1
|
Lee-Ødegård S, Hjorth M, Olsen T, Moen GH, Daubney E, Evans DM, Hevener AL, Lusis AJ, Zhou M, Seldin MM, Allayee H, Hilser J, Viken JK, Gulseth H, Norheim F, Drevon CA, Birkeland KI. Serum proteomic profiling of physical activity reveals CD300LG as a novel exerkine with a potential causal link to glucose homeostasis. eLife 2024; 13:RP96535. [PMID: 39190027 PMCID: PMC11349297 DOI: 10.7554/elife.96535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Background Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking. Methods We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models. Results Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice. Conclusions Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes. Funding South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes' legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123). Clinical trial number clinicaltrials.gov: NCT01803568.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- The Frazer Institute, The University of QueenslandWoolloongabbaAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
| | - Emily Daubney
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David M Evans
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Hooman Allayee
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - James Hilser
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Jonas Krag Viken
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Hanne Gulseth
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public HealthOsloNorway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | | | - Kåre Inge Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| |
Collapse
|
2
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
3
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
4
|
Armignacco R, Reel PS, Reel S, Jouinot A, Septier A, Gaspar C, Perlemoine K, Larsen CK, Bouys L, Braun L, Riester A, Kroiss M, Bonnet-Serrano F, Amar L, Blanchard A, Gimenez-Roqueplo AP, Prejbisz A, Januszewicz A, Dobrowolski P, Davies E, MacKenzie SM, Rossi GP, Lenzini L, Ceccato F, Scaroni C, Mulatero P, Williams TA, Pecori A, Monticone S, Beuschlein F, Reincke M, Zennaro MC, Bertherat J, Jefferson E, Assié G. Whole blood methylome-derived features to discriminate endocrine hypertension. Clin Epigenetics 2022; 14:142. [PMCID: PMC9635165 DOI: 10.1186/s13148-022-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine learning approaches. Results Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods—Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine—predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL. Conclusions The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01347-y.
Collapse
Affiliation(s)
- Roberta Armignacco
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Parminder S. Reel
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK
| | - Smarti Reel
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK
| | - Anne Jouinot
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.440907.e0000 0004 1784 3645Institut Curie, INSERM U900, MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Amandine Septier
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, INSERM, UMS Production et Analyse de données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013 Paris, France
| | - Karine Perlemoine
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Casper K. Larsen
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Lucas Bouys
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Leah Braun
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Kroiss
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fidéline Bonnet-Serrano
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Hormonologie, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Laurence Amar
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Unité Hypertension Artérielle, AP-HP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Anne Blanchard
- grid.414093.b0000 0001 2183 5849Centre d’Investigations Cliniques 9201, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Département de Médecine Génomique des Tumeurs et des Cancers, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Aleksander Prejbisz
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Piotr Dobrowolski
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Eleanor Davies
- grid.8756.c0000 0001 2193 314XBHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Scott M. MacKenzie
- grid.8756.c0000 0001 2193 314XBHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Gian Paolo Rossi
- Department of Medicine-DIMED, Emergency and Hypertension Unit, University of Padova, University Hospital, Padua, Italy
| | - Livia Lenzini
- Department of Medicine-DIMED, Emergency and Hypertension Unit, University of Padova, University Hospital, Padua, Italy
| | - Filippo Ceccato
- grid.411474.30000 0004 1760 2630UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Carla Scaroni
- grid.411474.30000 0004 1760 2630UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Paolo Mulatero
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tracy A. Williams
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alessio Pecori
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Monticone
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Felix Beuschlein
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.412004.30000 0004 0478 9977Klinikfür Endokrinologie, Diabetologie Und Klinische Ernährung, UniversitätsSpital Zürich (USZ) and Universität Zürich (UZH), Raemistrasse 100, 8091 Zurich, Switzerland
| | - Martin Reincke
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria-Christina Zennaro
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Service de Génétique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Jérôme Bertherat
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Emily Jefferson
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK ,grid.8756.c0000 0001 2193 314XInstitute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ UK
| | - Guillaume Assié
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| |
Collapse
|
5
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
6
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
7
|
Metz S, Krarup NT, Bryrup T, Støy J, Andersson EA, Christoffersen C, Neville MJ, Christiansen MR, Jonsson AE, Witte DR, Kampmann U, Nielsen LB, Jørgensen NR, Karpe F, Grarup N, Pedersen O, Kilpeläinen TO, Hansen T. The Arg82Cys polymorphism of the protein nepmucin implies a role in HDL metabolism. J Endocr Soc 2022; 6:bvac034. [PMID: 35382499 PMCID: PMC8974852 DOI: 10.1210/jendso/bvac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Context Blood lipid levels are linked to the risk of cardiovascular disease and regulated by genetic factors. A low-frequency polymorphism Arg82Cys (rs72836561) in the membrane protein nepmucin, encoded by CD300LG, is associated with lower fasting concentration of high-density lipoprotein cholesterol (HDLc) and higher fasting triglycerides. However, whether the variant is linked to postprandial lipids and glycemic status remains elusive. Objective Here, we augment the genetic effect of Arg82Cys on fasting plasma concentrations of HDL subclasses, postprandial lipemia after a standardized high-fat meal, and glycemic status to further untangle its role in HDL metabolism. Methods We elucidated fasting associations with HDL subclasses in a population-based cohort study (Oxford BioBank, OBB), including 4522 healthy men and women. We investigated fasting and postprandial consequences on HDL metabolism in recall-by-genotype (RbG) studies (fasting: 20 carrier/20 noncarrier; postprandial: 7 carrier/17 noncarrier), and shed light on the synergistic interaction with glycemic status. Results A lower fasting plasma concentration of cholesterol in large HDL particles was found in healthy male carriers of the Cys82 polymorphism compared to noncarriers, both in the OBB (P = .004) and RbG studies (P = .005). In addition, the Cys82 polymorphism was associated with low fasting plasma concentrations of ApoA1 (P = .008) in the OBB cohort. On the contrary, we did not find differences in postprandial lipemia or 2-hour plasma glucose levels. Conclusion Taken together, our results indicate an association between the Arg82Cys variant and a lower concentration of HDL particles and HDLc, especially in larger HDL subclasses, suggesting a link between nepmucin and HDLc metabolism or maturation.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj T Krarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Aalborg University Hospital, Department of Cardiology, Aalborg, Denmark
| | - Thomas Bryrup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Støy
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ehm A Andersson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Malene R Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark
| | - Ulla Kampmann
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Xu M, Yuan L, Wang Y, Chen S, Zhang L, Zhang X. Integrative Analysis of DNA Methylation and Gene Expression Profiles Identifies Colorectal Cancer-Related Diagnostic Biomarkers. Pathol Oncol Res 2021; 27:1609784. [PMID: 34366718 PMCID: PMC8333028 DOI: 10.3389/pore.2021.1609784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Background: Colorectal cancer (CRC) is a common human malignancy worldwide. The prognosis of patients is largely frustrated by delayed diagnosis or misdiagnosis. DNA methylation alterations have been previously proved to be involved in CRC carcinogenesis. Methods: In this study, we proposed to identify CRC-related diagnostic biomarkers by analyzing DNA methylation and gene expression profiles. TCGA-COAD datasets downloaded from the Cancer Genome Atlas (TCGA) were used as the training set to screen differential expression genes (DEGs) and methylation CpG sites (dmCpGs) in CRC samples. A logistic regression model was constructed based on hyper-methylated CpG sites which were located in downregulated genes for CRC diagnosis. Another two independent datasets from the Gene Expression Omnibus (GEO) were used as a testing set to evaluate the performance of the model in CRC diagnosis. Results: We found that CpG island methylator phenotype (CIMP) was a potential signature of poor prognosis by dividing CRC samples into CIMP and noCIMP groups based on a set of CpG sites with methylation standard deviation (sd) > 0.2 among CRC samples and low methylation levels (mean β < 0.05) in adjacent samples. Hyper-methylated CpGs tended to be more closed to CpG island (CGI) and transcription start site (TSS) relative to hypo-methylated CpGs (p-value < 0.05, Fisher exact test). A logistic regression model was finally constructed based on two hyper-methylated CpGs, which had an area under receiver operating characteristic curve of 0.98 in the training set, and 0.85 and 0.95 in the two independent testing sets. Conclusions: In conclusion, our study identified promising DNA methylation biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lijun Yuan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yan Wang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lin Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
9
|
Miles AM, Huson HJ. Time- and population-dependent genetic patterns underlie bovine milk somatic cell count. J Dairy Sci 2020; 103:8292-8304. [PMID: 32622601 DOI: 10.3168/jds.2020-18322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to determine whether genetic regulation of bovine milk somatic cell count (SCC) varied throughout the course of an individual lactation and to identify quantitative trait loci (QTL) that may differentiate populations of chronically mastitic and robustly healthy cows. Milk SCC has long been a proxy for clinical mastitis diagnosis in management and genetic improvement strategies to control the disease. Cows (n = 471) were genotyped on the Illumina BovineHD 777K BeadChip (Illumina Inc., San Diego, CA), and composite milk samples were collected for SCC at 0-1 d in milk (DIM), 3-5 DIM, 10-14 DIM, 90-110 DIM, and 210-230 DIM, with each time span representing key physiological transitions for the cow. Median lactation somatic cell score (SCS) and area under the SCS curve were calculated from farm test data. A total of 8 genome-wide associations were performed and 167 SNP spanning the genome were significantly associated (false discovery rate <0.05). Of these associated regions, 27 of 48 associated QTL were novel for clinical mastitis or SCC. The linkage disequilibrium block surrounding the associated QTL or a 1-Mb window in the absence of linkage disequilibrium was interrogated for candidate genes, and many of those identified were related to multiple arms of the immune system, including toll-like receptor signaling, macrophage activation, B-cell maturation, T-cell recruitment, and the complement pathway. These genes included EXOC4, BAMBI, ITSN2, IL34, FCN3, CD8A, and CD8B. In addition, we identified populations of robustly healthy (SCS ≤4 from 10-14 DIM until study end), chronically mastitic (SCS >4 from 10-14 DIM until study end), and average cows with fluctuating SCS, and calculated fixation indices to identify regions of the genome differentiating these 3 populations. A total of 12 SNP were identified that showed moderate allelic differentiation (Wright's F statistic, FST ≥ 0.4) between the "chronic," "healthy," and "average" populations of cows. Candidate genes in the region surrounding differentiated QTL were related to cell signaling and immune response, such as JAKMIP1 and MADCAM1. The wide range of significantly associated QTL spanning the genome and the diversity of gene functions reinforces that mastitis is a complex trait and suggests that selection based on lactation stage-specific SCS rather than a generalized score may lead to greater success in breeding mastitis-resistant cows.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
10
|
Abstract
To investigate the effect of CD300LG-γ induction on the cytotoxic activity of CIK. Eukaryotic expression plasmid hCD300LG-γ/pEGFP-C3, which can express human CD300LG-γ, was constructed and transfected into CHO cells by lipofectamine. The expression of CD300LG-γ was confirmed by immunofluorescence, RT-PCR, and Western Blot. To produce CIK cells, human peripheral blood mononuclear cells (PBMC) were isolated and induced, respectively, by cell lysates extracted from hCD300LG-γ/CHO cells, pEGFP-C3/CHO cells, and CHO cells, concurrently with the standard CIK inductive agent. The cytotoxic activity of these CIK cells against hCD300LG-γ/CHO cells, pEGFP-C3/CHO cells, CHO cells, and K562 cells was tested. The results showed that eukaryotic expression of plasmid hCD300LG-γ/pEGFP-C3 was constructed and transfected into CHO cells successfully. After being induced by cell lysates, the cytotoxicity of hCD300LG-γ/CHO-CIK was improved compared with the other CIK cells. In particular, the activity of killing pEGFP-C3/CHO and CHO cells was improved significantly. Meanwhile, the activity of hCD300LG-γ/CHO-CIK killing K562 was improved significantly compared with the other CIK cells. The results indicated that hCD300LG-γ induction can significantly improve the killing activity of CIK cells.
Collapse
|
11
|
Pickering RT, Lee MJ, Karastergiou K, Gower A, Fried SK. Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women. PLoS One 2016; 11:e0167337. [PMID: 28005982 PMCID: PMC5179014 DOI: 10.1371/journal.pone.0167337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoids promote fat accumulation in visceral compared to subcutaneous depots, but the molecular mechanisms involved remain poorly understood. To identify long-term changes in gene expression that are differentially sensitive or responsive to glucocorticoids in these depots, paired samples of human omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues obtained from obese women during elective surgery were cultured with the glucocorticoid receptor agonist dexamethasone (Dex, 0, 1, 10, 25 and 1000 nM) for 7 days. Dex regulated 32% of the 19,741 genes on the array, while 53% differed by Depot and 2.5% exhibited a Depot*Dex concentration interaction. Gene set enrichment analysis showed Dex regulation of the expected metabolic and inflammatory pathways in both depots. Cluster analysis of the 460 transcripts that exhibited an interaction of Depot and Dex concentration revealed sets of mRNAs for which the responses to Dex differed in magnitude, sensitivity or direction between the two depots as well as mRNAs that responded to Dex only in one depot. These transcripts were also clearly depot different in fresh adipose tissue and are implicated in processes that could affect adipose tissue distribution or functions (e.g. adipogenesis, triacylglycerol synthesis and storage, insulin action). Elucidation of the mechanisms underlying the depot differences in the effect of Dex on the expression of specific genes and pathways that regulate adipose function may offer novel insights into understanding the biology of visceral adipose tissues and their links to metabolic health.
Collapse
Affiliation(s)
- R. Taylor Pickering
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Mi-Jeong Lee
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Kalypso Karastergiou
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Adam Gower
- Clinical Translational Sciences Institute, Boston University, Boston, MA, United States of America
| | - Susan K. Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhai S, Xu H, Jiang X, Sun S, Qin L, Wei D, Hu L. Expression Depression of CD300LG-γ in Human Pulmonary Carcinoma. Monoclon Antib Immunodiagn Immunother 2016; 35:94-9. [PMID: 26977771 DOI: 10.1089/mab.2015.0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Xu
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaomei Jiang
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Sheng Sun
- Insitute of Forensic Science, Chongqing Public Security Bureau, Chongqing, China
| | - Lang Qin
- The Reproductive Centre, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dapeng Wei
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lijuan Hu
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Blood pressure levels in male carriers of Arg82Cys in CD300LG. PLoS One 2014; 9:e109646. [PMID: 25314291 PMCID: PMC4196928 DOI: 10.1371/journal.pone.0109646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
The genetics of hypertension has been scrutinized in large-scale genome-wide association studies (GWAS) with a large number of common genetic variants identified, each exerting subtle effects on disease susceptibility. An amino acid polymorphism, p.Arg82Cys, in CD300LG was recently found to be associated with fasting HDL-cholesterol and triglyceride levels. The polymorphism has not been detected in hypertension GWAS potentially due to its low frequency, but CD300LG has been linked to blood pressure as CD300LG knockout mice have changes in blood pressure. Twenty-four-hour ambulatory blood pressure was obtained in human CD300LG CT-carriers to follow up on these observations. Methods Twenty healthy male CD300LG rs72836561 CT-carriers matched for age and BMI with 20 healthy male CC-carriers. Office blood pressure, 24-hour ambulatory blood pressure, carotid intima-media thickness (CIMT), and fasting blood samples were evaluated. The clinical study was combined with a genetic-epidemiological study to replicate the association between blood pressure and CD300LG Arg82Cys in 2,637 men and 3,249 women. Results CT-carriers had a higher 24-hour ambulatory systolic blood pressure (122 mmHg versus 115; p = 0.01) and diastolic blood pressure (77 mmHg versus 72; p<0.01) compared with CC-carriers. There were no differences in CIMT between the two groups. Metalloproteinase-9 level was higher in CT-carriers than in CC-carriers (P<0.01). However, no association between office blood pressure and CD300LG genotype was detected in the genetic-epidemiological study. Conclusions Although 24-hour blood pressure, measured with a sensitive method, in a small sample of CD300LG rs72836561 CT-carriers was higher than in CC-carriers, this did not translate into significant differences in office blood pressure in a larger cohort. This discrepancy which may reflect differences in methodological approach, underlines the importance of performing replication studies in a larger clinical context, but a formal rejection of a relation between blood pressure and CD300LG requires measurement of 24-hour ambulatory blood pressure in a larger cohort.
Collapse
|