1
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
2
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|
3
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
4
|
Fonseca JP, Aslankoohi E, Ng AH, Chevalier M. Analysis of localized cAMP perturbations within a tissue reveal the effects of a local, dynamic gap junction state on ERK signaling. PLoS Comput Biol 2022; 18:e1009873. [PMID: 35353814 PMCID: PMC9000136 DOI: 10.1371/journal.pcbi.1009873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/11/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Beyond natural stimuli such as growth factors and stresses, the ability to experimentally modulate at will the levels or activity of specific intracellular signaling molecule(s) in specified cells within a tissue can be a powerful tool for uncovering new regulation and tissue behaviors. Here we perturb the levels of cAMP within specific cells of an epithelial monolayer to probe the time-dynamic behavior of cell-cell communication protocols implemented by the cAMP/PKA pathway and its coupling to the ERK pathway. The time-dependent ERK responses we observe in the perturbed cells for spatially uniform cAMP perturbations (all cells) can be very different from those due to spatially localized perturbations (a few cells). Through a combination of pharmacological and genetic perturbations, signal analysis, and computational modeling, we infer how intracellular regulation and regulated cell-cell coupling each impact the intracellular ERK response in single cells. Our approach reveals how a dynamic gap junction state helps sculpt the intracellular ERK response over time in locally perturbed cells.
Collapse
Affiliation(s)
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew H. Ng
- Outpace Bio, Seattle, Washington, United States of America
| | - Michael Chevalier
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Jiang W, Lin YC, Botello-Smith W, Contreras JE, Harris AL, Maragliano L, Luo YL. Free energy and kinetics of cAMP permeation through connexin26 via applied voltage and milestoning. Biophys J 2021; 120:2969-2983. [PMID: 34214529 DOI: 10.1016/j.bpj.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
The connexin family is a diverse group of highly regulated wide-pore channels permeable to biological signaling molecules. Despite the critical roles of connexins in mediating selective molecular signaling in health and disease, the basis of molecular permeation through these pores remains unclear. Here, we report the thermodynamics and kinetics of binding and transport of a second messenger, adenosine-3',5'-cyclophosphate (cAMP), through a connexin26 hemichannel (Cx26). First, inward and outward fluxes of cAMP molecules solvated in KCl solution were obtained from 4 μs of ± 200 mV simulations. These fluxes data yielded a single-channel permeability of cAMP and cAMP/K+ permeability ratio consistent with experimentally measured values. The results from voltage simulations were then compared with the potential of mean force (PMF) and the mean first passage times (MFPTs) of a single cAMP without voltage, obtained from a total of 16.5 μs of Voronoi-tessellated Markovian milestoning simulations. Both the voltage simulations and the milestoning simulations revealed two cAMP-binding sites, for which the binding constants KD and dissociation rates koff were computed from PMF and MFPTs. The protein dipole inside the pore produces an asymmetric PMF, reflected in unequal cAMP MFPTs in each direction once within the pore. The free energy profiles under opposite voltages were derived from the milestoning PMF and revealed the interplay between voltage and channel polarity on the total free energy. In addition, we show how these factors influence the cAMP dipole vector during permeation, and how cAMP affects the local and nonlocal pore diameter in a position-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Wesley Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California.
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| | - Luca Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
6
|
Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis. Cancers (Basel) 2020; 13:cancers13010058. [PMID: 33379194 PMCID: PMC7795795 DOI: 10.3390/cancers13010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Different connexins play diverse roles in cancers, either tumor-suppressing or tumor-promoting. In lung cancer, Cx43 serves as a tumor suppressor at the early stage, but it can also be a tumor-promotor at an advanced stage and during metastasis. Moreover, other connexins, including Cx26, Cx31.1, and Cx32, can be tumor suppressors. In contrast, Cx30.3 can be a tumor-promotor. The roles of different connexins in different cancers have also been established. Cx43 acts as a tumor suppressor in colorectal cancer, breast cancer, and glioma, whereas Cx32 can be a suppressor in liver tumors and hepatocarcinogenesis. Cx26 can be a tumor suppressor in mammary tumors; in contrast, it can be a tumor-promotor in melanoma. Existing drugs/molecules targeting the cAMP/PKA/connexin axis act to regulate channel opening/closing. Mimic peptides, such as Gap19, Gap26, and Gap 27 block hemichannels, mimetic peptides, and CT9/CT10 and promote hemichannel opening and also hemichannel closing. Abstract Connexin-containing gap junctions mediate the direct exchange of small molecules between cells, thus promoting cell–cell communication. Connexins (Cxs) have been widely studied as key tumor-suppressors. However, certain Cx subtypes, such as Cx43 and Cx26, are overexpressed in metastatic tumor lesions. Cyclic adenosine monophosphate (cAMP) signaling regulates Cx expression and function via transcriptional control and phosphorylation. cAMP also passes through gap junction channels between adjacent cells, regulating cell cycle progression, particularly in cancer cell populations. Low levels of cAMP are sufficient to activate key effectors. The present review evaluates the mechanisms underlying Cx regulation by cAMP signaling and the role of gap junctions in cancer progression and metastasis. A deeper understanding of these processes might facilitate the development of novel anticancer drugs.
Collapse
|
7
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Connexins-Therapeutic Targets in Cancers. Int J Mol Sci 2020; 21:ijms21239119. [PMID: 33266154 PMCID: PMC7730856 DOI: 10.3390/ijms21239119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cx) are members of a protein family that forms intercellular channels localised in gap junction (GJ) plaques and single transmembrane channels called hemichannels. They participate in intercellular communication or communication between the intracellular and extracellular environments. Connexins affect cell homeostasis, growth and differentiation by enabling the exchange of metabolites or by interfering with various signalling pathways. Alterations in the functionality and the expression of connexins have been linked to the occurrence of many diseases. Connexins have been already linked to cancers, cardiac and brain disorders, chronic lung and kidney conditions and wound healing processes. Connexins have been shown either to suppress cancer tumour growth or to increase tumorigenicity by promoting cancer cell growth, migration and invasiveness. A better understanding of the complexity of cancer biology related to connexins and intercellular communication could result in the design of novel therapeutic strategies. The modulation of connexin expression may be an effective therapeutic approach in some types of cancers. Therefore, one important challenge is the search for mechanisms and new drugs, selectively modulating the expression of various connexin isoforms. We performed a systematic literature search up to February 2020 in the electronic databases PubMed and EMBASE. Our search terms were as follows: connexins, hemichannels, cancer and cancer treatment. This review aims to provide information about the role of connexins and gap junctions in cancer, as well as to discuss possible therapeutic options that are currently being studied.
Collapse
|
9
|
Gässler A, Quiclet C, Kluth O, Gottmann P, Schwerbel K, Helms A, Stadion M, Wilhelmi I, Jonas W, Ouni M, Mayer F, Spranger J, Schürmann A, Vogel H. Overexpression of Gjb4 impairs cell proliferation and insulin secretion in primary islet cells. Mol Metab 2020; 41:101042. [PMID: 32565358 PMCID: PMC7365933 DOI: 10.1016/j.molmet.2020.101042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Altered gene expression contributes to the development of type 2 diabetes (T2D); thus, the analysis of differentially expressed genes between diabetes-susceptible and diabetes-resistant mouse models is an important tool for the determination of candidate genes that participate in the pathology. Based on RNA-seq and array data comparing pancreatic gene expression of diabetes-prone New Zealand Obese (NZO) mice and diabetes-resistant B6.V-ob/ob (B6-ob/ob) mice, the gap junction protein beta 4 (Gjb4) was identified as a putative novel T2D candidate gene. METHODS Gjb4 was overexpressed in primary islet cells derived from C57BL/6 (B6) mice and INS-1 cells via adenoviral-mediated infection. The proliferation rate of cells was assessed by BrdU incorporation, and insulin secretion was measured under low (2.8 mM) and high (20 mM) glucose concentration. INS-1 cell apoptosis rate was determined by Western blotting assessing cleaved caspase 3 levels. RESULTS Overexpression of Gjb4 in primary islet cells significantly inhibited the proliferation by 47%, reduced insulin secretion of primary islets (46%) and INS-1 cells (51%), and enhanced the rate of apoptosis by 63% in INS-1 cells. Moreover, an altered expression of the miR-341-3p contributes to the Gjb4 expression difference between diabetes-prone and diabetes-resistant mice. CONCLUSIONS The gap junction protein Gjb4 is highly expressed in islets of diabetes-prone NZO mice and may play a role in the development of T2D by altering islet cell function, inducing apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Anneke Gässler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Charline Quiclet
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Frank Mayer
- University Outpatient Clinic, Centre of Sports Medicine, University of Potsdam, Am Neuen Palais 10, D-14469, Potsdam, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Institute of Nutritional Sciences, University of Potsdam, D-14558, Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Molecular and Clinical Life Science of Metabolic Diseases, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
| |
Collapse
|
10
|
Novel combination therapy for melanoma induces apoptosis via a gap junction positive feedback mechanism. Oncotarget 2020; 11:3443-3458. [PMID: 32973969 PMCID: PMC7500108 DOI: 10.18632/oncotarget.27732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic melanoma cells overexpressing gap junctions were assayed for their ability to propagate cell death by a novel combination therapy that generates reactive oxygen species (ROS) by both 1) non-thermal plasma (NTP) and 2) tirapazamine (TPZ) under hypoxic conditions. Results demonstrate additive-to-synergistic effects of combination therapy compared to each agent individually. NTP induces highly localized cell death in target areas whereas TPZ partially reduces viability over the total surface area. However, when high gap junction expression was induced in melanoma cells, effects of combination NTP+TPZ therapy was augmented, spreading cell death across the entire plate. Similarly, in vivo studies of human metastatic melanoma in a mouse tumor model demonstrate that the combined effect of NTP+TPZ causes a 90% reduction in tumor volume, specifically in the model expressing gap junctions. Treatment with NTP+TPZ increases gene expression in the apoptotic pathway and oxidative stress while decreasing genes related to cell migration. Immune response was also elicited through differential regulation of cytokines and chemokines, suggesting potential for this therapy to induce a cytotoxic immune response with fewer side effects than current therapies. Interestingly, the gap junction protein, Cx26 was upregulated following treatment with NTP+TPZ and these gap junctions were shown to maintain functionality during the onset of treatment. Therefore, we propose that gap junctions both increase the efficacy of NTP+TPZ and perpetuate a positive feedback mechanism of gap junction expression and tumoricidal activity. Our unique approach to ROS induction in tumor cells with NTP+TPZ shows potential as a novel cancer treatment.
Collapse
|
11
|
Chien J, Wolf FW, Grosche S, Yosef N, Garriga G, Mörck C. The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development Through a cAMP Signaling Pathway. Genetics 2019; 213:1465-1478. [PMID: 31619445 PMCID: PMC6893374 DOI: 10.1534/genetics.119.302628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29 ACY-2 is expressed predominantly in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how ACY-2 activity in the CANs regulates KIN-29 in target cells.
Collapse
Affiliation(s)
- Jason Chien
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Fred W Wolf
- Department of Molecular and Cell Biology, University of California, Merced, California 95343
| | - Sarah Grosche
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Nebeyu Yosef
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| | - Catarina Mörck
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| |
Collapse
|
12
|
Denis JF, Diagbouga MR, Molica F, Hautefort A, Linnerz T, Watanabe M, Lemeille S, Bertrand JY, Kwak BR. KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence. Front Physiol 2019; 10:80. [PMID: 30809154 PMCID: PMC6379456 DOI: 10.3389/fphys.2019.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.
Collapse
Affiliation(s)
- Jean-François Denis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tanja Linnerz
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Dynamic intercellular transport modulates the spatial patterning of differentiation during early neural commitment. Nat Commun 2018; 9:4111. [PMID: 30291250 PMCID: PMC6173785 DOI: 10.1038/s41467-018-06693-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The initiation of heterogeneity within a population of phenotypically identical progenitors is a critical event for the onset of morphogenesis and differentiation patterning. Gap junction communication within multicellular systems produces complex networks of intercellular connectivity that result in heterogeneous distributions of intracellular signaling molecules. In this study, we investigate emergent systems-level behavior of the intercellular network within embryonic stem cell (ESC) populations and corresponding spatial organization during early neural differentiation. An agent-based model incorporates experimentally-determined parameters to yield complex transport networks for delivery of pro-differentiation cues between neighboring cells, reproducing the morphogenic trajectories during retinoic acid-accelerated mouse ESC differentiation. Furthermore, the model correctly predicts the delayed differentiation and preserved spatial features of the morphogenic trajectory that occurs in response to intercellular perturbation. These findings suggest an integral role of gap junction communication in the temporal coordination of emergent patterning during early differentiation and neural commitment of pluripotent stem cells.
Collapse
|
14
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
15
|
Abstract
Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. Although many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Trond Aasen
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences
Fondamentales et Appliquées, Université de Poitiers, Poitiers,
France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, The Life
Sciences Institute, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research
Center, Seattle, United States
| | - Dale W. Laird
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| |
Collapse
|
16
|
Polusani SR, Kalmykov EA, Chandrasekhar A, Zucker SN, Nicholson BJ. Cell coupling mediated by connexin 26 selectively contributes to reduced adhesivity and increased migration. J Cell Sci 2016; 129:4399-4410. [PMID: 27777264 DOI: 10.1242/jcs.185017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022] Open
Abstract
Gap junction proteins (connexins) have crucial effects on cell motility in many systems, from migration of neural crest cells to promotion of metastatic invasiveness. Here, we show that expression of Cx26 (also known as GJB2) in HeLa cells specifically enhances cell motility in scrape wounding and sparse culture models. This effect is dependent on gap junction channels and is isotype specific [Cx26 enhances motility, whereas Cx43 (also known as GJA1) does not and Cx32 (also known as GJB1) has an intermediate effect]. The increased motility is associated with reduced cell adhesiveness, caused by loss of N-cadherin protein and RNA at the wound edge. This in turn causes a redistribution of N-cadherin-binding proteins (p120 catenin and β-catenin) to the cytosol and nucleus, respectively. The former activates Rac-1, which mediates cytoskeletal rearrangements needed for filopod extension. The latter is associated with increased expression of urokinase plasminogen activating receptor (an activator of extracellular proteases) and secretion of extracellular matrix components like collagen. Although these effects were dependent on Cx26-mediated coupling of the cells, they are not mediated by the same signal (i.e. cAMP) through which Cx26 has been shown to suppress proliferation in the same system.
Collapse
Affiliation(s)
- Srikanth R Polusani
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Edward A Kalmykov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Anjana Chandrasekhar
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shoshanna N Zucker
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bruce J Nicholson
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget 2016; 6:37185-99. [PMID: 26439696 PMCID: PMC4741923 DOI: 10.18632/oncotarget.5953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/17/2015] [Indexed: 11/28/2022] Open
Abstract
Down-regulation of the gap junction protein connexin26 (Cx26) is an early event following breast cancer onset and has led to Cx26 being classically described as a tumor suppressor. Interestingly, mutations in theCx26 gene (GJB2) reduce or ablate Cx26 gap junction channel function and are the most common cause of genetic deafness. It is unknown if patients with loss-of-function GJB2 mutations have a greater susceptibility to breast tumorigenesis or aggressive breast cancer progression. To investigate these possibilities, 7, 12-dimethylbenz[α]anthracene (DMBA)-induced tumor development was evaluated in BLG-Cre; Cx26fl/fl mice expressing Cre under the β-Lactoglobulin promoter (Cre+) compared to Cx26fl/fl controlmice (Cre-) following pituitary isograft driven Cx26 knockout. A significantly increased number of DMBA-treated Cre+ mice developed primary mammary tumors, as well as developed multiple tumors, compared to Cre- mice. Primary tumors of Cre+ mice were of multiple histological subtypes and had similar palpable tumour onset and growth rate compared to tumors from Cre- mice. Lungs were evaluated for evidence of metastases revealing a similar percentage of lung metastases in Cre+ and Cre- mice. Together, our results suggest that loss of Cx26 predisposes the mammary gland to chemically induced mammary tumour formation which may have important implications to patients with GJB2 mutations.
Collapse
|
18
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
19
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
20
|
Abstract
The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.
Collapse
Affiliation(s)
- Davide Losa
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
- The ithree Institute, University of Technology Sydney, 2007 Ultimo, NSW Australia
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
21
|
Aasen T. Connexins: junctional and non-junctional modulators of proliferation. Cell Tissue Res 2014; 360:685-99. [PMID: 25547217 DOI: 10.1007/s00441-014-2078-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
Mounting evidence indicates that dysregulation of gap junctions and their structural subunits-connexins-often occurs in, and sometimes causes, a variety of proliferative disorders, including cancer. Connexin-mediated regulation of cell proliferation is complex and may involve modulation of gap junction intercellular communication (GJIC), hemichannel signalling, or gap junction-independent paths. However, the exact mechanisms linking connexins to proliferation remain poorly defined and a number of contradictory studies report both pro- and anti-proliferative effects, effects that often depend on the cell or tissue type or the microenvironment. The present review covers junctional and non-junctional regulation of proliferation by connexins, with a particular emphasis on their association with cancer.
Collapse
Affiliation(s)
- Trond Aasen
- Molecular Pathology Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain,
| |
Collapse
|
22
|
Cx26 regulates proliferation of repairing basal airway epithelial cells. Int J Biochem Cell Biol 2014; 52:152-60. [DOI: 10.1016/j.biocel.2014.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/10/2023]
|
23
|
Martin PE, Easton JA, Hodgins MB, Wright CS. Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 2014; 588:1304-14. [PMID: 24607543 DOI: 10.1016/j.febslet.2014.02.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of connexins lead to epidermal dysplasias giving rise to a range of dermatological disorders of differing severity. 'Gain of function' mutations reveal connexin-mediated roles in calcium signalling within the epidermis. Connexins are involved in epidermal innate immunity, inflammation control and in wound repair. The therapeutic potential of targeting connexins to improve wound healing responses is now clear. This review discusses the role of connexins in epidermal integrity, and examines the emerging evidence that connexins act as epidermal sensors to a variety of mechanical, temperature, pathogen-induced and chemical stimuli. Connexins thus act as an integral component of the skin's protective barrier.
Collapse
Affiliation(s)
- Patricia E Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jennifer A Easton
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malcolm B Hodgins
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Catherine S Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
24
|
Zhang J, O'Carroll SJ, Henare K, Ching LM, Ormonde S, Nicholson LFB, Danesh-Meyer HV, Green CR. Connexin hemichannel induced vascular leak suggests a new paradigm for cancer therapy. FEBS Lett 2014; 588:1365-71. [PMID: 24548560 DOI: 10.1016/j.febslet.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
It is 40 years since cancer growth was correlated with neovascularisation. Anti-angiogenic drugs remain at the forefront of cancer investigations but progress has been disappointing and unexpected toxicities are emerging. Gap junction channels are implicated in lesion spread following injury, with channel blockers shown to improve healing; in particular preventing vascular disruption and/or restoring vascular integrity. Here we briefly review connexin roles in vascular leak and endothelial cell death that occurs following acute wounds and during chronic disease, and how connexin channel regulation has been used to ameliorate vascular disruption. We then review chronic inflammatory disorders and trauma in the eye, concluding that vascular disruption under these conditions mimics that seen in tumours, and can be prevented with connexin hemichannel modulation. We apply this knowledge to tumour vessel biology, proposing that contrary to current opinion, these data suggest a need to protect, maintain and/or restore cancer vasculature. This may lead to reduced tumour hypoxia, promote the survival of normal cells, and enable improved therapeutic delivery or more effective radiation therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kimiora Henare
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Susan Ormonde
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|