopathogenic Photorhabdus luminescens involves several O-methylations, but the biosynthetic gene cluster antA-I lacks corresponding tailoring enzymes. We here describe the identification of five putative, highly homologous O-methyltransferases encoded in the genome of P. luminescens. Activity assays in vitro and deletion experiments in vivo revealed that three of them account for anthraquinone tailoring by producing three monomethylated and two dimethylated species of AQ-256. X-ray structures of all five enzymes indicate high structural and mechanistic similarity. As confirmed by structure-based mutagenesis, a conserved histidine at the active site likely functions as a general base for substrate deprotonation and subsequent methyl transfer in all enzymes. Eight complex structures with AQ-256 as well as mono- and dimethylated derivatives confirm the substrate specificity patterns found in vitro and visualize how single amino acid differences in the active-site pockets impact substrate orientation and govern site-specific methylation.
Collapse
Affiliation(s)
- Eva M Huber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, Chair of Biochemistry, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
| | - Lukas Kreling
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Antje K Heinrich
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Maximilian Dünnebacke
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, Chair of Biochemistry, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Alexander Pöthig
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Ernst-Otto-Fischer-Str. 1, 85748 Garching, Germany
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Chemical Biology, Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany.
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, Chair of Biochemistry, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
| |
Collapse
|
7
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
8
|
Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene 2021; 795:145780. [PMID: 34147570 DOI: 10.1016/j.gene.2021.145780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
The genome sequences of entomopathogenic nematode (EPN) bacteria and their functional analyses can lead to the genetic engineering of the bacteria for use as biocontrol agents. The bacterial symbiont Photorhabdus heterorhabditis strain ETL isolated from an insect pathogenic nematode, Heterorhabditis zealandica strain ETL, collected in the northernmost region of South Africa was studied to reveal information that can be useful in the design of improvement strategies for both effective and liquid production method of EPN-based pesticides. The strain ETL genome was found closely related to the type strain genome of P. australis DSM 17,609 (~60 to 99.9% CDSs similarity), but closely related to the not yet genome-sequenced type strain, P. heterorhabditis. It has a genome size of 4,866,148 bp and G + C content of 42.4% similar to other Photorhabdus. It contains 4,351 protein coding genes (CDSs) of which, at least 84% are shared with the de facto type strain P. luminescens subsp. laumondii TTO1, and has 318 unknown CDSs and the genome has a higher degree of plasticity allowing it to adapt to different environmental conditions, and to be virulent against various insects; observed through genes acquired through horizontal gene transfer mechanisms, clustered regularly interspaced short palindromic repeats, non-determined polyketide- and non-ribosomal peptide- synthase gene clusters, and many genes associated with uncharacterized proteins; which also justify the strain ETL's genes differences (quantity and quality) compared to P. luminescens subsp. laumondii TTO1. The protein coding sequences contained genes with both bio-engineering and EPNs mass production importance, of which numerous are uncharacterized.
Collapse
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
9
|
Rauf A, Khalil AA, Rahman UU, Khalid A, Naz S, Shariati MA, Rebezov M, Urtecho EZ, de Albuquerque RDDG, Anwar S, Alamri A, Saini RK, Rengasamy KRR. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit Rev Food Sci Nutr 2021; 62:6034-6054. [PMID: 33703960 DOI: 10.1080/10408398.2021.1895064] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ubaid-Ur- Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saima Naz
- Deaprtment of Biotechnology, Woman University Mardan, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian.,Prokhorov General Physics Institute of the, Russian Academy of Science, Moscow, Russian
| | | | | | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | - Abdulwahab Alamri
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | | | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| |
Collapse
|
10
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
11
|
Symbiosis, virulence and natural-product biosynthesis in entomopathogenic bacteria are regulated by a small RNA. Nat Microbiol 2020; 5:1481-1489. [PMID: 33139881 DOI: 10.1038/s41564-020-00797-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Photorhabdus and Xenorhabdus species have mutualistic associations with nematodes and an entomopathogenic stage1,2 in their life cycles. In both stages, numerous specialized metabolites are produced that have roles in symbiosis and virulence3,4. Although regulators have been implicated in the regulation of these specialized metabolites3,4, how small regulatory RNAs (sRNAs) are involved in this process is not clear. Here, we show that the Hfq-dependent sRNA, ArcZ, is required for specialized metabolite production in Photorhabdus and Xenorhabdus. We discovered that ArcZ directly base-pairs with the mRNA encoding HexA, which represses the expression of specialized metabolite gene clusters. In addition to specialized metabolite genes, we show that the ArcZ regulon affects approximately 15% of all transcripts in Photorhabdus and Xenorhabdus. Thus, the ArcZ sRNA is crucial for specialized metabolite production in Photorhabdus and Xenorhabdus species and could become a useful tool for metabolic engineering and identification of commercially relevant natural products.
Collapse
|
12
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR. Iso-propyl stilbene: a life cycle signal? MICROBIOLOGY-SGM 2019; 165:516-526. [PMID: 30882293 DOI: 10.1099/mic.0.000790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Gram-negative bacterial genus Photorhabdus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm Heterorhabditis. All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of Photorhabdus itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of Photorhabdus bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonatan Mimon Benarroch
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - David James Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nicholas Robin Waterfield
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Gottardi M, Grün P, Bode HB, Hoffmann T, Schwab W, Oreb M, Boles E. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product. FEMS Yeast Res 2019; 17:4654848. [PMID: 29186481 DOI: 10.1093/femsyr/fox091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin.
Collapse
Affiliation(s)
- Manuela Gottardi
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Peter Grün
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Heinrich AK, Hirschmann M, Neubacher N, Bode HB. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in Photorhabdus and Xenorhabdus. PeerJ 2017; 5:e3471. [PMID: 28663937 PMCID: PMC5488855 DOI: 10.7717/peerj.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-negative bacteria Photorhabdus and Xenorhabdus are known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production of Photorhabdus and Xenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production in Photorhabdus. In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deleted luxS in three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNA micA, which is encoded directly upstream of luxS, did not influence NP levels. Phenotypic differences between the P. luminescens luxS deletion mutant and an earlier described luxS deficient strain of P. luminescens suggested that two phenotypically different strains have evolved in different laboratories.
Collapse
Affiliation(s)
- Antje K. Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Engel Y, Windhorst C, Lu X, Goodrich-Blair H, Bode HB. The Global Regulators Lrp, LeuO, and HexA Control Secondary Metabolism in Entomopathogenic Bacteria. Front Microbiol 2017; 8:209. [PMID: 28261170 PMCID: PMC5313471 DOI: 10.3389/fmicb.2017.00209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Photorhabdus luminescens TTO1 and Xenorhabdus nematophila HGB081 are insect pathogenic bacteria and producers of various structurally diverse bioactive natural products. In these entomopathogenic bacteria we investigated the role of the global regulators Lrp, LeuO, and HexA in the production of natural products. Lrp is a general activator of natural product biosynthesis in X. nematophila and for most compounds in TTO1. Microarray analysis confirmed these results in X. nematophila and enabled the identification of additional biosynthesis gene clusters (BGC) regulated by Lrp. Moreover, when promoters of two X. nematophila BGC were analyzed, transcriptional activation by Lrp was observed. In contrast, LeuO in X. nematophila and P. luminescens has both repressing and activating features, depending on the natural product examined. Furthermore, heterologous overexpression of leuO from X. nematophila in the closely related Xenorhabdus szentirmaii resulted in overproduction of several natural products including novel compounds. The presented findings could be of importance for establishing a tool for overproduction of secondary metabolites and subsequent identification of novel compounds.
Collapse
Affiliation(s)
- Yvonne Engel
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Carina Windhorst
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Xiaojun Lu
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, MadisonWI, USA; Department of Microbiology, University of Tennessee, Knoxville, KnoxvilleTN, USA
| | - Helge B Bode
- Merck-Stiftungsprofessur Molekulare Biotechnologie, Molekulare Biowissenschaften, Goethe Universität FrankfurtFrankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität FrankfurtFrankfurt am Main, Germany
| |
Collapse
|
17
|
Valverde C. Who's the boss here? The post‐transcriptional global regulator
H
fq takes over control of secondary metabolite production in the nematode symbiont
P
hotorhabdus luminiscens. Environ Microbiol 2017; 19:21-24. [DOI: 10.1111/1462-2920.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Claudio Valverde
- Departamento de Ciencia y Tecnología, LBMIBSUniversidad Nacional de Quilmes – CONICETBernalB1876BXD Argentina
| |
Collapse
|
18
|
Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB. Photorhabdus‐nematode symbiosis is dependent onhfq‐mediated regulation of secondary metabolites. Environ Microbiol 2016; 19:119-129. [DOI: 10.1111/1462-2920.13502] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas J. Tobias
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Antje K. Heinrich
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Helena Eresmann
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Patrick R. Wright
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
| | - Nick Neubacher
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Rolf Backofen
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
- BIOSS Centre for Biological Signaling Studies, University of FreiburgFreiburg Germany
| | - Helge B. Bode
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität FrankfurtFrankfurt am Main Germany
| |
Collapse
|
19
|
First Report of the Isolation of the Symbiotic Bacterium Photorhabdus luminescens subsp. laumondii Associated with Heterorhabditis safricana from South Africa. Curr Microbiol 2016; 73:790-795. [PMID: 27567899 DOI: 10.1007/s00284-016-1116-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Photorhabdus luminescens subsp. laumondii is closely associated with the entomopathogenic nematode Heterorhabditis bacteriophora and has, to date, not been isolated from other nematode species. This study is the first report of P. luminescens subsp. laumondii from two South African isolates of entomopathogenic nematodes, Heterorhabditis safricana SF281 and H. bacteriophora SF351. Both symbiotic bacterial strains are phenotypically closely related to P. luminescens subsp. laumondii previously isolated and described from H. bacteriophora. The genetic relatedness between P. luminescens subsp. laumondii strains SF281B and SF351B was confirmed by comparing 16S rDNA, recA, gyrB and gltX sequences with sequences of P. luminescens subsp. laumondii, including the type strain (TT01T) and strain E21.
Collapse
|
20
|
Unoarumhi Y, Blumenthal RM, Matson JS. Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria. BMC Evol Biol 2016; 16:111. [PMID: 27206730 PMCID: PMC4875751 DOI: 10.1186/s12862-016-0685-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. Results We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Conclusions Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0685-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvette Unoarumhi
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
21
|
Bager R, Roghanian M, Gerdes K, Clarke DJ. Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Mol Microbiol 2016; 100:735-47. [PMID: 26845750 DOI: 10.1111/mmi.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 01/21/2023]
Abstract
The enteric gamma-proteobacterium Photorhabdus luminescens kills a wide range of insects, whilst also maintaining a mutualistic relationship with soil nematodes from the family Heterorhabditis. Pathogenicity is associated with bacterial exponential growth, whilst mutualism is associated with post-exponential (stationary) phase. During post-exponential growth, P. luminescens also elaborates an extensive secondary metabolism, including production of bioluminescence, antibiotics and pigment. However, the regulatory network that controls the expression of this secondary metabolism is not well understood. The stringent response is a well-described global regulatory system in bacteria and mediated by the alarmone (p)ppGpp. In this study, we disrupted the genes relA and spoT, encoding the two predicted (p)ppGpp synthases of P. luminescens TTO1, and we showed that (p)ppGpp is required for secondary metabolism. Moreover, we found the (p)ppGpp is not required for pathogenicity of P. luminescens, but is required for bacterial survival within the insect cadaver. Finally, we showed that (p)ppGpp is required for P. luminescens to support normal nematode growth and development. Therefore, the regulatory network that controls the transition from pathogenicity to mutualism in P. luminescens requires (p)ppGpp. This is the first report outlining a role for (p)ppGpp in controlling the outcome of an interaction between a bacteria and its host.
Collapse
Affiliation(s)
- Ragnhild Bager
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark.,School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Mohammad Roghanian
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - David J Clarke
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Qiu X, Wu C, Cao L, Ehlers RU, Han R. Photorhabdus luminescens LN2 requires rpoS for nematicidal activity and nematode development. FEMS Microbiol Lett 2016; 363:fnw035. [PMID: 26884480 DOI: 10.1093/femsle/fnw035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 11/15/2022] Open
Abstract
Photorhabdus (Enterobacteriaceae) bacteria are pathogenic to insects and mutualistic with entomopathogenic Heterorhabditis nematodes. Photorhabdus luminescens subsp. akhurstii LN2, associated with Heterorhabditis indica LN2, shows nematicidal activity against H. bacteriophora H06 infective juveniles (IJs). In the present study, an rpoS mutant of P. luminescens LN2 was generated through allelic exchange to examine the effects of rpoS deletion on the nematicidal activity and nematode development. The results showed that P. luminescens LN2 required rpoS for nematicidal activity against H06 nematodes, normal IJ recovery and development of H. indica LN2, however, not for the bacterial colonization in LN2 and H06 IJs. This provides cues for further understanding the role of rpoS in the mutualistic association between entomopathogenic nematodes and their symbionts.
Collapse
Affiliation(s)
- Xuehong Qiu
- Guangdong Entomological Institute, Public Laboratory of Wild Animal Conservation and Utilization, Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou 510260, China
| | - Chunyan Wu
- Guangdong Entomological Institute, Public Laboratory of Wild Animal Conservation and Utilization, Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou 510260, China
| | - Li Cao
- Guangdong Entomological Institute, Public Laboratory of Wild Animal Conservation and Utilization, Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou 510260, China
| | - Ralf-Udo Ehlers
- E-nema GmbH, Klausdorfer Str. 28-36, Schwentinental 24223, Germany
| | - Richou Han
- Guangdong Entomological Institute, Public Laboratory of Wild Animal Conservation and Utilization, Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou 510260, China
| |
Collapse
|
23
|
Antimicrobials and the Natural Biology of a Bacterial-Nematode Symbiosis. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Appl Environ Microbiol 2015; 81:7851-9. [PMID: 26341205 DOI: 10.1128/aem.02339-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/30/2015] [Indexed: 12/27/2022] Open
Abstract
Bacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials.
Collapse
|
25
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
26
|
The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:1-29. [PMID: 24767424 DOI: 10.1016/b978-0-12-800260-5.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photorhabdus is a pathogen of insects that also maintains a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus colonizes the gut of the infective juvenile (IJ) stage of the nematode. The IJ infects an insect and regurgitates the bacteria and the bacteria reproduce to kill the insect. The nematodes feed on the resulting bacterial biomass until a new generation of IJs emerges from the insect cadaver. Therefore, during its life cycle, Photorhabdus must (1) kill the insect host, (2) support nematode growth and development, and (3) be able to colonize the new generation of IJs. In this review, functional genomic studies that have been aimed at understanding the molecular mechanisms underpinning each of these roles will be discussed. These studies have begun to reveal that distinct gene sets may be required for each of these interactions, suggesting that there is only a minimal genetic overlap between pathogenicity and mutualism in Photorhabdus.
Collapse
|