1
|
Adornetto A, Laganà ML, Satriano A, Licastro E, Corasaniti MT, Bagetta G, Russo R. The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy. Int J Mol Sci 2024; 25:10415. [PMID: 39408742 PMCID: PMC11476963 DOI: 10.3390/ijms251910415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.e., an evolutionarily conserved catabolic pathway responsible for the degradation and recycling of cytoplasmic material) in human SH-SY5Y neuroblastoma cell cultures. The dose and time-dependent upregulation of the autophagy marker LC3II and the autophagy receptor p62, with the accumulation of LAMP1 positive compartments, were observed in SH-SY5Y cells exposed to the amitriptyline. These effects were accompanied by reduced cell viability and decreased clonogenic capacity, without a significant induction of apoptosis. Decrease viability and clonogenic activity were still observed in autophagy deficient Atg5-/- MEF and following pre-treatment of SH-SY5Y culture with the autophagy inhibitor chloroquine, suggesting that they were independent from autophagy modulation. Our findings demonstrate that amitriptyline acts on pathways crucial for cell and tissue homeostasis (i.e., autophagy and proliferation) and pose the basis for further studies on the potential therapeutic application of amitriptyline, as well as the consequences of its use for long-term treatments.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| |
Collapse
|
2
|
Otręba M, Stojko J, Rzepecka-Stojko A. The role of phenothiazine derivatives in autophagy regulation: A systematic review. J Appl Toxicol 2023; 43:474-489. [PMID: 36165981 DOI: 10.1002/jat.4397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
In this review, we summarized the current literature on the impact of phenothiazine derivatives on autophagy in vitro. Phenothiazines are antipsychotic drugs used in the treatment of schizophrenia, which is related to altered neurotransmission and dysregulation of neuronal autophagy. Thus, phenothiazine derivatives can impact autophagy. We identified 35 papers, where the use of the phenothiazines in the in vitro autophagy assays on normal and cancer cell lines, Caenorhabditis elegans, and zebrafish were discussed. Chlorpromazine, fluphenazine, mepazine, methotrimeprazine, perphenazine, prochlorperazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate autophagy. Stimulation of autophagy by phenothiazines may be either mammalian target of rapamycin (mTOR)-dependent or mTOR-independent. The final effect depends on the used concentration as well as the cell line. A further investigation of the mechanisms of autophagy regulation by phenothiazine derivatives is required to understand the biological actions and to increase the therapeutic potential of this class of drugs.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
3
|
Yousef M, Le TS, Zuo J, Park C, Chacra NB, Davies NM, Löbenberg R. Sub-cellular sequestration of alkaline drugs in lysosomes: new insights for pharmaceutical development of lysosomal fluid. Res Pharm Sci 2022; 18:1-15. [PMID: 36846734 PMCID: PMC9951787 DOI: 10.4103/1735-5362.363591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Lysosomal-targeted drug delivery can open a new strategy for drug therapy. However, there is currently no universally accepted simulated or artificial lysosomal fluid utilized in the pharmaceutical industry or recognized by the United States Pharmacopeia (USP). Experimental procedure We prepared a simulated lysosomal fluid (SLYF) and compared its composition to a commercial artificial counterpart. The developed fluid was used to test the dissolution of a commercial product (Robitussin®) of a lysosomotropic drug (dextromethorphan) and to investigate in-vitro lysosomal trapping of two model drugs (dextromethorphan and (+/-) chloroquine). Findings/Results The laboratory-prepared fluid or SLYF contained the essential components for the lysosomal function in concentrations reflective of the physiological values, unlike the commercial product. Robitussin® passed the acceptance criteria for the dissolution of dextromethorphan in 0.1 N HCl medium (97.7% in less than 45 min) but not in the SLYF or the phosphate buffer media (72.6% and 32.2% within 45 min, respectively). Racemic chloroquine showed higher lysosomal trapping (51.9%) in the in-vitro model than dextromethorphan (28.3%) in a behavior supporting in-vivo findings and based on the molecular descriptors and the lysosomal sequestration potential of both. Conclusion and implication A standardized lysosomal fluid was reported and developed for in-vitro investigations of lysosomotropic drugs and formulations.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Tyson S. Le
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, South Korea
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| |
Collapse
|
4
|
Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep 2022; 12:21053. [PMID: 36473907 PMCID: PMC9726831 DOI: 10.1038/s41598-022-25399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The 2019 global coronavirus (COVID-19) pandemic has brought the world to a grinding halt, highlighting the urgent need for therapeutic and preventive solutions to slow the spread of emerging viruses. The objective of this study was to assess the anti-SARS-CoV-2 effectiveness of 8 FDA-approved cationic amphiphilic drugs (CADs). SARS-CoV-2-infected Vero cells, Calu-3 cells and primary Human Nasal Epithelial Cells (HNEC) were used to investigate the effects of CADs and revealed their antiviral mode of action. Among the CADs tested, desloratadine, a commonly used antiallergic, well-tolerated with no major side effects, potently reduced the production of SARS-CoV-2 RNA in Vero-E6 cells. Interestingly, desloratadine was also effective against HCoV-229E and HCoV-OC43 showing that it possessed broad-spectrum anti-coronavirus activity. Investigation of its mode of action revealed that it targeted an early step of virus lifecycle and blocked SARS-CoV-2 entry through the endosomal pathway. Finally, the ex vivo kinetic of the antiviral effect of desloratadine was evaluated on primary Human Nasal Epithelial Cells (HNEC), showing a significant delay of viral RNA production with a maximal reduction reached after 72 h of treatment. Thus, this treatment could provide a substantial contribution to prophylaxis and systemic therapy of COVID-19 or other coronaviruses infections and requires further studies.
Collapse
|
5
|
Ruan L, Bai J, Ji X, Zhao W, Dong X. A series of meso amide BODIPY based lysosome-targeting fluorescent probe with high photostability and sensitivity. Anal Chim Acta 2022; 1205:339771. [DOI: 10.1016/j.aca.2022.339771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
6
|
Jin C, Ou Q, Chen J, Wang T, Zhang J, Wang Z, Wang Y, Tian H, Xu JY, Gao F, Wang J, Li J, Lu L, Xu GT. Chaperone-mediated autophagy plays an important role in regulating retinal progenitor cell homeostasis. Stem Cell Res Ther 2022; 13:136. [PMID: 35365237 PMCID: PMC8973999 DOI: 10.1186/s13287-022-02809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Cragnaz L, Spinelli G, De Conti L, Bureau EA, Brownlees J, Feiguin F, Romano V, Skoko N, Klima R, Kettleborough CA, Baralle FE, Baralle M. Thioridazine reverts the phenotype in cellular and Drosophila models of amyotrophic lateral sclerosis by enhancing TDP-43 aggregate clearance. Neurobiol Dis 2021; 160:105515. [PMID: 34571136 DOI: 10.1016/j.nbd.2021.105515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Lucia Cragnaz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Greta Spinelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Laura De Conti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Emilie A Bureau
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Janet Brownlees
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Valentina Romano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Natasa Skoko
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Raffaella Klima
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | | | - Francisco E Baralle
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
9
|
Schneidewind T, Brause A, Schölermann B, Sievers S, Pahl A, Sankar MG, Winzker M, Janning P, Kumar K, Ziegler S, Waldmann H. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem Biol 2021; 28:1780-1794.e5. [PMID: 34214450 DOI: 10.1016/j.chembiol.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.
Collapse
Affiliation(s)
- Tabea Schneidewind
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandra Brause
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Axel Pahl
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Muthukumar G Sankar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Michael Winzker
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Kamal Kumar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|
10
|
Small molecule probes for targeting autophagy. Nat Chem Biol 2021; 17:653-664. [PMID: 34035513 DOI: 10.1038/s41589-021-00768-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.
Collapse
|
11
|
Ekinci O, Erkan Ekinci A. Do we need to change our treatment approach to schizophrenia during the COVID-19 pandemic? Int J Clin Pract 2021; 75:e14013. [PMID: 33887870 PMCID: PMC8250194 DOI: 10.1111/ijcp.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Okan Ekinci
- Psychiatry DepartmentUsak University Medical FacultyUsakTurkey
| | | |
Collapse
|
12
|
Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M, Kroemer G. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis 2020; 11:656. [PMID: 32814759 PMCID: PMC7434849 DOI: 10.1038/s41419-020-02842-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their ‘official’ pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.
Collapse
Affiliation(s)
- Allan Sauvat
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), 1428, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.,Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy. .,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Norinder U, Tuck A, Norgren K, Munic Kos V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother 2020; 130:110582. [PMID: 32763818 PMCID: PMC7392152 DOI: 10.1016/j.biopha.2020.110582] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomotropic drugs show moderate antiviral effects even on coronaviruses. The antiviral activity is likely due to interference with endosomal pathway. 530 existing drugs were analysed for lysosomotropism, pharmacokinetics and toxicity. 36 drugs were identified that may possibly be suitable for repurposing for COVID-19. Further research is needed to confirm their antiviral effects and safety limits.
Given the speed of viral infection spread, repurposing of existing drugs has been given the highest priority in combating the ongoing COVID-19 pandemic. Only drugs that are already registered or close to registration, and therefore have passed lengthy safety assessments, have a chance to be tested in clinical trials and reach patients quickly enough to help in the current disease outbreak. Here, we have reviewed available evidence and possible ways forward to identify already existing pharmaceuticals displaying modest broad-spectrum antiviral activity which is likely linked to their high accumulation in cells. Several well studied examples indicate that these drugs accumulate in lysosomes, endosomes and biological membranes in general, and thereby interfere with endosomal pathway and intracellular membrane trafficking crucial for viral infection. With the aim to identify other lysosomotropic drugs with possible inherent antiviral activity, we have applied a set of clear physicochemical, pharmacokinetic and molecular criteria on 530 existing drugs. In addition to publicly available data, we have also used our in silico model for the prediction of accumulation in lysosomes and endosomes. By this approach we have identified 36 compounds with possible antiviral effects, also against coronaviruses. For 14 of them evidence of broad-spectrum antiviral activity has already been reported, adding support to the value of this approach. Presented pros and cons, knowledge gaps and methods to identify lysosomotropic antivirals, can help in the evaluation of many drugs currently in clinical trials considered for repurposing to target COVID-19, as well as open doors to finding more potent and safer alternatives.
Collapse
Affiliation(s)
- Ulf Norinder
- Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Astrud Tuck
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kalle Norgren
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Soulet F, Bodineau C, Hooks KB, Descarpentrie J, Alves I, Dubreuil M, Mouchard A, Eugenie M, Hoepffner JL, López JJ, Rosado JA, Soubeyran I, Tomé M, Durán RV, Nikolski M, Villoutreix BO, Evrard S, Siegfried G, Khatib AM. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 2020; 5:129070. [PMID: 32516140 DOI: 10.1172/jci.insight.129070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.
Collapse
Affiliation(s)
- Fabienne Soulet
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Clement Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | | | - Jean Descarpentrie
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | | | - Marielle Dubreuil
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Amandine Mouchard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Malaurie Eugenie
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France
| | | | - Jose J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Mercedes Tomé
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Macha Nikolski
- LaBRI, CNRS UMR 5800, University of Bordeaux, Bordeaux, France
| | | | - Serge Evrard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Bergonié Institute, Bordeaux, France
| | - Geraldine Siegfried
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Abdel-Majid Khatib
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| |
Collapse
|
15
|
Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem 2020; 99:103848. [DOI: 10.1016/j.bioorg.2020.103848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022]
|
16
|
Kopacz A, Werner E, Kloska D, Hajduk K, Fichna J, Jozkowicz A, Piechota-Polanczyk A. Nrf2 transcriptional activity in the mouse affects the physiological response to tribromoethanol. Biomed Pharmacother 2020; 128:110317. [PMID: 32485566 DOI: 10.1016/j.biopha.2020.110317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Up to date, there is no information on the influence of 2,2,2-tribromoethanol (TBE; Avertin), a commonly used anaesthetic, on mice with impaired antioxidant capacity. We aimed to analyse the effect of a single dose of Avertin on anaesthesia duration time, inflammatory response, oxidative stress and collagen deposition in the large intestine of Nrf2 transcriptional knockout mice (tNrf2-/-). The studies were performed on six-month-old female mice Nrf2+/+ and tNrf2-/- randomly assigned to Avertin (250 mg/kg b.w. single i.p. injection) or vehicle group. We observed a 2-fold increase in anaesthesia time and longer recovery time (p = 0.015) in tNrf2-/- in comparison to Nrf2+/+. However, no hepato- or nephrotoxicity was detected. Interestingly, we found severe changes in colon morphology of untreated tNrf2-/- mice associated with colon shortening (p = 0.02) and thickening (p = 0.015). Avertin treatment caused colon damage manifested with epithelial layer damage and goblet depletion in Nrf2+/+ mice but not in tNrf2-/- individuals. Additionally, Avertin did not induce oxidative stress in colon tissue, but it increased leukocyte infiltration in Nrf2+/+ mice (p = 0.02). Immunofluorescent staining also revealed enhanced deposition of collagen I and collagen III in the colon of untreated tNrf2-/- mice. Avertin contributed to increased deposition of collagen I in Nrf2+/+ mice but reduced deposition of collagen I and III in tNrf2-/- individuals. In conclusion, tNrf2-/- respond to Avertin with prolonged anaesthesia that is not associated with acute toxicity, inflammatory reaction or enhanced oxidative stress. Avertin does not impair intestine morphology in tNrf2-/- mice but can normalise the enhanced fibrosis.
Collapse
Affiliation(s)
- A Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - E Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Animal Reproduction and Anatomy, Faculty of Animal Science, University of Agriculture, Krakow, Poland
| | - D Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - K Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
17
|
Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J 2020; 34:7253-7264. [PMID: 32367579 PMCID: PMC7383733 DOI: 10.1096/fj.202000654r] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is potentially the fastest available option in the race to identify safe and efficacious drugs that can be used to prevent and/or treat COVID‐19. By describing the life cycle of the newly emergent coronavirus, SARS‐CoV‐2, in light of emerging data on the therapeutic efficacy of various repurposed antimicrobials undergoing testing against the virus, we highlight in this review a possible mechanistic convergence between some of these tested compounds. Specifically, we propose that the lysosomotropic effects of hydroxychloroquine and several other drugs undergoing testing may be responsible for their demonstrated in vitro antiviral activities against COVID‐19. Moreover, we propose that Niemann‐Pick disease type C (NPC), a lysosomal storage disorder, may provide new insights into potential future therapeutic targets for SARS‐CoV‐2, by highlighting key established features of the disorder that together result in an “unfavorable” host cellular environment that may interfere with viral propagation. Our reasoning evolves from previous biochemical and cell biology findings related to NPC, coupled with the rapidly evolving data on COVID‐19. Our overall aim is to suggest that pharmacological interventions targeting lysosomal function in general, and those particularly capable of reversibly inducing transient NPC‐like cellular and biochemical phenotypes, constitute plausible mechanisms that could be used to therapeutically target COVID‐19.
Collapse
Affiliation(s)
- Rami A Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Lipoproteins and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michael I Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Wu H, Wang X, Liang H, Zheng J, Huang S, Zhang D. Enhanced efficacy of propranolol therapy for infantile hemangiomas based on a mesoporous silica nanoplatform through mediating autophagy dysfunction. Acta Biomater 2020; 107:272-285. [PMID: 32145394 DOI: 10.1016/j.actbio.2020.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Infantile hemangioma is one of the most common vascular tumors, which might result in morbidity and mortality without timely intervention. Propranolol is currently the first-line therapy for hemangiomas, but its potential side effects and high frequency of administration make it urgent to develop a suitable drug delivery system for propranolol. In the present study, we formulated a propranolol delivery system based on mesoporous silica nanoparticles (PRN@MSN) and investigated the interplay between autophagic activities mediated by nanoparticles and improved therapeutic efficacy of PRN@MSN. The results showed that PRN@MSN nanoparticles exhibited higher cytotoxicity compared with free propranolol in vitro and in vivo, which could induce excessive autophagosome accumulation through increased autophagosome formation and impaired autophagic degradation. Inhibition of autophagy in the early stage could attenuate the cytotoxicity of PRN@MSN. ROS generation was essential for nanoparticle-mediated autophagy and cytotoxicity, and PRN@MSN-induced autophagy dysfunction could enhance endoplasmic reticulum (ER) stress in hemangioma stem cells. Our study revealed a promising PRN delivery system based on a mesoporous silica nanoplatform that could induce autophagy dysfunction with excessive autophagosome accumulation to promote the therapeutic efficacy of PRN therapy. PRN@MSN drug delivery system combined with autophagy modulation may act as a promising treatment pattern in the treatment of hemangiomas.
Collapse
Affiliation(s)
- Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Hao Liang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Jiawei Zheng
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
19
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
20
|
Lübow C, Bockstiegel J, Weindl G. Lysosomotropic drugs enhance pro-inflammatory responses to IL-1β in macrophages by inhibiting internalization of the IL-1 receptor. Biochem Pharmacol 2020; 175:113864. [PMID: 32088265 DOI: 10.1016/j.bcp.2020.113864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-1 signaling leads to production of pro-inflammatory mediators and is regulated by receptor endocytosis. Lysosomotropic drugs have been linked to increased pro-inflammatory responses under sterile inflammatory conditions but the underlying mechanisms have not been fully elucidated. Here, we report that lysosomotropic drugs potentiate pro-inflammatory effects in response to IL-1β via a mechanism involving reactive oxygen species, p38 mitogen-activated protein kinase and reduced IL-1 receptor internalization. Chloroquine and hydroxychloroquine increased IL-1β-induced CXCL8 secretion in macrophages which was critically dependent on the lysosomotropic character and inhibition of macroautophagy but independent from the NLRP3 inflammasome. Co-stimulation with the autophagy inducer interferon gamma attenuated CXCL8 release. Other lysosomotropic drugs like bafilomycin A1, fluoxetine and chlorpromazine but also the endocytosis inhibitor dynasore showed similar pro-inflammatory responses. Increased cell surface expression of IL-1 receptor suggests reduced receptor degradation in the presence of lysosomotropic drugs. Our findings provide new insights into a potentially crucial immunoregulatory mechanism in macrophages that may explain how lysosomotropic drugs drive sterile inflammation.
Collapse
Affiliation(s)
- Charlotte Lübow
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Judith Bockstiegel
- University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany.
| |
Collapse
|
21
|
Müller G, Lübow C, Weindl G. Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy 2019; 16:1380-1395. [PMID: 31668121 DOI: 10.1080/15548627.2019.1686728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress and Th17 cytokines are important mediators of inflammation. Treatment with beta-adrenoceptor (ADRB) antagonists (beta-blockers) is associated with induction or aggravation of psoriasis-like skin inflammation, yet the underlying mechanisms are poorly understood. Herein, we identify lysosomotropic beta-blockers as critical inducers of IL23A in human monocyte-derived Langerhans-like cells under sterile-inflammatory conditions. Cytokine release was not mediated by cAMP, suggesting the involvement of ADRB-independent pathways. NFKB/NF-κB and MAPK14/p38 activation was required for propranolol-induced IL23A secretion whereas the NLRP3 inflammasome was dispensable. MAPK14 regulated recruitment of RELB to IL23A promoter regions. Without affecting the ubiquitin-proteasome pathway, propranolol increased lysosomal pH and induced a late-stage block in macroautophagy/autophagy. Propranolol specifically induced reactive oxygen species production, which was critical for IL23A secretion, in Langerhans-like cells. Our findings provide insight into a potentially crucial immunoregulatory mechanism in cutaneous dendritic cells that may explain how lysosomotropic drugs regulate inflammatory responses. ABBREVIATIONS ATF: activating transcription factor; DC: dendritic cell; ChIP: chromatin immunoprecipitation; gDNA: genomic DNA; IL: interleukin; LAMP1: lysosomal associated membrane protein 1; LC: Langerhans cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MoDC: monocyte-derived DC; MoLC: monocyte-derived Langerhans-like cell; mtDNA: mitochondrial DNA; NAC: N-acetyl-L-cysteine; NLRP3: NLR family pyrin domain containing 3; PBMC: peripheral blood mononuclear cell; PI: propidium iodide; PYCARD/ASC: PYD and CARD domain containing; qRT-PCR: quantitative real-time PCR; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TLR: Toll-like receptor; TRAF6: TNF receptor associated factor 6; TNF: tumor necrosis factor; Ub: ubiquitin.
Collapse
Affiliation(s)
- Gerrit Müller
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin , Berlin, Germany
| | - Charlotte Lübow
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin , Berlin, Germany.,Section Pharmacology and Toxicology, University of Bonn, Pharmaceutical Institute , Bonn, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin , Berlin, Germany.,Section Pharmacology and Toxicology, University of Bonn, Pharmaceutical Institute , Bonn, Germany
| |
Collapse
|
22
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorg Chem 2019; 91:103144. [PMID: 31377388 PMCID: PMC7065667 DOI: 10.1016/j.bioorg.2019.103144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
A series of pyrene-benzothiazolium dyes (1a-1d) were experimentally investigated to study their internalization mechanism into cellular lysosomes as well as their potential imaging applications for live cell imaging. The lysosome selectivity of the probes was further compared by using fluorescently tagged lysosome associated membrane protein-1 (LAMP-1) expression-dependent visualization in both normal (COS-7, HEK293) and cancer (A549, Huh 7.5) cell lines. These probes were successfully employed as reliable lysosome markers in tumor cell models, thus providing an attractive alternative to LAMP-1 expression-dependent visualization methods. One advantage of these probes is the elimination of significant background fluorescence arising from fluorescently tagged protein expression on the cell surface when cells were transfected with LAMP-1 expression plasmids. Probes exhibited remarkable ability to stain cellular lysosomes for long-term experiments (up to 24 h) and the highly lipophilic nature of the probe design allowed their accumulation in hydrophobic regions of the cellular lysosomes. Experimental evidences indicated that the probes are likely to be internalized into lysosomes via endocytosis and accumulated in the hydrophobic regions of the lysosomes rather than in the acidic lysosomal lumen. These probes also demonstrated significant stability and lysosome staining for fixed cell imaging applications as well. Lastly, the benzothiazolium moiety of the probes was identified as the key component for lysosome selectivity.
Collapse
Affiliation(s)
| | - Kaveesha J Wijesinghe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA; Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
23
|
Paik JY, Lee HG, Piao JY, Kim SJ, Kim DH, Na HK, Surh YJ. Helicobacter pylori infection promotes autophagy through Nrf2-mediated heme oxygenase upregulation in human gastric cancer cells. Biochem Pharmacol 2019; 162:89-97. [DOI: 10.1016/j.bcp.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
|
24
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Red-emitting pyrene-benzothiazolium: unexpected selectivity to lysosomes for real-time cell imaging without alkalinizing effect. Chem Commun (Camb) 2019; 55:3469-3472. [PMID: 30839045 PMCID: PMC6446231 DOI: 10.1039/c9cc01068h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of pyrene-benzothiazolium probes were synthesized. By replacing the pyridinium with a benzothiazolium unit, the selectivity of pyrene-derivatives is found to switch from nuclear to cellular lysosomes. New probes do not require proton participation and exhibit high biocompatibility and long-term imaging ability.
Collapse
|
25
|
Cavaliere F, Fornarelli A, Bertan F, Russo R, Marsal-Cots A, Morrone LA, Adornetto A, Corasaniti MT, Bano D, Bagetta G, Nicotera P. The tricyclic antidepressant clomipramine inhibits neuronal autophagic flux. Sci Rep 2019; 9:4881. [PMID: 30890728 PMCID: PMC6424961 DOI: 10.1038/s41598-019-40887-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
Antidepressants are commonly prescribed psychotropic substances for the symptomatic treatment of mood disorders. Their primary mechanism of action is the modulation of neurotransmission and the consequent accumulation of monoamines, such as serotonin and noradrenaline. However, antidepressants have additional molecular targets that, through multiple signaling cascades, may ultimately alter essential cellular processes. In this regard, it was previously demonstrated that clomipramine, a widely used FDA-approved tricyclic antidepressant, interferes with the autophagic flux and severely compromises the viability of tumorigenic cells upon cytotoxic stress. Consistent with this line of evidence, we report here that clomipramine undermines autophagosome formation and cargo degradation in primary dissociated neurons. A similar pattern was observed in the frontal cortex and liver of treated mice, as well as in the nematode Caenorhabditis elegans exposed to clomipramine. Together, our findings indicate that clomipramine may negatively regulate the autophagic flux in various tissues, with potential metabolic and functional implications for the homeostatic maintenance of differentiated cells.
Collapse
Affiliation(s)
- Federica Cavaliere
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | |
Collapse
|
26
|
Jones LH, Xu H, Fadeyi OO. Quantifying drug-target engagement in live cells using sulfonyl fluoride chemical probes. Methods Enzymol 2019; 622:201-220. [PMID: 31155053 DOI: 10.1016/bs.mie.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenotypic screening in disease-relevant models identifies small molecule hits with desirable efficacy but often with unknown modes of action. Target identification and validation are integral to successful biomedical research. Technologies are required to validate the biological target (or targets) through which a pharmacological agent is proposed to exert its effects. This work details the rational structure-based design, synthetic preparation and cell-based application of a clickable sulfonyl fluoride chemical probe to directly report on the mechanism of a series of compounds previously discovered in a reporter gene assay. Quantification of drug-target occupancy in living human primary cells enabled a deeper understanding of the molecular pharmacology of the chemotype. The technology described herein should be of broad interest to those involved in chemical biology research and the drug discovery endeavor.
Collapse
Affiliation(s)
- Lyn H Jones
- Jnana Therapeutics, Boston, MA, United States.
| | - Hua Xu
- Pfizer Inc, Medicine Design, Cambridge, MA, United States
| | | |
Collapse
|
27
|
Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, Raymond E, Halfon P. GNS561, a new lysosomotropic small molecule, for the treatment of intrahepatic cholangiocarcinoma. Invest New Drugs 2019; 37:1135-1145. [DOI: 10.1007/s10637-019-00741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
28
|
Johannessen TC, Hasan-Olive MM, Zhu H, Denisova O, Grudic A, Latif MA, Saed H, Varughese JK, Røsland GV, Yang N, Sundstrøm T, Nordal A, Tronstad KJ, Wang J, Lund-Johansen M, Simonsen A, Janji B, Westermarck J, Bjerkvig R, Prestegarden L. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int J Cancer 2018; 144:1735-1745. [PMID: 30289977 DOI: 10.1002/ijc.31912] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis with an overall survival of 14-15 months after surgery, radiation and chemotherapy using temozolomide (TMZ). A major problem is that the tumors acquire resistance to therapy. In an effort to improve the therapeutic efficacy of TMZ, we performed a genome-wide RNA interference (RNAi) synthetic lethality screen to establish a functional gene signature for TMZ sensitivity in human GBM cells. We then queried the Connectivity Map database to search for drugs that would induce corresponding changes in gene expression. By this approach we identified several potential pharmacological sensitizers to TMZ, where the most potent drug was the established antipsychotic agent Thioridazine, which significantly improved TMZ sensitivity while not demonstrating any significant toxicity alone. Mechanistically, we show that the specific chemosensitizing effect of Thioridazine is mediated by impairing autophagy, thereby preventing adaptive metabolic alterations associated with TMZ resistance. Moreover, we demonstrate that Thioridazine inhibits late-stage autophagy by impairing fusion between autophagosomes and lysosomes. Finally, Thioridazine in combination with TMZ significantly inhibits brain tumor growth in vivo, demonstrating the potential clinical benefits of compounds targeting the autophagy-lysosome pathway. Our study emphasizes the feasibility of exploiting drug repurposing for the design of novel therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Tor-Christian Johannessen
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Md Mahdi Hasan-Olive
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Huaiyang Zhu
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Shandong Chest Hospital, Jinan, China
| | - Oxana Denisova
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Amra Grudic
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Md Abdul Latif
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Halala Saed
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jobin K Varughese
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Yang
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Terje Sundstrøm
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Anne Nordal
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | | | - Jian Wang
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Morten Lund-Johansen
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Easwaranathan A, Inci B, Ulrich S, Brunken L, Nikiforova V, Norinder U, Swanson S, Munic Kos V. Quantification of Intracellular Accumulation and Retention of Lysosomotropic Macrocyclic Compounds by High-Throughput Imaging of Lysosomal Changes. J Pharm Sci 2018; 108:652-660. [PMID: 30419273 DOI: 10.1016/j.xphs.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022]
Abstract
Many marketed pharmaceuticals reach extremely high tissue concentrations due to accumulation in lysosomes (lysosomotropism). Quantitative prediction of intracellular concentrations of accumulating drugs is challenging, especially for macrocyclic compounds that mainly do not fit in current in silico models. We tested a unique library of 47 compounds (containing 39 macrocycles) specifically designed to cover the entire range of accumulation intensities observed with pharmaceuticals so far. For the first time, we show that intracellular concentration of compounds measured by liquid chromatography with tandem mass spectrometry correlates with the induction of phospholipidosis and inhibition of autophagy, but the highest correlation was observed with the increase of lysosomal volume (R = 0.95), all measured by high-throughput imaging assays. Based only on imaging data, we developed a 5-class in vitro model for the prediction of compound accumulation with the accuracy of 81%. The measured change of total lysosomal volume can thus be used in high-throughput screening for determination of the actual intensity of intracellular accumulation of new macrocyclic compounds. The models are largely based on macrocycles, greatly improving the screening and prediction of intracellular accumulation of this challenging class. However, all tested nonmacrocyclic compounds fitted well in the models, indicating potential use of the models in broader chemical space.
Collapse
Affiliation(s)
- Arrabi Easwaranathan
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Beril Inci
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Sam Ulrich
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Lars Brunken
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Violetta Nikiforova
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Stephen Swanson
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Vesna Munic Kos
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| |
Collapse
|
30
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
31
|
Guntuku L, Gangasani JK, Thummuri D, Borkar RM, Manavathi B, Ragampeta S, Vaidya JR, Sistla R, Vegi NGM. IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo. Oncogene 2018; 38:581-595. [PMID: 30166591 DOI: 10.1038/s41388-018-0446-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic process that recycles damaged organelles and long-lived proteins by delivering them in double-membrane vesicles to lysosomes for degradation. Autophagy has a prominent role in survival, proliferation, and resistance of tumors in metabolic and chemotherapeutic stress conditions. Clinical trials with chloroquine-a known autophagy inhibitor-were unable to achieve complete autophagy inhibition in vivo, warranting the search for more potent autophagy inhibitors. In a process of exploring the mechanism of action of previously identified cytotoxic s-triazine analogs, we discovered that both IITZ-01 and IITZ-02 act as potent autophagy inhibitors. Treatment with these compounds resulted in the vacuolated appearance of cells due to their specific accumulation in lysosomes. In addition, these basic compounds also deacidify lysosomes as evidenced by the decrease in lysotracker red staining and inhibit maturation of lysosomal enzymes leading to lysosomal dysfunction. IITZ-01 and IITZ-02 enhance autophagosome accumulation but inhibit autophagosomal degradation by impairing lysosomal function, finally resulting in the inhibition of autophagy. Interestingly, compound IITZ-01 exhibited more than 10-fold potent autophagy inhibition along with 12- to 20-fold better cytotoxic action than CQ. IITZ-01 and IITZ-02 also abolished mitochondrial membrane potential and triggered apoptosis through the mitochondria-mediated pathway. Furthermore, IITZ-01 and IITZ-02 displayed potent antitumor action in vivo through autophagy inhibition and apoptosis induction in MDA-MB-231 breast cancer xenograft model with IITZ-01 exhibiting superior anticancer efficacy. Overall, these data demonstrate that IITZ-01 is potent autophagy inhibitor with single-agent anticancer activity and awaits further preclinical development as potential anticancer therapeutic.
Collapse
Affiliation(s)
- Lalita Guntuku
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, TS, India
| | - Jagadeesh Kumar Gangasani
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, TS, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Chennai, TN, India
| | - Dinesh Thummuri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, TS, India
| | - Roshan M Borkar
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, TS, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India
| | - Srinivas Ragampeta
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, TS, India
| | - Jayathirtha Rao Vaidya
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, TS, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Chennai, TN, India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, TS, India
| | - Naidu G M Vegi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, TS, India. .,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India.
| |
Collapse
|
32
|
Kagebeck P, Nikiforova V, Brunken L, Easwaranathan A, Ruegg J, Cotgreave I, Munic Kos V. Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy. Eur J Pharmacol 2018; 829:44-53. [PMID: 29627311 DOI: 10.1016/j.ejphar.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Some cationic amphiphilic drugs (CADs) have been individually reported to interfere with the differentiation of immune system cells, such as macrophages and dendritic cells. To investigate the possible generic nature of this process, in this study we aimed to see whether these drugs are capable of interfering with the differentiation of adipocytes. Further, we investigated whether this feature might be connected to the lysosomotropic character of these drugs, and their disturbance of intracellular membrane trafficking rather than to the individual pharmacologic properties of each drug. Thus, for the selected set of compounds consisting of seven structurally and pharmacologically diverse CADs and three non-CAD controls we have measured the impact on differentiation of 3T3-L1K murine preadipocytes to adipocytes. We conclude that CADs indeed inhibit adipocyte differentiation, as shown morphologically, at the level of lipid droplet formation and on the expression of genetic markers of adipocytes. Furthermore, the intensity of this inhibitory effect was found to strongly positively correlate with the extent of drug accumulation in adipocytes, with their affinity for phospholipid membranes, as well as with their ability to induce phospholipidosis and inhibit autophagy.
Collapse
Affiliation(s)
- Patrik Kagebeck
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Violetta Nikiforova
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Lars Brunken
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Arrabi Easwaranathan
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Joelle Ruegg
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Ian Cotgreave
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Vesna Munic Kos
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| |
Collapse
|
33
|
Woldemichael T, Rosania GR. The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 2017; 12:e0187627. [PMID: 29117253 PMCID: PMC5678708 DOI: 10.1371/journal.pone.0187627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sirci F, Napolitano F, Pisonero-Vaquero S, Carrella D, Medina DL, di Bernardo D. Comparing structural and transcriptional drug networks reveals signatures of drug activity and toxicity in transcriptional responses. NPJ Syst Biol Appl 2017; 3:23. [PMID: 28861278 PMCID: PMC5572457 DOI: 10.1038/s41540-017-0022-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
We performed an integrated analysis of drug chemical structures and drug-induced transcriptional responses. We demonstrated that a network representing three-dimensional structural similarities among 5452 compounds can be used to automatically group together drugs with similar scaffolds, physicochemical parameters and mode-of-action. We compared the structural network to a network representing transcriptional similarities among a subset of 1309 drugs for which transcriptional response were available in the Connectivity Map data set. Analysis of structurally similar, but transcriptionally different drugs sharing the same MOA enabled us to detect and remove weak and noisy transcriptional responses, greatly enhancing the reliability of transcription-based approaches to drug discovery and drug repositioning. Cardiac glycosides exhibited the strongest transcriptional responses with a significant induction of pathways related to epigenetic regulation, which suggests an epigenetic mechanism of action for these drugs. Drug classes with the weakest transcriptional responses tended to induce expression of cytochrome P450 enzymes, hinting at drug-induced drug resistance. Analysis of transcriptionally similar, but structurally different drugs with unrelated MOA, led us to the identification of a 'toxic' transcriptional signature indicative of lysosomal stress (lysosomotropism) and lipid accumulation (phospholipidosis) partially masking the target-specific transcriptional effects of these drugs. We found that this transcriptional signature is shared by 258 compounds and it is associated to the activation of the transcription factor TFEB, a master regulator of lysosomal biogenesis and autophagy. Finally, we built a predictive Random Forest model of these 258 compounds based on 128 physicochemical parameters, which should help in the early identification of potentially toxic drug candidates. Transcriptional responses to drug treatment can reveal mechanism of action and off-target effects thus enabling drug repositioning, but only if measured in the appropriate cells at clinically relevant concentrations. A team led by Diego di Bernardo and Diego Medina generated a network representing structural similarities among compounds to automatically group together drugs with similar scaffolds and MOA. By comparing the structural drug network with a transcriptional drug network based on similarities in transcriptional response, the team observed broad differences between the two. This observation led to the identification of a transcriptional signature related lysosomal stress and phospholipidosis, and a physicochemical model to identify such compounds. These results provide general guidelines to prevent erroneous conclusion when using transcriptional responses of small molecules for drug discovery and drug repositioning
Collapse
Affiliation(s)
- Francesco Sirci
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Francesco Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Sandra Pisonero-Vaquero
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
35
|
Qiao ZY, Lai WJ, Lin YX, Li D, Nan XH, Wang Y, Wang H, Fang QJ. Polymer–KLAK Peptide Conjugates Induce Cancer Cell Death through Synergistic Effects of Mitochondria Damage and Autophagy Blockage. Bioconjug Chem 2017; 28:1709-1721. [DOI: 10.1021/acs.bioconjchem.7b00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Yao-Xin Lin
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Hui Nan
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Qiao-Jun Fang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
36
|
Gopalsamy A, Narayanan A, Liu S, Parikh MD, Kyne RE, Fadeyi O, Tones MA, Cherry JJ, Nabhan JF, LaRosa G, Petersen DN, Menard C, Foley TL, Noell S, Ren Y, Loria PM, Maglich-Goodwin J, Rong H, Jones LH. Design of Potent mRNA Decapping Scavenger Enzyme (DcpS) Inhibitors with Improved Physicochemical Properties To Investigate the Mechanism of Therapeutic Benefit in Spinal Muscular Atrophy (SMA). J Med Chem 2017; 60:3094-3108. [DOI: 10.1021/acs.jmedchem.7b00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ariamala Gopalsamy
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Arjun Narayanan
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shenping Liu
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihir D. Parikh
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Olugbeminiyi Fadeyi
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael A. Tones
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jonathan J. Cherry
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph F. Nabhan
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory LaRosa
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Donna N. Petersen
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Carol Menard
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Noell
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yong Ren
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M. Loria
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jodi Maglich-Goodwin
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Haojing Rong
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lyn H. Jones
- Medicine
Design and ‡Rare Disease Research Unit, #Pharmacokinetics and Drug Metabolism, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
- Medicine Design and †Primary Pharmacology Group, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
37
|
Lu S, Sung T, Lin N, Abraham RT, Jessen BA. Lysosomal adaptation: How cells respond to lysosomotropic compounds. PLoS One 2017; 12:e0173771. [PMID: 28301521 PMCID: PMC5354416 DOI: 10.1371/journal.pone.0173771] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Lysosomes are acidic organelles essential for degradation and cellular homoeostasis and recently lysosomes have been shown as signaling hub to respond to the intra and extracellular changes (e.g. amino acid availability). Compounds including pharmaceutical drugs that are basic and lipophilic will become sequestered inside lysosomes (lysosomotropic). How cells respond to the lysosomal stress associated with lysosomotropism is not well characterized. Our goal is to assess the lysosomal changes and identify the signaling pathways that involve in the lysosomal changes. Eight chemically diverse lysosomotropic drugs from different therapeutic areas were subjected to the evaluation using the human adult retinal pigmented epithelium cell line, ARPE-19. All lysosomotropic drugs tested triggered lysosomal activation demonstrated by increased lysosotracker red (LTR) and lysosensor green staining, increased cathepsin activity, and increased LAMP2 staining. However, tested lysosomotropic drugs also prompted lysosomal dysfunction exemplified by intracellular and extracellular substrate accumulation including phospholipid, SQSTM1/p62, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and opsin. Lysosomal activation observed was likely attributed to lysosomal dysfunction, leading to compensatory responses including nuclear translocation of transcriptional factors TFEB, TFE3 and MITF. The adaptive changes are protective to the cells under lysosomal stress. Mechanistic studies implicate calcium and mTORC1 modulation involvement in the adaptive changes. These results indicate that lysosomotropic compounds could evoke a compensatory lysosomal biogenic response but with the ultimate consequence of lysosomal functional impairment. This work also highlights a pathway of response to lysosomal stress and evidences the role of TFEB, TFE3 and MITF in the stress response.
Collapse
Affiliation(s)
- Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
- * E-mail: (SL); (BAJ)
| | - Tae Sung
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
| | - Nianwei Lin
- iXCells Biotechnologies, San Diego, CA, United States of America
| | - Robert T. Abraham
- Oncology Research Unit, Pfizer Inc., San Diego, CA, United States of America
| | - Bart A. Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
- * E-mail: (SL); (BAJ)
| |
Collapse
|
38
|
Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117:177-184. [DOI: 10.1016/j.phrs.2016.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
|
39
|
Kavčič N, Pegan K, Turk B. Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol Chem 2017; 398:289-301. [DOI: 10.1515/hsz-2016-0252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/05/2016] [Indexed: 01/19/2023]
Abstract
Abstract
Lysosome is the central organelle for intracellular degradation of biological macromolecules and organelles. The material destined for degradation enters the lysosomes primarily via endocytosis, autophagy and phagocytosis, and is degraded through the concerted action of more than 50 lysosomal hydrolases. However, lysosomes are also linked with numerous other processes, including cell death, inflammasome activation and immune response, as well as with lysosomal secretion and cholesterol recycling. Among them programmed cell death pathways including apoptosis have received major attention. In most of these pathways, cell death was accompanied by lysosomal membrane permeabilization and release of lysosomal constituents with an involvement of lysosomal hydrolases, including the cathepsins. However, it is less clear, whether lysosomal membrane permeabilization is really critical for the initiation of cell death programme(s). Therefore, the role of lysosomal membrane permeabilization in various programmed cell death pathways is reviewed, as well as the mechanisms leading to it.
Collapse
|
40
|
P21 (Cdc42/Rac)-activated kinase 1 (pak1) is associated with cardiotoxicity induced by antihistamines. Arch Pharm Res 2016; 39:1644-1652. [PMID: 27681411 DOI: 10.1007/s12272-016-0840-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
Astemizole, a non-sedating histamine H1 receptor blocker, is widely known to cause cardiac arrhythmia, which prolongs the QT interval. However, the precise molecular mechanism involved in antihistamine-induced cardiovascular adverse effects other than hERG channel inhibition is still unclear. In this study, we used DNA microarray analysis to detect the mechanisms involved in life-threatening adverse effects caused by astemizole. Rat primary cardiomyocytes were treated with various concentrations of astemizole for 24 h and the corresponding cell lysates were analyzed using a DNA microarray. Astemizole altered the expression profiles of genes involved in calcium transport/signaling. Using qRT-PCR analysis, we demonstrated that, among those genes, p21 (Cdc42/Rac)-activated kinase 1 (pak1) mRNA was downregulated by treatment with terfenadine and astemizole. Astemizole also reduced pak1 protein levels in rat cardiomyocytes. In addition, astemizole decreased pak1 mRNA and protein levels in H9c2 cells and induced an increase in cell surface area (hypertrophy) and cytotoxicity. Fingolimod hydrochloride (FTY720), a pak1 activator, inhibited astemizole-induced hypertrophy and cytotoxicity in H9c2 cells. These results suggest that antihistamine-induced cardiac adverse effects are associated with pak1 expression and function.
Collapse
|
41
|
Shchors K, Massaras A, Hanahan D. Dual Targeting of the Autophagic Regulatory Circuitry in Gliomas with Repurposed Drugs Elicits Cell-Lethal Autophagy and Therapeutic Benefit. Cancer Cell 2015; 28:456-471. [PMID: 26412325 DOI: 10.1016/j.ccell.2015.08.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022]
Abstract
The associations of tricyclic antidepressants (TCAs) with reduced incidence of gliomas and elevated autophagy in glioma cells motivated investigation in mouse models of gliomagenesis. First, we established that imipramine, a TCA, increased autophagy and conveyed modest therapeutic benefit in tumor-bearing animals. Then we screened clinically approved agents suggested to affect autophagy for their ability to enhance imipramine-induced autophagy-associated cell death. The anticoagulant ticlopidine, which inhibits the purinergic receptor P2Y12, potentiated imipramine, elevating cAMP, a modulator of autophagy, reducing cell viability in culture, and increasing survival in glioma-bearing mice. Efficacy of the combination was obviated by knockdown of the autophagic regulatory gene ATG7, implicating cell-lethal autophagy. This seemingly innocuous combination of TCAs and P2Y12 inhibitors may have applicability for treating glioma.
Collapse
Affiliation(s)
- Ksenya Shchors
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Aristea Massaras
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland.
| |
Collapse
|
42
|
Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Proc Natl Acad Sci U S A 2015. [PMID: 26195741 DOI: 10.1073/pnas.1512289112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Studies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway. We demonstrate that BRD5631 affects several cellular disease phenotypes previously linked to autophagy, including protein aggregation, cell survival, bacterial replication, and inflammatory cytokine production. BRD5631 can serve as a valuable tool for studying the role of autophagy in the context of cellular homeostasis and disease.
Collapse
|
43
|
Khoh-Reiter S, Sokolowski SA, Jessen B, Evans M, Dalvie D, Lu S. Contribution of membrane trafficking perturbation to retinal toxicity. Toxicol Sci 2015; 145:383-95. [PMID: 25771199 DOI: 10.1093/toxsci/kfv059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The retina is a highly structured tissue that is formed by layers containing 7 different cell types. The photoreceptor cell is a specialized type of neuron in the retina that is capable of absorbing and converting light into electrophysiological signals. There is a constant renewal process for photoreceptors consisting of intermittent shedding of the distal tips of the photosensitive outer segment and subsequent phagocytosis (uptake, degradation and recycling) by retinal pigmented epithelial (RPE) cells. This rebuilding process is essential for vision and the survival of photoreceptors and RPE cells. Drugs with a basic moiety have the potential to accumulate in the lysosome and impair its functions including the phagocytosis process, which could hinder clearance of outer segments and ultimately induce retinopathy. To determine the prevalence of this cellular mechanism in retinal toxicity, a collection of proprietary compounds associated with retinal toxicity were subjected to a battery of in vitro tests using the human adult retinal pigmented epithelium cell line, ARPE-19. The tests included a phagocytosis assay, and lysosomal and autophagosomal staining. The compounds that induced retinopathy clustered in the basic and lipophilic region, which drives lysosomal sequestration. This accumulation coincided with phagocytosis inhibition and an increase in autophagosome staining, suggesting a blockage of the membrane trafficking process. A correlation between the physicochemical properties and in vitro lysosomal pathway effects was established. These data reveal the importance of physicochemical properties of compounds and lysosome accumulation as a potential mechanism for drug-induced retinopathy and demonstrate the usefulness of in vitro screening in predicting this liability.
Collapse
Affiliation(s)
- Su Khoh-Reiter
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Sharon A Sokolowski
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Bart Jessen
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Mark Evans
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Deepak Dalvie
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Shuyan Lu
- *Drug Safety Research and Development, Pfizer Inc., San Diego, California, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut, and Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., San Diego, California
| |
Collapse
|
44
|
Chen X, Bi Y, Wang T, Li P, Yan X, Hou S, Bammert CE, Ju J, Gibson KM, Pavan WJ, Bi L. Lysosomal targeting with stable and sensitive fluorescent probes (Superior LysoProbes): applications for lysosome labeling and tracking during apoptosis. Sci Rep 2015; 5:9004. [PMID: 25758662 PMCID: PMC4355733 DOI: 10.1038/srep09004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/04/2015] [Indexed: 12/14/2022] Open
Abstract
Intracellular pH plays an important role in the response to cancer invasion. We have designed and synthesized a series of new fluorescent probes (Superior LysoProbes) with the capacity to label acidic organelles and monitor lysosomal pH. Unlike commercially available fluorescent dyes, Superior LysoProbes are lysosome-specific and are highly stable. The use of Superior LysoProbes facilitates the direct visualization of the lysosomal response to lobaplatin elicited in human chloangiocarcinoma (CCA) RBE cells, using confocal laser scanning microscopy. Additionally, we have characterized the role of lysosomes in autophagy, the correlation between lysosome function and microtubule strength, and the alteration of lysosomal morphology during apoptosis. Our findings indicate that Superior LysoProbes offer numerous advantages over previous reagents to examine the intracellular activities of lysosomes.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Yue Bi
- Second Hospital of HeBei Medical University, Shijiazhuang, China 050000
| | - Tianyang Wang
- Second Hospital of HeBei Medical University, Shijiazhuang, China 050000
| | - Pengfei Li
- Second Hospital of HeBei Medical University, Shijiazhuang, China 050000
| | - Xin Yan
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Shanshan Hou
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Catherine E Bammert
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jingfang Ju
- Translational Research Laborator, Stony Brook Mediciney, Stony Brook, NY 11794
| | - K Michael Gibson
- Experimental and Systems pharmacology, College of Pharmacy, Washington State University, Spokane, WA 99202
| | - William J Pavan
- National Human Genome Research Institute, NIH, Bethesda, Maryland 20892
| | - Lanrong Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
45
|
Highly stable and sensitive fluorescent probes (LysoProbes) for lysosomal labeling and tracking. Sci Rep 2015; 5:8576. [PMID: 25715948 PMCID: PMC4341211 DOI: 10.1038/srep08576] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
We report the design, synthesis and application of several new fluorescent probes (LysoProbes I-VI) that facilitate lysosomal pH monitoring and characterization of lysosome-dependent apoptosis. LysoProbes are superior to commercially available lysosome markers since the fluorescent signals are both stable and highly selective, and they will aid in characterization of lysosome morphology and trafficking. We predict that labeling of cancer cells and solid tumor tissues with LysoProbes will provide an important new tool for monitoring the role of lysosome trafficking in cancer invasion and metastasis.
Collapse
|
46
|
Yun JS, Kim SY. Antihistamines modulate the integrin signaling pathway in h9c2 rat cardiomyocytes: Possible association with cardiotoxicity. Hum Exp Toxicol 2014; 34:796-807. [PMID: 25425550 DOI: 10.1177/0960327114559988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The identification of biomarkers for toxicity prediction is crucial for drug development and safety evaluation. The selective and specific biomarkers for antihistamines-induced cardiotoxicity is not well identified yet. In order to evaluate the mechanism of the life-threatening effects caused by antihistamines, we used DNA microarrays to analyze genomic profiles in H9C2 rat cardiomyocytes that were treated with antihistamines. The gene expression profiles from drug-treated cells revealed changes in the integrin signaling pathway, suggesting that cardiac arrhythmias induced by antihistamine treatment may be mediated by changes in integrin-mediated signaling. It has been reported that integrin plays a role in QT prolongation that may induce cardiac arrhythmia. These results indicate that the integrin-mediated signaling pathway induced by antihistamines is involved in various biological mechanisms that lead to cardiac QT prolongation. Therefore, we suggest that genomic profiling of antihistamine-treated cardiomyocytes has the potential to reveal the mechanism of adverse drug reactions, and this signal pathway is applicable to prediction of in vitro cardiotoxicity induced by antihistamines as a biomarker candidate.
Collapse
Affiliation(s)
- J S Yun
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong-eup, Chungcheongbuk-do, Republic of Korea
| | - S Y Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong-eup, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
47
|
Farah BL, Sinha RA, Wu Y, Singh BK, Zhou J, Bay BH, Yen PM. β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver. PLoS One 2014; 9:e98155. [PMID: 24950230 PMCID: PMC4064960 DOI: 10.1371/journal.pone.0098155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/29/2014] [Indexed: 12/13/2022] Open
Abstract
Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the β2-adrenergic receptor is a key regulator of hepatic autophagy, and that the β-blocker propranolol can independently induce a late block in autophagy.
Collapse
Affiliation(s)
- Benjamin L. Farah
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Rohit A. Sinha
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brijesh K. Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul M. Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|