1
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
2
|
Cao R, Thatavarty A, King KY. Forged in the fire: Lasting impacts of inflammation on hematopoietic progenitors. Exp Hematol 2024; 134:104215. [PMID: 38580008 DOI: 10.1016/j.exphem.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.
Collapse
Affiliation(s)
- Ruoqiong Cao
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
3
|
Du C, Li Z, Zou B, Li X, Chen F, Liang Y, Luo X, Shu S. Novel heterozygous variants in the EP300 gene cause Rubinstein-Taybi syndrome 2: Reports from two Chinese children. Mol Genet Genomic Med 2023; 11:e2192. [PMID: 37162176 PMCID: PMC10496081 DOI: 10.1002/mgg3.2192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Rubinstein-Taybi syndrome (RSTS) is a rare autosomal-dominant genetic disease caused by variants of CREBBP (RSTS1) or EP300 (RSTS2) gene. RSTS2 is much less common, with less than 200 reported cases worldwide to date. More reports are still needed to increase the understanding of its clinical manifestations and genetic characteristics. METHODS The clinical data of two children with RSTS2 were analyzed retrospectively, and their clinical manifestations, auxiliary examinations, and mutational spectrum were summarized. Liquid chromatography-tandem mass spectrometer (LC-MS/MS) technology was used to detect the levels of steroid hormones if possible. RESULTS After analyzing the clinical and genetic characteristics of two boys with RSTS2 (0.7 and 10.4 years old, respectively) admitted in our hospital, we identified two novel heterozygous variants in the EP300 exon 22 (c.3750C > A, p. Cys1250*, pathogenic; c.1889A > G, p. Tyr630Cys, likely pathogenic), which could account for their phenotype. In addition to common clinical manifestations such as special facial features, microcephaly, growth retardation, intellectual disability, speech delay, congenital heart defect, recurrent respiratory infections, and immunodeficiency, we found one of them had a rare feature of adrenal insufficiency, and LC-MS/MS detection showed an overall decrease in steroid hormones. CONCLUSION In our study, we identified two novel variants in the EP300 exon 22, and for the first time, we reported a case of RSTS2 associated with adrenal insufficiency, which will enrich the clinical and mutational spectrum of this syndrome.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of EndocrinologyShenzhen Children's HospitalShenzhenChina
| | - Biao Zou
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuesong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fan Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Jones M, Grosche P, Floersheimer A, André J, Gattlen R, Oser D, Tinchant J, Wille R, Chie-Leon B, Gerspacher M, Ertl P, Ostermann N, Altmann E, Manchado E, Vorherr T, Chène P. Design and Biochemical Characterization of Peptidic Inhibitors of the Myb/p300 Interaction. Biochemistry 2023; 62:1321-1329. [PMID: 36883372 DOI: 10.1021/acs.biochem.2c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.
Collapse
Affiliation(s)
- Matthew Jones
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Philipp Grosche
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Andreas Floersheimer
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Jérome André
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Raphael Gattlen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Dieter Oser
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Juliette Tinchant
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Roman Wille
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Barbara Chie-Leon
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Marc Gerspacher
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Nils Ostermann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Eusebio Manchado
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
5
|
Peiffer AL, Garlick JM, Joy ST, Mapp AK, Brooks CL. Allostery in the dynamic coactivator domain KIX occurs through minor conformational micro-states. PLoS Comput Biol 2022; 18:e1009977. [PMID: 35452454 PMCID: PMC9067669 DOI: 10.1371/journal.pcbi.1009977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/04/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
The coactivator KIX of CBP uses two binding surfaces to recognize multiple activators and exhibits allostery in ternary complex formation. Activator•coactivator interactions are central to transcriptional regulation, yet the microscopic origins of allostery in dynamic proteins like KIX are largely unknown. Here, we investigate the molecular recognition and allosteric manifestations involved in two KIX ternary systems c-Myb•KIX•MLL and pKID•KIX•MLL. Exploring the hypothesis that binary complex formation prepays an entropic cost for positive cooperativity, we utilize molecular dynamics simulations, side chain methyl order parameters, and differential scanning fluorimetry (DSF) to explore conformational entropy changes in KIX. The protein's configurational micro-states from structural clustering highlight the utility of protein plasticity in molecular recognition and allostery. We find that apo KIX occupies a wide distribution of lowly-populated configurational states. Each binding partner has its own suite of KIX states that it selects, building a model of molecular recognition fingerprints. Allostery is maximized with MLL pre-binding, which corresponds to the observation of a significant reduction in KIX micro-states observed when MLL binds. With all binding partners, the changes in KIX conformational entropy arise predominantly from changes in the most flexible loop. Likewise, we find that a small molecule and mutations allosterically inhibit/enhance activator binding by tuning loop dynamics, suggesting that loop-targeting chemical probes could be developed to alter KIX•activator interactions. Experimentally capturing KIX stabilization is challenging, particularly because of the disordered nature of particular activators. However, DSF melting curves allow for inference of relative entropic changes that occur across complexes, which we compare to our computed entropy changes using simulation methyl order parameters.
Collapse
Affiliation(s)
- Amanda L. Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie M. Garlick
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen T. Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles L. Brooks
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Dúcka M, Kučeríková M, Trčka F, Červinka J, Biglieri E, Šmarda J, Borsig L, Beneš P, Knopfová L. c-Myb interferes with inflammatory IL1α-NF-κB pathway in breast cancer cells. Neoplasia 2021; 23:326-336. [PMID: 33621853 PMCID: PMC7905261 DOI: 10.1016/j.neo.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The transcription factor c-Myb can be involved in the activation of many genes with protumorigenic function; however, its role in breast cancer (BC) development is still under discussion. c-Myb is considered as a tumor-promoting factor in the early phases of BC, on the other hand, its expression in BC patients relates to a good prognosis. Previously, we have shown that c-Myb controls the capacity of BC cells to form spontaneous lung metastasis. Reduced seeding of BC cells to the lungs is linked to high expression of c-Myb and a decline in expression of a specific set of inflammatory genes. Here, we unraveled a c-Myb-IL1α-NF-κB signaling axis that takes place in tumor cells. We report that an overexpression of c-Myb interfered with the activity of NF-κB in several BC cell lines. We identified IL1α to be essential for this interference since it was abrogated in the IL1α-deficient cells. Overexpression of IL1α, as well as addition of recombinant IL1α protein, activated NF-κB signaling and restored expression of the inflammatory signature genes suppressed by c-Myb. The endogenous levels of c-Myb negatively correlated with IL1α on both transcriptional and protein levels across BC cell lines. We concluded that inhibition of IL1α expression by c-Myb reduces NF-κB activity and disconnects the inflammatory circuit, a potentially targetable mechanism to mimic the antimetastatic effect of c-Myb with therapeutic perspective.
Collapse
Affiliation(s)
- Monika Dúcka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Kučeríková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Filip Trčka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Červinka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Elisabetta Biglieri
- Institute of Physiology, University of Zurich and Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lubor Borsig
- Institute of Physiology, University of Zurich and Comprehensive Cancer Center, Zurich, Switzerland
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
7
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
8
|
Katavolos P, Cain G, Farman C, Romero FA, Magnuson S, Ly JQ, Choo EF, Katakam AK, Andaya R, Maher J. Preclinical Safety Assessment of a Highly Selective and Potent Dual Small-Molecule Inhibitor of CBP/P300 in Rats and Dogs. Toxicol Pathol 2020; 48:465-480. [PMID: 32124659 DOI: 10.1177/0192623319898469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.
Collapse
Affiliation(s)
- Paula Katavolos
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Gary Cain
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Cindy Farman
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA.,Vet Path Services, Inc, Mason, OH, USA
| | - F Anthony Romero
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA.,Terns Pharmaceuticals, San Mateo, CA, USA
| | - Steven Magnuson
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | | | - Roxanne Andaya
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
9
|
The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia. Leukemia 2019; 33:2817-2829. [PMID: 31138842 PMCID: PMC6887538 DOI: 10.1038/s41375-019-0495-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Subtype-specific leukemia oncogenes drive aberrant gene expression profiles that converge on common essential mediators to ensure leukemia self-renewal and inhibition of differentiation. The transcription factor c-MYB functions as one such mediator in a diverse range of leukemias. Here we show for the first time that transcriptional repression of myeloid differentiation associated c-MYB target genes in AML is enforced by the AAA+ ATPase RUVBL2. Silencing RUVBL2 expression resulted in increased binding of c-MYB to these loci and their transcriptional activation. RUVBL2 inhibition resulted in AML cell apoptosis and severely impaired disease progression of established AML in engrafted mice. In contrast, such inhibition had little impact on normal hematopoietic progenitor differentiation. These data demonstrate that RUVBL2 is essential for the oncogenic function of c-MYB in AML by governing inhibition of myeloid differentiation. They also indicate that targeting the control of c-MYB function by RUVBL2 is a promising approach to developing future anti-AML therapies.
Collapse
|
10
|
Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proc Natl Acad Sci U S A 2018; 115:10040-10045. [PMID: 30232260 DOI: 10.1073/pnas.1810397115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human T cell leukemia virus I basic leucine zipper protein (HTLV-1 HBZ) maintains chronic viral infection and promotes leukemogenesis through poorly understood mechanisms involving interactions with the KIX domain of the transcriptional coactivator CBP and its paralog p300. The KIX domain binds regulatory proteins at the distinct MLL and c-Myb/pKID sites to form binary or ternary complexes. The intrinsically disordered N-terminal activation domain of HBZ (HBZ AD) deregulates cellular signaling pathways by competing directly with cellular and viral transcription factors for binding to the MLL site and by allosterically perturbing binding of the transactivation domain of the hematopoietic transcription factor c-Myb. Crystal structures of the ternary KIX:c-Myb:HBZ complex show that the HBZ AD recruits two KIX:c-Myb entities through tandem amphipathic motifs (L/V)(V/L)DGLL and folds into a long α-helix upon binding. Isothermal titration calorimetry reveals strong cooperativity in binding of the c-Myb activation domain to the KIX:HBZ complex and in binding of HBZ to the KIX:c-Myb complex. In addition, binding of KIX to the two HBZ (V/L)DGLL motifs is cooperative; the structures suggest that this cooperativity is achieved through propagation of the HBZ α-helix beyond the first binding motif. Our study suggests that the unique structural flexibility and the multiple interaction motifs of the intrinsically disordered HBZ AD are responsible for its potency in hijacking KIX-mediated transcription pathways. The KIX:c-Myb:HBZ complex provides an example of cooperative stabilization in a transcription factor:coactivator network and gives insights into potential mechanisms through which HBZ dysregulates hematopoietic transcriptional programs and promotes T cell proliferation.
Collapse
|
11
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
12
|
Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y. Long noncoding RNA myocardial infarction‑associated transcript is associated with the microRNA‑150‑5p/P300 pathway in cardiac hypertrophy. Int J Mol Med 2018; 42:1265-1272. [PMID: 29786749 PMCID: PMC6089782 DOI: 10.3892/ijmm.2018.3700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/17/2018] [Indexed: 01/09/2023] Open
Abstract
In numerous diseases, abnormal expression of myocardial infarction-associated transcript (MIAT) has been reported to be involved in cell proliferation, apoptosis and migration. However, whether this long non-coding RNA MIAT has a regulatory effect on heart hypertrophy requires further investigation. To this end, the present study evaluated MIAT in hypertrophic cardiomyocytes in vitro and in vivo. Neonatal rat ventricular myocytes (NRVMs) were induced by isoproterenol (ISO) to create a cell hypertrophy model, and mice were intraperitoneally injected with ISO to establish an animal model. Echocardiography, immunofluorescence staining, western blot analysis, RNA isolation and reverse transcription-polymerase chain reaction were applied to test the involvement of MIAT in cardiac hypertrophy. The results revealed that MIAT was upregulated under ISO stimulation at the mRNA level both in vivo and in vitro. Silencing of MIAT resulted in decreased expression levels of atrial natriuretic peptide and brain natriuretic peptide in ISO-treated NRVM cardiomyocytes, confirming the connection between MIAT and hypertrophy. Furthermore, MIAT small interfering RNA significantly increased microRNA (miR)-150 and decreased P300 expression in NRVMs. In conclusion, the MIAT/miR-150-5p axis targets P300 as a positive regulator of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yamin Liu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qun Ma
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Dai
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Guangshuo Zhu
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Dual Mechanism of Rag Gene Repression by c-Myb during Pre-B Cell Proliferation. Mol Cell Biol 2017; 37:MCB.00437-16. [PMID: 28373291 DOI: 10.1128/mcb.00437-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/26/2017] [Indexed: 11/20/2022] Open
Abstract
Developing B lymphocytes undergo clonal expansion following successful immunoglobulin heavy chain gene rearrangement. During this proliferative burst, expression of the Rag genes is transiently repressed to prevent the generation of double-stranded DNA (dsDNA) breaks in cycling large pre-B cells. The Rag genes are then reexpressed in small, resting pre-B cells for immunoglobulin light chain gene rearrangement. We previously identified c-Myb as a repressor of Rag transcription during clonal expansion using Abelson murine leukemia virus-transformed B cells. Nevertheless, the molecular mechanisms by which c-Myb achieved precise spatiotemporal repression of Rag expression remained obscure. Here, we identify two mechanisms by which c-Myb represses Rag transcription. First, c-Myb negatively regulates the expression of the Rag activator Foxo1, an activity dependent on M303 in c-Myb's transactivation domain, and likely the recruitment of corepressors to the Foxo1 locus by c-Myb. Second, c-Myb represses Rag transcription directly by occupying the Erag enhancer and antagonizing Foxo1 binding to a consensus forkhead site in this cis-regulatory element that we show is crucial for Rag expression in Abelson pre-B cell lines. This work provides important mechanistic insight into how spatiotemporal expression of the Rag genes is tightly controlled during B lymphocyte development to prevent mistimed dsDNA breaks and their deleterious consequences.
Collapse
|
14
|
Yu X, Liu W, Fan Z, Qian F, Zhang D, Han Y, Xu L, Sun G, Qi J, Zhang S, Tang M, Li J, Chai R, Wang H. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro. Sci Rep 2017; 7:41094. [PMID: 28112219 PMCID: PMC5253735 DOI: 10.1038/srep41094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1 cells. Next, we demonstrated that c-Myb expression was decreased in response to neomycin treatment in both cochlear HCs and HEI-OC1 cells, suggesting an otoprotective role for c-Myb. We then knocked down c-Myb expression with shRNA transfection in HEI-OC1 cells and found that c-Myb knockdown decreased cell viability, increased expression of pro-apoptotic factors, and enhanced cell apoptosis after neomycin insult. Mechanistic studies revealed that c-Myb knockdown increased cellular levels of reactive oxygen species and decreased Bcl-2 expression, both of which are likely to be responsible for the increased sensitivity of c-Myb knockdown cells to neomycin. This study provides evidence that c-Myb might serve as a new target for the prevention of aminoglycoside-induced HC loss.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Wenwen Liu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Zhaomin Fan
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fuping Qian
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Daogong Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuechen Han
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Xu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Gaoying Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Jieyu Qi
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shasha Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianfeng Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Renjie Chai
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| |
Collapse
|
15
|
Uttarkar S, Piontek T, Dukare S, Schomburg C, Schlenke P, Berdel WE, Müller-Tidow C, Schmidt TJ, Klempnauer KH. Small-Molecule Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells. Mol Cancer Ther 2016; 15:2905-2915. [PMID: 27707899 DOI: 10.1158/1535-7163.mct-16-0185] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
The transcription factor c-Myb is essential for the proliferation of hematopoietic cells and has been implicated in the development of leukemia and other human cancers. Pharmacologic inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. By using a Myb reporter cell line, we have identified plumbagin and several naphthoquinones as potent low-molecular weight Myb inhibitors. We demonstrate that these compounds inhibit c-Myb by binding to the c-Myb transactivation domain and disrupting the cooperation of c-Myb with the coactivator p300, a major driver of Myb activity. Naphthoquinone-induced inhibition of c-Myb suppresses Myb target gene expression and induces the differentiation of the myeloid leukemia cell line HL60. We demonstrate that murine and human primary acute myeloid leukemia cells are more sensitive to naphthoquinone-induced inhibition of clonogenic proliferation than normal hematopoietic progenitor cells. Overall, our work demonstrates for the first time the potential of naphthoquinones as small-molecule Myb inhibitors that may have therapeutic potential for the treatment of leukemia and other tumors driven by deregulated Myb. Mol Cancer Ther; 15(12); 2905-15. ©2016 AACR.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Institute for Biochemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Therese Piontek
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sandeep Dukare
- Institute for Biochemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Caroline Schomburg
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology and Oncology, University of Halle, Halle, Germany
| | - Thomas J Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
16
|
Pekarčíková L, Knopfová L, Beneš P, Šmarda J. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells. Cell Signal 2016; 28:924-36. [PMID: 27107996 DOI: 10.1016/j.cellsig.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC.
Collapse
Affiliation(s)
- Lucie Pekarčíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
17
|
Dukare S, Klempnauer KH. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:914-21. [PMID: 27080133 DOI: 10.1016/j.bbagrm.2016.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.
Collapse
Affiliation(s)
- Sandeep Dukare
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany; International NRW Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Odoux A, Jindal D, Tamas TC, Lim BWH, Pollard D, Xu W. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex. Comput Biol Chem 2016; 62:47-59. [PMID: 27082784 DOI: 10.1016/j.compbiolchem.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen bonds of the E665:R294 pair exhibited a fast decreasing trend over time during MD simulations. In addition, our data showed that the KIX mutations attenuate CBP's hydrophobic interaction with Leu302 of c-Myb. Furthermore, our 500-ns MD simulations showed that CBP KIX with the mutations has a slightly lower potential energy than wild-type CBP. The CBP KIX structures with or without its interacting protein c-Myb are different for both wild-type and mutant CBP KIX, and this is likewise the case for c-Myb with or without CBP, suggesting that the presence of an interacting protein influences the structure of a protein. Taken together, these analyses will improve our understanding of the exact functions of CBP and its interaction with c-Myb.
Collapse
Affiliation(s)
- Anne Odoux
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Darren Jindal
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Tamara C Tamas
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Benjamin W H Lim
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Drake Pollard
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
19
|
Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2015; 127:1173-82. [PMID: 26631113 DOI: 10.1182/blood-2015-09-668632] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.
Collapse
|
20
|
Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis. Front Oncol 2015; 5:108. [PMID: 26075180 PMCID: PMC4443728 DOI: 10.3389/fonc.2015.00108] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
Histone, and non-histone, protein acetylation plays an important role in a variety of cellular events, including the normal and abnormal development of blood cells, by changing the epigenetic status of chromatin and regulating non-histone protein function. Histone acetyltransferases (HATs), which are the enzymes responsible for histone and non-histone protein acetylation, contain p300/CBP, MYST, and GNAT family members. HATs are not only protein modifiers and epigenetic factors but also critical regulators of cell development and carcinogenesis. Here, we will review the function of HATs such as p300/CBP, Tip60, MOZ/MORF, and GCN5/PCAF in normal hematopoiesis and the pathogenesis of hematological malignancies. The inhibitors that have been developed to target HATs will also be reviewed here. Understanding the roles of HATs in normal/malignant hematopoiesis will provide the potential therapeutic targets for the hematological malignancies.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Yurong Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Medicine, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
21
|
Liu X, Gold KA, Dmitrovsky E. The Myb-p300 Interaction Is a Novel Molecular Pharmacologic Target. Mol Cancer Ther 2015; 14:1273-5. [PMID: 25995438 DOI: 10.1158/1535-7163.mct-15-0271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn A Gold
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Uttarkar S, Dukare S, Bopp B, Goblirsch M, Jose J, Klempnauer KH. Naphthol AS-E Phosphate Inhibits the Activity of the Transcription Factor Myb by Blocking the Interaction with the KIX Domain of the Coactivator p300. Mol Cancer Ther 2015; 14:1276-85. [PMID: 25740244 DOI: 10.1158/1535-7163.mct-14-0662] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
The transcription factor c-Myb is highly expressed in hematopoietic progenitor cells and controls the transcription of genes important for lineage determination, cell proliferation, and differentiation. Deregulation of c-Myb has been implicated in the development of leukemia and certain other types of human cancer. c-Myb activity is highly dependent on the interaction of the c-Myb with the KIX domain of the coactivator p300, making the disruption of this interaction a reasonable strategy for the development of Myb inhibitors. Here, we have used bacterial Autodisplay to develop an in vitro binding assay that mimics the interaction of Myb and the KIX domain of p300. We have used this binding assay to investigate the potential of Naphthol AS-E phosphate, a compound known to bind to the KIX domain, to disrupt the interaction between Myb and p300. Our data show that Naphthol AS-E phosphate interferes with the Myb-KIX interaction in vitro and inhibits Myb activity in vivo. By using several human leukemia cell lines, we demonstrate that Naphthol AS-E phosphate suppresses the expression of Myb target genes and induces myeloid differentiation and apoptosis. Our work identifies Naphthol AS-E phosphate as the first low molecular weight compound that inhibits Myb activity by disrupting its interaction with p300, and suggests that inhibition of the Myb-KIX interaction might be a useful strategy for the treatment of leukemia and other tumors caused by deregulated c-Myb.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany. Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - Sandeep Dukare
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany. Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - Bertan Bopp
- Institute for Pharmaceutical and Medicinal Chemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - Michael Goblirsch
- Institute for Pharmaceutical and Medicinal Chemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
23
|
Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel) 2014; 6:2049-71. [PMID: 25279451 PMCID: PMC4276956 DOI: 10.3390/cancers6042049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/11/2014] [Accepted: 09/26/2014] [Indexed: 12/02/2022] Open
Abstract
This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.
Collapse
|
24
|
Kasper LH, Qu C, Obenauer JC, McGoldrick DJ, Brindle PK. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res 2014; 42:11363-82. [PMID: 25249627 PMCID: PMC4191404 DOI: 10.1093/nar/gku827] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022] Open
Abstract
Genome-wide distribution of histone H3K18 and H3K27 acetyltransferases, CBP (CREBBP) and p300 (EP300), is used to map enhancers and promoters, but whether these elements functionally require CBP/p300 remains largely uncertain. Here we compared global CBP recruitment with gene expression in wild-type and CBP/p300 double-knockout (dKO) fibroblasts. ChIP-seq using CBP-null cells as a control revealed nearby CBP recruitment for 20% of constitutively-expressed genes, but surprisingly, three-quarters of these genes were unaffected or slightly activated in dKO cells. Computationally defined enhancer-promoter-units (EPUs) having a CBP peak near the enhancer-like element were more predictive, with CBP/p300 deletion attenuating expression of 40% of such constitutively-expressed genes. Examining signal-responsive (Hypoxia Inducible Factor) genes showed that 97% were within 50 kilobases of an inducible CBP peak, and 70% of these required CBP/p300 for full induction. Unexpectedly, most inducible CBP peaks occurred near signal-nonresponsive genes. Finally, single-cell expression analysis revealed additional context dependence where some signal-responsive genes were not uniformly dependent on CBP/p300 in individual cells. While CBP/p300 was needed for full induction of some genes in single-cells, for other genes CBP/p300 increased the probability of maximal expression. Thus, target gene context influences the transcriptional requirement for CBP/p300, possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John C Obenauer
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J McGoldrick
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul K Brindle
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
25
|
Kasper LH, Fukuyama T, Brindle PK. T-cells null for the MED23 subunit of mediator express decreased levels of KLF2 and inefficiently populate the peripheral lymphoid organs. PLoS One 2014; 9:e102076. [PMID: 25054639 PMCID: PMC4108324 DOI: 10.1371/journal.pone.0102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/13/2014] [Indexed: 01/23/2023] Open
Abstract
MED23, a subunit of the Mediator coactivator complex, is important for the expression of a subset of MAPK/ERK pathway-responsive genes, the constituents of which vary between cell types for reasons that are not completely clear. MAPK/ERK pathway-dependent processes are essential for T-cell development and function, but whether MED23 has a role in this context is unknown. We generated Med23 conditional knockout mice and induced Med23 deletion in early T-cell development using the lineage specific Lck-Cre transgene. While the total cell number and distribution of cell populations in the thymuses of Med23flox/flox;Lck-Cre mice were essentially normal, MED23 null T-cells failed to efficiently populate the peripheral lymphoid organs. MED23 null thymocytes displayed decreased expression of the MAPK/ERK-responsive genes Egr1, Egr2, as well as of the membrane glycoprotein Cd52 (CAMPATH-1). MED23 null CD4 single-positive thymocytes also showed decreased expression of KLF2 (LKLF), a T-cell master regulatory transcription factor. Indeed, similarities between the phenotypes of mice lacking MED23 or KLF2 in T-cells suggest that KLF2 deficiency in MED23 null T-cells is one of their key defects. Mechanistic experiments using MED23 null MEFs further suggest that MED23 is required for full activity of the MAPK-responsive transcription factor MEF2, which has previously been shown to mediate Klf2 expression. In summary, our data indicate that MED23 has critical roles in enabling T-cells to populate the peripheral lymphoid organs, possibly by potentiating MEF2-dependent expression of the T-cell transcription factor KLF2.
Collapse
Affiliation(s)
- Lawryn H. Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (LHK); (PKB)
| | - Tomofusa Fukuyama
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Paul K. Brindle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (LHK); (PKB)
| |
Collapse
|
26
|
Abstract
The kinase-inducible domain interacting (KIX) domain of the CREB binding protein (CBP) is capable of simultaneously binding two intrinsically disordered transcription factors, such as the mixed-lineage leukemia (MLL) and c-Myb peptides, at isolated interaction sites. In vitro, the affinity for binding c-Myb is approximately doubled when KIX is in complex with MLL, which suggests a positive cooperative binding mechanism, and the affinity for MLL is also slightly increased when KIX is first bound by c-Myb. Expanding the scope of recent NMR and computational studies, we explore the allosteric mechanism at a detailed molecular level that directly connects the microscopic structural dynamics to the macroscopic shift in binding affinities. To this end, we have performed molecular dynamics simulations of free KIX, KIX-c-Myb, MLL-KIX, and MLL-KIX-c-Myb using a topology-based Gō-like model. Our results capture an increase in affinity for the peptide in the allosteric site when KIX is prebound by a complementary effector and both peptides follow an effector-independent folding-and-binding mechanism. More importantly, we discover that MLL binding lowers the entropic cost for c-Myb binding, and vice versa, by stabilizing the L12-G2 loop and the C-terminal region of the α3 helix on KIX. This work demonstrates the importance of entropy in allosteric signaling between promiscuous molecular recognition sites and can inform the rational design of small molecule stabilizers to target important regions of conformationally dynamic proteins.
Collapse
|