1
|
Ota N, Nishida T, Standley DM, Sherif AA, Iwano S, Nugraha DK, Ueno T, Horiguchi Y. Lonidamine, a Novel Modulator for the BvgAS System of Bordetella Species. Microbiol Immunol 2024. [PMID: 39674913 DOI: 10.1111/1348-0421.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The Gram-negative bacteria Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory diseases in various mammals. They share the BvgAS two-component system, which regulates the phenotypic conversion between the virulent Bvg+ and avirulent Bvg- phases. In the BvgAS system, the sensor kinase BvgS senses environmental cues and transduces a phosphorelay signal to the response regulator BvgA, which leads to the expression of Bvg+ phase-specific genes, including virulence factor genes. Bacteria grown at 37°C exhibit the Bvg+ phenotype. In contrast, at lower than 26°C or in the presence of modulators, such as MgSO4 and nicotinic acid, the BvgAS system is inactivated, leading bacteria to the avirulent Bvg- phase. Therefore, effective modulators are expected to provide a therapeutic measure for Bordetella infection; however, no such modulators are currently available, and the mechanism by which modulators inactivate the BvgAS system is poorly understood. In the present study, we identified lonidamine as a novel modulator after screening an FDA-approved drug library using bacterial reporter systems with the Bvg+-specific and Bvg--specific promoters. Lonidamine directly bound to the VFT2 domain of BvgS and inactivated the BvgAS system at concentrations as low as 50 nM, which was at least 2000- to 20,000-fold lower than the effective concentrations of known modulators. Lonidamine significantly reduced the adherence of B. pertussis to cultured cells but unexpectedly exacerbated bacterial colonization of the mouse nasal septum. These results provide insights into the structural requirements for BvgAS modulators and the role of Bvg phenotypes in the establishment of infection.
Collapse
Affiliation(s)
- Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Satoshi Iwano
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toshiya Ueno
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Debandi M, Carrica M, Hentschker C, Baroli C, Völker U, Rodriguez ME, Surmann K, Lamberti Y. Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res 2024; 23:1666-1678. [PMID: 38644792 DOI: 10.1021/acs.jproteome.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.
Collapse
Affiliation(s)
- Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Mariela Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Carlos Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
3
|
Rice TF, Diavatopoulos DA, Guo Y, Donaldson B, Bouqueau M, Bosanquet A, Barnett S, Holder B, Kampmann B. Modification of innate immune responses to Bordetella pertussis in babies from pertussis vaccinated pregnancies. EBioMedicine 2021; 72:103612. [PMID: 34649076 PMCID: PMC8517834 DOI: 10.1016/j.ebiom.2021.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Tetanus, diphtheria, acellular pertussis, inactivated polio (Tdap-IPV) vaccines administered during pregnancy protect young infants from Bordetella pertussis (B. pertussis) infection. Whilst the impact of maternal Tdap-IPV vaccination on infants' humoral response to subsequent pertussis immunisation has been investigated, little is known about any impact on innate responses. METHODS We investigated the immune response to B. pertussis in mothers and infants from Tdap-IPV-vaccinated and unvaccinated pregnancies, utilising a whole blood assay and flow cytometric phenotyping of neonatal natural killer (NK) cells, monocytes and dendritic cells. Blood was collected from mother and umbilical cord at birth, and from infants at seven weeks (one week pre-primary pertussis immunisation) and five months of age (one month post-primary pertussis immunisation). 21 mothers and 67 infants were studied. FINDINGS Vaccinated women had elevated pro-inflammatory cytokine responses to B. pertussis. At birth, babies of vaccinated women had elevated IL-2 and IL-12 responses, elevated classical monocyte proportions, and reduced monocyte and NK cell cytokine responses. The elevated IL-2 response persisted to seven weeks-of-age, when lower IL-10 and IL-13 responses were also seen. One-month post-primary pertussis vaccination, infants from vaccinated pregnancies still had lower IL-10 responses to B. pertussis, as well as lower IL-4. INTERPRETATION This study suggests that pertussis vaccination during pregnancy impacts infant cellular immune responses, potentially contributing to the modification of antibody responses already reported following primary immunisation against B. pertussis. FUNDING National Institute for Health Research Imperial Biomedical Research Centre and IMmunising PRegnant women and INfants neTwork (funded by the GCRF Networks in Vaccines R&D).
Collapse
Affiliation(s)
- Thomas F Rice
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK; Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yanping Guo
- National Heart and Lung Institute (NHLI), Imperial College London, UK
| | - Beverly Donaldson
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Marielle Bouqueau
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Anna Bosanquet
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Sara Barnett
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK
| | - Beth Holder
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK; Section of Paediatrics, Department of Medicine, Imperial College London, UK.
| | - Beate Kampmann
- Section of Paediatrics, Department of Medicine, Imperial College London, UK; The Vaccine Centre, London School of Hygiene and Tropical Medicine, UK; Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Gambia
| |
Collapse
|
4
|
Villalba MI, Venturelli L, Willaert R, Vela ME, Yantorno O, Dietler G, Longo G, Kasas S. Nanomotion Spectroscopy as a New Approach to Characterize Bacterial Virulence. Microorganisms 2021; 9:microorganisms9081545. [PMID: 34442624 PMCID: PMC8398272 DOI: 10.3390/microorganisms9081545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.
Collapse
Affiliation(s)
- Maria I. Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Leonardo Venturelli
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
| | - Ronnie Willaert
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Maria E. Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Giovanni Dietler
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Giovanni Longo
- Istituto Di Struttura Della Materia–CNR, 00133 Roma, Italy;
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
- Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Dienstbier A, Amman F, Petráčková D, Štipl D, Čapek J, Zavadilová J, Fabiánová K, Držmíšek J, Kumar D, Wildung M, Pouchnik D, Večerek B. Comparative Omics Analysis of Historic and Recent Isolates of Bordetella pertussis and Effects of Genome Rearrangements on Evolution. Emerg Infect Dis 2021; 27:57-68. [PMID: 33350934 PMCID: PMC7774529 DOI: 10.3201/eid2701.191541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element–induced changes in gene context only for a few genes.
Collapse
|
6
|
Zeddeman A, van Schuppen E, Kok KE, van Gent M, Heuvelman KJ, Bart MJ, van der Heide HGJ, Gillard J, Simonetti E, Eleveld MJ, van Opzeeland FJH, van Selm S, de Groot R, de Jonge MI, Mooi FR, Diavatopoulos DA. Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS One 2020; 15:e0237394. [PMID: 32822419 PMCID: PMC7446907 DOI: 10.1371/journal.pone.0237394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/25/2020] [Indexed: 01/05/2023] Open
Abstract
Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10–20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance. Importantly, bacterial populations isolated from the lungs shifted to an FHA-negative phenotype due to frameshift mutations in the fhaB gene. Loss of FHA expression was strongly selected for in Prn-deficient strains in the lungs following aP but not wP vaccination. The combined loss of Prn and FHA led to complete abrogation of bacterial surface binding by aP-induced serum antibodies. This study demonstrates vaccine- and anatomical site-dependent adaptation of B. pertussis and has major implications for the design of improved pertussis vaccines.
Collapse
Affiliation(s)
- Anne Zeddeman
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evi van Schuppen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Kristianne E. Kok
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marieke J. Bart
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Elles Simonetti
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Fred J. H. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Dimitri A. Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Novak J, Fabrik I, Jurnecka D, Holubova J, Stanek O, Sebo P. Bordetella pertussis Acetylome is Shaped by Lysine Deacetylase Bkd1. J Proteome Res 2020; 19:3680-3696. [PMID: 32674575 DOI: 10.1021/acs.jproteome.0c00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of proteins enable swift physiological adaptation of cells to altered growth conditions and stress. Aside from protein phosphorylation, acetylation on ε-amino groups of lysine residues (N-ε-lysine acetylation) represents another important post-translational modification of proteins. For many bacterial pathogens, including the whooping cough agent Bordetella pertussis, the role and extent of protein acetylation remain to be defined. We expressed in Escherichia coli the BP0960 and BP3063 genes encoding two putative deacetylases of B. pertussis and show that BP0960 encodes a lysine deacetylase enzyme, named Bkd1, that regulates acetylation of a range of B. pertussis proteins. Comparison of the proteome and acetylome of a Δbkd1 mutant with the proteome and acetylome of wild-type B. pertussis (PRIDE ID. PXD016384) revealed that acetylation on lysine residues may modulate activities or stabilities of proteins involved in bacterial metabolism and histone-like proteins. However, increased acetylation of the BvgA response regulator protein of the B. pertussis master virulence-regulating BvgAS two-component system affected neither the total levels of produced BvgA nor its phosphorylation status. Indeed, the Δbkd1 mutant was not impaired in the production of key virulence factors and its survival within human macrophages in vitro was not affected. The Δbkd1 mutant exhibited an increased growth rate under carbon source-limiting conditions and its virulence in the in vivo mouse lung infection model was somewhat affected. These results indicate that the lysine deacetylase Bkd1 and N-ε-lysine acetylation primarily modulate the general metabolism rather than the virulence of B. pertussis.
Collapse
Affiliation(s)
- Jakub Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50005, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
8
|
Cadona JS, Burgán J, González J, Bustamante AV, Sanso AM. Differential expression of the virulence gene nleB among Shiga toxin-producing Escherichia coli strains. Heliyon 2020; 6:e04277. [PMID: 32613131 PMCID: PMC7322132 DOI: 10.1016/j.heliyon.2020.e04277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic foodborne pathogen associated with hemolytic uremic syndrome (HUS) that vary in their ability to cause disease in humans. STEC represents a serious problem for public health and Argentina is the country with the highest HUS incidence worldwide. Non-LEE effector (nle) genes, present on pathogenicity islands (PAIs), encode translocated substrates of the type III secretion system (T3SS), which could have an important role in STEC virulence. Particularly, nleB is one of the main effector genes proposed as a virulence marker that is involved in the action of T3SS during the STEC infection. NleB inhibits the inflammatory response of the host cell allowing the bacteria to persist in the first stage of the infection. In order to identify the potential risk of STEC strains for public health, the aim of this study was to evaluate and compare basal nleB transcription of 24 STEC strains belonging to 10 serotypes isolated from cattle, food and patients. The results showed differences in nleB transcription among strains. Some non-O157:H7 strains presented transcription levels above the control, an O157:H7 HUS-producing strain. On the other hand, no significant differences were found in basal transcription levels associated with origin or serotype but differences were found between HUS and non-HUS strains. These differences in nleB transcription may be of importance in STEC pathogenesis and could help to differentiate high and low virulence STEC strains.
Collapse
|
9
|
Dewan KK, Linz B, DeRocco SE, Harvill ET. Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines (Basel) 2020; 8:vaccines8020217. [PMID: 32414005 PMCID: PMC7349526 DOI: 10.3390/vaccines8020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Pertussis is a highly communicable acute respiratory infection caused by Bordetella pertussis. Immunity is not lifelong after natural infection or vaccination. Pertussis outbreaks occur cyclically worldwide and effective vaccination strategies are needed to control disease. Whole-cell pertussis (wP) vaccines became available in the 1940s but have been replaced in many countries with acellular pertussis (aP) vaccines. This review summarizes disease epidemiology before and after the introduction of wP and aP vaccines, discusses the rationale and clinical implications for antigen inclusion in aP vaccines, and provides an overview of novel vaccine strategies aimed at better combating pertussis in the future.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
| | | | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
- Correspondence:
| |
Collapse
|
10
|
Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerg Microbes Infect 2020; 8:1416-1427. [PMID: 31543006 PMCID: PMC6764348 DOI: 10.1080/22221751.2019.1665479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran.,School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Masoumeh Nakhost Lotfi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Seyed Mohsen Zahraei
- Centre for Communicable Disease Control, Ministry of Health and Medical Education , Tehran , Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
11
|
Saedi S, Safarchi A, Noofeli M, Tadayon K, Tay ACY, Lamichhane B, Rahimi H, Shahcheraghi F. Genome diversity and evolutionary characteristics of clinical isolates of Bordetella pertussis circulating in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:1-10. [PMID: 32322373 PMCID: PMC7163038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES The re-emergence of pertussis still is being reported all over the world. Pathogen adaptation and antigenic divergence of circulating isolates from vaccine strains are the main reasons of infection resurgence. Waning immunity is also an important factor contributing to resurgence of pertussis. MATERIALS AND METHODS The genetic diversity and evolutionary characteristics of circulating Iranian isolates of Bordetella pertussis during February 2015 to October 2018 was investigated by pulsed-field gel electrophoresis (PFGE) and subsequently ptxA, ptxP and fim3 alleles were characterized. The next generation genome sequencing was then used to compare the genomics of ptxP1 and ptxP3 of selected isolates from PFGE dendrogram. RESULTS PFGE differentiated 62 clinical isolates and vaccine and reference strains into 19 PFGE profiles, indicating the higher level of heterogeneity in the population during 2015-2018. The predominant B. pertussis genotype harbored pertussis toxin promoter allele, ptxP3 and the expansion of ptxA1 isolates, were also observed in our population. CONCLUSION No changes in allelic profile of predominant clone in recent years was observed but antigenic divergence between recently circulating isolates and the vaccine strain has been progressed and significantly was higher than previous studies. The comparative genomic analysis of the ptxP3 and ptxP1 isolates indicate that changes in ptxP3 genome structure including 32 unique SNPs and three unique indels may have contributed to the expansion of the ptxP3 clone. We compared ptxP3 and ptxP1 isolates in pathogenicity-associated genes and found five of them were specific for the ptxP3 isolates. The polymorphisms in pathogenicity-associated genes suggest structural adaptations for these virulence factors.
Collapse
Affiliation(s)
- Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Safarchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Noofeli
- Department of Human Bacterial Vaccine, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Keyvan Tadayon
- Department of Aerobic Bacterial Research and Vaccine Production, Razi Vaccine & Serum Research Institute, Karaj, Iran
| | - Alfred Chin Yen Tay
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, Western Australia, Australia,Shenzhen Dapeng New District Kuichong People Hospital, Shenzhen, Guangdong, China
| | - Binit Lamichhane
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Fereshteh Shahcheraghi, PhD, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran. Tel/Fax: +98-21-66405535,
| |
Collapse
|
12
|
Luu LDW, Octavia S, Aitken C, Zhong L, Raftery MJ, Sintchenko V, Lan R. Surfaceome analysis of Australian epidemic Bordetella pertussis reveals potential vaccine antigens. Vaccine 2019; 38:539-548. [PMID: 31703933 DOI: 10.1016/j.vaccine.2019.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Since acellular vaccines (ACV) were introduced in Australia, epidemic Bordetella pertussis strains changed from single nucleotide polymorphism (SNP) cluster II to SNP cluster I. Our previous proteomic analysis identified potential proteomic adaptations in the whole cell and secretome of SNP cluster I. Additionally, current ACVs were shown to be less efficacious against cluster I in mice models and there is a pressing need to discover new antigens to improve the ACV. One important source of novel antigens is the surfaceome. Therefore, in this study we established surface shaving in B. pertussis to compare the surfaceome of SNP cluster I (L1423) and II (L1191), and identify novel surface antigens for vaccine development. Surface shaving using 1 μg of trypsin for 5 min identified 126 proteins with the most abundant being virulence-associated and known outer membrane proteins. Cell viability counts showed minimal lysis from shaving. The proportion of immunogenic proteins was higher in the surfaceome than in the whole cell and secretome. Key differences in the surfaceome were identified between SNP cluster I and II, consistent with those identified in the whole cell proteome and secretome. These differences include unique transport proteins and decreased immunogenic proteins in L1423, and provides further evidence of proteomic adaptation in SNP cluster I. Finally, a comparison of proteins in each sub-proteome identified 22 common proteins. These included 11 virulence proteins (Prn, PtxA, FhaB, CyaA, TcfA, SphB1, Vag8, BrkA, BopD, Bsp22 and BipA) and 11 housekeeping proteins (TuF, CtpA, TsF, OmpH, GltA, SucC, SucD, FusA, GroEL, BP3330 and BP3561) which were immunogenic, essential and consistently expressed thus demonstrating their potential as future targets. This study established surface shaving in B. pertussis, confirmed key expression differences and identified unknown surface proteins which may be potential vaccine antigens.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Aitken
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
van Beek LF, de Gouw D, Eleveld MJ, Bootsma HJ, de Jonge MI, Mooi FR, Zomer A, Diavatopoulos DA. Adaptation of Bordetella pertussis to the Respiratory Tract. J Infect Dis 2019. [PMID: 29528444 DOI: 10.1093/infdis/jiy125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is a lack of insight into the basic mechanisms by which Bordetella pertussis adapts to the local host environment during infection. We analyzed B. pertussis gene expression in the upper and lower airways of mice and compared this to SO4-induced in vitro Bvg-regulated gene transcription. Approximately 30% of all genes were differentially expressed between in vitro and in vivo conditions. This included several novel potential vaccine antigens that were exclusively expressed in vivo. Significant differences in expression profile and metabolic pathways were identified between the upper versus the lower airways, suggesting distinct antigenic profiles. We found high-level expression of several Bvg-repressed genes during infection, and mouse vaccination experiments using purified protein fractions from both Bvg- and Bvg+ cultures demonstrated protection against intranasal B. pertussis challenge. This study provides novel insights into the in vivo adaptation of B. pertussis and may facilitate the improvement of pertussis vaccines.
Collapse
Affiliation(s)
- Lucille F van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daan de Gouw
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frits R Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven (RIVM), the Netherlands
| | - Aldert Zomer
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Abstract
In vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection. Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussis during infection, and this method will facilitate efforts to understand how this pathogen causes infection. IMPORTANCEIn vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.
Collapse
|
15
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|
16
|
Ben Fraj I, Kechrid A, Guillot S, Bouchez V, Brisse S, Guiso N, Smaoui H. Pertussis epidemiology in Tunisian infants and children and characterization of Bordetella pertussis isolates: results of a 9-year surveillance study, 2007 to 2016. J Med Microbiol 2018; 68:241-247. [PMID: 30526740 DOI: 10.1099/jmm.0.000892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Pertussis remains a public health concern in most countries. Our study aimed to prospectively explore the epidemiology of pertussis in the Tunis area of Tunisia between 2007 and 2016, and to characterize the virulence-associated genes of the collected Bordetella pertussis isolates. METHODOLOGY Infants and children hospitalized at the Children's Hospital of Tunis, Tunisia, between 2007 and 2016 for suspicion of pertussis were enrolled in the study. Culture and real-time PCR (qPCR) assays targeting IS481, IS1001, recA, H-IS1001 and ptxP were used to confirm the pertussis diagnosis. Phenotypic and genotypic characterization of recovered isolates was performed.Results/Key findings. A total of 1844 children were included in the study. Overall, 306 children (16.6 %) with Bordetella infection were confirmed by qPCR. Among them, 265 (86.6 %) were confirmed as having B. pertussis (IS481+, ptxP+, H-IS1001-), 18 (5.9 %) as having Bordetella parapertussis (IS481-, IS1001+) and 11 (3.6 %) as having Bordetella spp. (IS481+, ptxP-, H-IS1001-). No Bordetella holmesii (IS481+, IS1001-, H-IS1001+) was identified. The estimated pertussis incidence in the Tunis area was 134/100 000 in children aged less than 5 years. Two epidemic peaks were observed in 2009 and 2014. Ten B. pertussis isolates were cultured and characterized. Deficiency in pertactin expression was not observed, and genotyping of the isolates revealed a predominant allelic profile: ptxP3-ptxA1-prn2-fim2-1-fim3-2. CONCLUSION This study demonstrated that pertussis is still present as a cyclical disease in Tunisia, despite high primo-vaccination coverage with a pertussis whole-cell vaccine. The predominant genotype of Tunisian B. pertussis isolates is similar to isolates circulating in countries using the acellular vaccine.
Collapse
Affiliation(s)
- Ikram Ben Fraj
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| | - Amel Kechrid
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| | - Sophie Guillot
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Valérie Bouchez
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Sylvain Brisse
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Nicole Guiso
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Hanen Smaoui
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| |
Collapse
|
17
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertussis Strains From the 2008-2012 Australian Epidemic Under Sulfate-Modulating Conditions. Front Microbiol 2018; 9:2851. [PMID: 30538686 PMCID: PMC6277516 DOI: 10.3389/fmicb.2018.02851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/06/2018] [Indexed: 01/19/2023] Open
Abstract
Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Lesne E, Coutte L, Solans L, Slupek S, Debrie AS, Dhennin V, Froguel P, Hot D, Locht C, Antoine R, Jacob-Dubuisson F. Distinct virulence ranges for infection of mice by Bordetella pertussis revealed by engineering of the sensor-kinase BvgS. PLoS One 2018; 13:e0204861. [PMID: 30307950 PMCID: PMC6181320 DOI: 10.1371/journal.pone.0204861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
The whooping cough agent Bordetella pertussis coordinately regulates the expression of its virulence factors with the two-component system BvgAS. In laboratory conditions, specific chemical modulators are used to trigger phenotypic modulation of B. pertussis from its default virulent Bvg+ phase to avirulent Bvg- or intermediate Bvgi phases, in which no virulence factors or only a subset of them are produced, respectively. Whether phenotypic modulation occurs in the host remains unknown. In this work, recombinant B. pertussis strains harboring BvgS variants were tested in a mouse model of infection and analyzed using transcriptomic approaches. Recombinant BP-BvgΔ65, which is in the Bvgi phase by default and can be up-modulated to the Bvg+ phase in vitro, could colonize the mouse nose but was rapidly cleared from the lungs, while Bvg+-phase strains colonized both organs for up to four weeks. These results indicated that phenotypic modulation, which might have restored the full virulence capability of BP-BvgΔ65, does not occur in mice or is temporally or spatially restricted and has no effect in those conditions. Transcriptomic analyses of this and other recombinant Bvgi and Bvg+-phase strains revealed that two distinct ranges of virulence gene expression allow colonization of the mouse nose and lungs, respectively. We also showed that a recombinant strain expressing moderately lower levels of the virulence genes than its wild type parent was as efficient at colonizing both organs. Altogether, genetic modifications of BvgS generate a range of phenotypic phases, which are useful tools to decipher host-pathogen interactions.
Collapse
Affiliation(s)
- Elodie Lesne
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Loic Coutte
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Luis Solans
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stephanie Slupek
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Anne-Sophie Debrie
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Véronique Dhennin
- Univ. Lille, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Philippe Froguel
- Univ. Lille, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - David Hot
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (RA); (FJD)
| | - Françoise Jacob-Dubuisson
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (RA); (FJD)
| |
Collapse
|
19
|
ESPOSITO S. Prevention of pertussis: from clinical trials to Real World Evidence. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2018; 59:E177-E186. [PMID: 30397673 PMCID: PMC6196371 DOI: 10.15167/2421-4248/jpmh2018.59.3.1041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Pertussis, a highly contagious infective disease caused by Bordetella pertussis, was in the past very common among newborns and children, causing significant medical, social and economic issues burden, also due to frequent need of hospitalization and high mortality. Following the introduction of vaccines against pertussis, the burden of the disease dramatically decreased, although nowadays, this disease it is still the most widespread among the vaccine preventable ones. First vaccine formulations were composed with whole cell antigen of Bordetella pertussis and were followed by formulations with acellular antigens (PT, FHA, PRN, FIM), that showed to have similar efficacy and less reactogenicity. In particular, all the acellular vaccines, regardless the number of antigenic component included, demonstrated good immunogenicity in clinical trials and high effectiveness in real world evidence studies. Nevertheless, in the recent years it has been notified an increasing number of cases of pertussis. The most recent evidence demonstrated that for an effective control and prevention of pertussis it is necessary to strengthen vaccination coverage among the whole population, providing primary vaccination to newborns and booster in infancy, adolescence and adulthood every 10 years. Finally, vaccination of women at the third trimester of every pregnancy is the most effective intervention to protect the newborn from pertussis in his first months of life, before developing a protective response after the primary vaccination.
Collapse
Affiliation(s)
- S. ESPOSITO
- Pediatric Clinic, Department of Medical and Surgical Sciences, Università degli Studi di Perugia, Italy
| |
Collapse
|
20
|
Abstract
Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis. However, after the introduction of the whole-cell pertussis vaccine (wP), the annual incidence rates of the disease progressively declined. Despite this result, the inclusion of wP in the national immunization schedule of infants and young children was debated regarding its safety. Several efforts to produce vaccines based on B. pertussis components capable of evoking protective immunity with no or limited adverse events were made. Of these others, five pertussis antigens were considered possible components of acellular vaccines (aPs): pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and fimbria proteins 2 and 3. However, the introduction of aPs was followed by a slight but progressive increase in the incidence of pertussis. This paper discusses the potential reasons for reduced aPs efficacy. Moreover, it attempts to evaluate the real effectiveness of aPs and the potential differences between available preparations. Data analysis showed that several boosters are needed to maintain protection against pertussis and additional studies are needed to confirm the antigens that should be included in aPs to improve the prevention of pertussis.
Collapse
Affiliation(s)
- Susanna Esposito
- a Pediatric Clinic, Department of Surgical and Biomedical Sciences , Università degli Studi di Perugia , Perugia , Italy
| | - Nicola Principi
- b Università degli Studi di Milano, on behalf of the World Association for Infectious Diseases and Immunological Disorders (WAidid)
| |
Collapse
|
21
|
Suzuki K, Shinzawa N, Ishigaki K, Nakamura K, Abe H, Fukui-Miyazaki A, Ikuta K, Horiguchi Y. Protective effects of in vivo-expressed autotransporters against Bordetella pertussis infection. Microbiol Immunol 2018; 61:371-379. [PMID: 28752940 DOI: 10.1111/1348-0421.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Bordetella pertussis causes whooping cough, a severe and prolonged respiratory disease that results inhas high morbidity and mortality rates, particularly in developing countries. The number incidence of whooping cough cases is increasing in many countries despite high vaccine coverage. Causes for the re-emergence of the disease include the limited duration of protection conferred by the acellular pertussis vaccines (aP)s and pathogenic adaptations that involve antigenic divergence from vaccine strains. Therefore, current vaccines therefore need to be improved. In the present study, we focused on five autotransporters: namely SphB1, BatB, SphB2, Phg, and Vag8, which were previously found to be expressed by B. bronchiseptica during the course of infection in rats and examined their protective efficiencies as vaccine antigens. The passenger domains of these proteins were produced in recombinant forms and used as antigens. An intranasal murine challenge assay showed that immunization with a mixture of SphB1 and Vag8 (SV) significantly reduced bacterial load in the lower respiratory tract and a combination of aP and SV acts synergistically in effects of conferring protection against B. pertussis infection, implying that these antigens have potential as components to for improvinge th the currently available acellular pertussis vaccine.
Collapse
Affiliation(s)
- Koichiro Suzuki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Research Foundation for Microbial Diseases of Osaka University (BIKEN), 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoaki Shinzawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keisuke Ishigaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keiji Nakamura
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Abe
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Aya Fukui-Miyazaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Ikuta
- Research Foundation for Microbial Diseases of Osaka University (BIKEN), 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
The Adjuvant Bordetella Colonization Factor A Attenuates Alum-Induced Th2 Responses and Enhances Bordetella pertussis Clearance from Mouse Lungs. Infect Immun 2018. [PMID: 29531137 DOI: 10.1128/iai.00935-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The reemergence of pertussis or whooping cough in several countries highlights the need for better vaccines. Acellular pertussis vaccines (aPV) contain alum as the adjuvant and elicit Th2-biased immune responses that are less effective in protecting against infection than the reactogenic whole-cell pertussis vaccines (wPV), which elicit primarily a Th1/Th17 response. An important goal for the field is to devise aPV that will induce immune responses similar to those of wPV. We show that Bordetella colonization factor A (BcfA), an outer membrane protein from Bordetella bronchiseptica, has strong adjuvant function and elicits cellular and humoral immune responses to heterologous and Bordetella pertussis antigens. Addition of BcfA to a commercial aPV resulted in greater reduction of B. pertussis numbers from the lungs than that elicited by aPV alone. The more-efficient pathogen clearance was accompanied by increased interleukin-17 (IL-17) and reduced IL-5 and an increased ratio of IgG2/IgG1 antibodies. Thus, our results suggest that BcfA improves aPV-induced responses by modifying the alum-induced Th2-biased aPV response toward Th1/Th17. A redesigned aPV containing BcfA may allow better control of pertussis reemergence by reshaping immune responses to resemble those elicited by wPV immunization.
Collapse
|
23
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Proteomic Adaptation of Australian Epidemic Bordetella pertussis. Proteomics 2018; 18:e1700237. [PMID: 29464899 DOI: 10.1002/pmic.201700237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/08/2018] [Indexed: 12/20/2022]
Abstract
Bordetella pertussis causes whooping cough. The predominant strains in Australia changed to single nucleotide polymorphism (SNP) cluster I (pertussis toxin promoter allele ptxP3/pertactin gene allele prn2) from cluster II (non-ptxP3/non-prn2). Cluster I was mostly responsible for the 2008-2012 Australian epidemic and was found to have higher fitness compared to cluster II using an in vivo mouse competition assay, regardless of host's immunization status. This study aimed to identify proteomic differences that explain higher fitness in cluster I using isobaric tags for relative and absolute quantification (iTRAQ), and high-resolution multiple reaction monitoring (MRM-hr). A few key differences in the whole cell and secretome were identified between the cluster I and II strains tested. In the whole cell, nine proteins were upregulated (>1.2 fold change, q < 0.05) and three were downregulated (<0.8 fold change, q < 0.05) in cluster I. One downregulated protein was BP1569, a TLR2 agonist for Th1 immunity. In the secretome, 12 proteins were upregulated and 1 was downregulated which was Bsp22, a type III secretion system (T3SS) protein. Furthermore, there was a trend of downregulation in three T3SS effectors and other virulence factors. Three proteins were upregulated in both whole cell and supernatant: BP0200, molybdate ABC transporter (ModB), and tracheal colonization factor A (TcfA). Important expression differences in lipoprotein, T3SS, and transport proteins between the cluster I and II strains were identified. These differences may affect immune evasion, virulence and metabolism, and play a role in increased fitness of cluster I.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research-Pathology West, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Gasperini G, Biagini M, Arato V, Gianfaldoni C, Vadi A, Norais N, Bensi G, Delany I, Pizza M, Aricò B, Leuzzi R. Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Mol Cell Proteomics 2018; 17:205-215. [PMID: 29203497 PMCID: PMC5795387 DOI: 10.1074/mcp.ra117.000045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
Despite high vaccination coverage world-wide, whooping cough, a highly contagious disease caused by Bordetella pertussis, is recently increasing in occurrence suggesting that novel vaccine formulations targeted at the prevention of colonization and transmission should be investigated. To identify new candidates for inclusion in the acellular formulation, we used spontaneously released outer membrane vesicles (OMV)1 as a potential source of key adhesins. The enrichment of Bvg+ OMV with adhesins and the ability of anti-OMV serum to inhibit the adhesion of B. pertussis to lung epithelial cells in vitro were demonstrated. We employed a proteomic approach to identify the differentially expressed proteins in OMV purified from bacteria in the Bvg+ and Bvg- virulence phases, thus comparing the outer membrane protein pattern of this pathogen in its virulent or avirulent state. Six of the most abundant outer membrane proteins were selected as candidates to be evaluated for their adhesive properties and vaccine potential. We generated E. coli strains singularly expressing the selected proteins and assessed their ability to adhere to lung epithelial cells in vitro Four out of the selected proteins conferred adhesive ability to E. coli Three of the candidates were specifically detected by anti-OMV mouse serum suggesting that these proteins are immunogenic antigens able to elicit an antibody response when displayed on the OMV. Anti-OMV serum was able to inhibit only BrkA-expressing E. coli adhesion to lung epithelial cells. Finally, stand-alone immunization of mice with recombinant BrkA resulted in significant protection against infection of the lower respiratory tract after challenge with B. pertussis Taken together, these data support the inclusion of BrkA and possibly further adhesins to the current acellular pertussis vaccines to improve the impact of vaccination on the bacterial clearance.
Collapse
|
25
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2017; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
27
|
Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infect Immun 2017; 85:IAI.00373-17. [PMID: 28893915 DOI: 10.1128/iai.00373-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.
Collapse
|
28
|
Branco Dos Santos F, Olivier BG, Boele J, Smessaert V, De Rop P, Krumpochova P, Klau GW, Giera M, Dehottay P, Teusink B, Goffin P. Probing the Genome-Scale Metabolic Landscape of Bordetella pertussis, the Causative Agent of Whooping Cough. Appl Environ Microbiol 2017; 83:e01528-17. [PMID: 28842544 PMCID: PMC5648915 DOI: 10.1128/aem.01528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.
Collapse
Affiliation(s)
- Filipe Branco Dos Santos
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Brett G Olivier
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Joost Boele
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | | | | | - Petra Krumpochova
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Gunnar W Klau
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Giera
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bas Teusink
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Philippe Goffin
- GSK Vaccines, Rixensart, Belgium
- Laboratoire de Génétique et Physiologie Bactérienne, IBMM, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
29
|
Dewan KK, Taylor-Mulneix DL, Hilburger LJ, Rivera I, Preston A, Harvill ET. An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. J Infect Dis 2017; 216:899-906. [PMID: 28973366 PMCID: PMC5853889 DOI: 10.1093/infdis/jix251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 12/02/2022] Open
Abstract
Background The lack of animal models to experimentally study how infectious agents transmit between hosts limits our understanding of what makes some pathogens so contagious. Methods We recently developed a Bordetella bronchiseptica mouse model to study transmission and have used it to assess, for the first time, which of several well-studied "virulence factors" common to classical Bordetella species contribute to transmission. Results Among 13 mutants screened, a mutant lacking an extracellular polysaccharide (EPS) locus consistently failed to transmit. The loss of EPS had no obvious effect on in vitro characteristics of growth, adherence, cytotoxicity, or serum resistance, though it profoundly reduced the ability of the mutant to colonize the lower respiratory tract of mice. While wild-type B. bronchiseptica was shed from colonized mice and efficiently transmitted to cage-mates, the mutant colonized less efficiently, shed at lower numbers, and consequently did not transmit to naive animals. Conclusions These results have important implications for potential roles of polysaccharides in the pathogenesis and transmission of Bordetella species as well as other respiratory pathogens. Cases of pertussis (whooping cough) caused by Bordetella pertussis are on the rise, and understanding factors that contribute to their spread is critical to its control.
Collapse
Affiliation(s)
- Kalyan K Dewan
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens
| | - Dawn L Taylor-Mulneix
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens
| | | | - Israel Rivera
- Infectious Disease Graduate Program, University of Georgia, Athens
| | - Andrew Preston
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Eric T Harvill
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and discuss recent findings and selected topics of interest in Bordetella pertussis virulence and pathogenesis and treatment of pertussis. It is not intended to cover issues on immune responses to B. pertussis infection or problems with currently used pertussis vaccines. RECENT FINDINGS Studies on the activities of various B. pertussis virulence factors include the immunomodulatory activities of filamentous hemagglutinin, fimbriae, and adenylate cyclase toxin. Recently emerging B. pertussis strains show evidence of genetic selection for vaccine escape mutants, with changes in vaccine antigen-expressing genes, some of which may have increased the virulence of this pathogen. Severe and fatal pertussis in young infants continues to be a problem, with several studies highlighting predictors of fatality, including the extreme leukocytosis associated with this infection. Treatments for pertussis are extremely limited, though early antibiotic intervention may be beneficial. Neutralizing pertussis toxin activity may be an effective strategy, as well as targeting two host proteins, pendrin and sphingosine-1-phosphate receptors, as novel potential therapeutic interventions. SUMMARY Pertussis is reemerging as a major public health problem and continued basic research is revealing information on bacterial virulence and disease pathogenesis, as well as potential novel strategies for vaccination and targets for therapeutic intervention.
Collapse
|
31
|
Otsuka N, Guiso N, Bouchez V. The length of poly(C) stretch in the Bordetella pertussis Pfim3 promoter determines the vag or vrg function of the fim3 gene. MICROBIOLOGY-SGM 2017; 163:1364-1368. [PMID: 28809156 DOI: 10.1099/mic.0.000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bordetella pertussis, a human pathogenic bacterium, produces either one or two types of serologically distinct fimbriae, Fim2 and Fim3, as virulence factors. The expression of fim2 and fim3 is regulated by the BvgAS two-component system and the length of poly(C) stretches in Pfim promoters. In the Bvg+ phase, B. pertussis virulence-activated genes (vags) are up-regulated and virulence-repressed genes (vrgs) are down-regulated. Previous studies have shown that fim2 is a vag, but there is no consensus on fim3 regulation. We examined the regulation of fimbrial expression in B. pertussis clinical isolates. Our findings indicate that fim2 is a vag, while fim3 is a vag when Pfim3 poly(C)>13C, and a vrg when poly(C)≤13C. Although increased fim3 expression was observed in the Bvg- phase in isolates with Pfim3 poly(C)≤13C, Fim3 production was not detected, suggesting post-transcriptional regulation of fim3 expression. These findings provide an insight into the regulation of fimbrial expression in B. pertussis.
Collapse
Affiliation(s)
- Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0002, Japan
| | - Nicole Guiso
- Institut Pasteur, Molecular Prevention and Therapy of Human Diseases, 25 rue du Dr Roux, Paris 75015, France.,URAS-CNRS 3012, Paris 75015, France
| | - Valérie Bouchez
- Institut Pasteur, Molecular Prevention and Therapy of Human Diseases, 25 rue du Dr Roux, Paris 75015, France.,URAS-CNRS 3012, Paris 75015, France
| |
Collapse
|
32
|
Hovingh ES, van den Broek B, Kuipers B, Pinelli E, Rooijakkers SHM, Jongerius I. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS Pathog 2017; 13:e1006531. [PMID: 28742139 PMCID: PMC5542704 DOI: 10.1371/journal.ppat.1006531] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/03/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. Despite wide-spread vaccination, whooping cough caused by the Gram-negative bacterium Bordetella pertussis remains a public health problem and has been re-emerging in the past decades. To this end, new vaccination strategies are being explored including the use of complement evasion molecules as vaccine candidates. Autotransporter Virulence associated gene 8 (Vag8) was previously shown to be involved in complement evasion. However, the molecular mechanism of this immune evasion was not understood. Considering knowledge on molecular mechanisms is crucial for further studies regarding vaccine development, we investigated the underlying mechanism of Vag8 induced complement evasion of B. pertussis. We show that both recombinant Vag8 as well as endogenously secreted Vag8 inhibits complement activation via the classical and lectin complement pathway at the level of C4 and C2. We identified a novel bacterial complement evasion strategy initiated by the binding of Vag8 to C1-inhibitor. This binding interferes with the interactions between C1-inhibitor and the proteases C1s, C1r and MASP-2 resulting in the release of active proteases that cleave C4 and C2 away from the bacterial surface. This environmental consumption of C4 and C2 leads to decreased complement deposition on the bacterial surface and hence inhibits complement-mediated killing of B. pertussis.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Betsy Kuipers
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elena Pinelli
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Development of a qualitative assay for screening of Bordetella pertussis isolates for pertussis toxin production. PLoS One 2017; 12:e0175326. [PMID: 28394915 PMCID: PMC5386250 DOI: 10.1371/journal.pone.0175326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
Abstract
Bordetella pertussis infection has been increasing in the US, with reported cases reaching over 50,000 in 2012, a number last observed in the 1950s. Concurrently, B. pertussis lacking the pertactin protein, one of the immunogens included in the acellular vaccine formulations, has rapidly emerged since 2010, and has become the predominant circulating phenotype. Monitoring the production of the remaining acellular vaccine immunogens, such as pertussis toxin (Pt), is a critical next step. To date, methods for screening Pt have been either through genomic sequencing means or by conventional ELISAs. However, sequencing limits detection to the DNA level, missing potential disruptions in transcription or translation. Conventional ELISAs are beneficial for detecting the protein; however, they can often suffer from poor sensitivity and specificity. Here we describe a rapid, highly sensitive and specific electrochemiluminescent capture ELISA that can detect Pt production in prepared inactivated bacterial suspensions. Over 340 isolates were analyzed and analytical validation parameters, such as precision, reproducibility, and stability, were rigorously tested. Intra-plate and inter-plate variability measured at 9.8% and 11.5%, respectively. Refrigerated samples remained stable for two months and variability was unaffected (coefficient of variation was 12%). Interestingly, despite the intention of being a qualitative method, the assay was sensitive enough to detect a small, but statistically significant, difference in protein production between different pertussis promoter allelic groups of strains, ptxP1 and ptxP3. This technology has the ability to perform screening of multiple antigens at one time, thus, improving testing characteristics while minimizing costs, specimen volume, and testing time.
Collapse
|
34
|
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement. J Bacteriol 2017; 199:JB.00806-16. [PMID: 28167525 DOI: 10.1128/jb.00806-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology.
Collapse
|
35
|
Emerging Bordetella pertussis Strains Induce Enhanced Signaling of Human Pattern Recognition Receptors TLR2, NOD2 and Secretion of IL-10 by Dendritic Cells. PLoS One 2017; 12:e0170027. [PMID: 28076445 PMCID: PMC5226795 DOI: 10.1371/journal.pone.0170027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/26/2016] [Indexed: 01/04/2023] Open
Abstract
Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis.
Collapse
|
36
|
Lapidot R, Gill CJ. The Pertussis resurgence: putting together the pieces of the puzzle. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2016; 2:26. [PMID: 28883970 PMCID: PMC5530967 DOI: 10.1186/s40794-016-0043-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/23/2016] [Indexed: 01/13/2023]
Abstract
Pertussis incidence is rising in almost every country where acellular pertussis (aP) vaccines have been introduced, and is occurring across all age groups from infancy to adulthood. The key question is why? While several known factors such as waning of immunity, detection bias due to more sensitive tests and higher awareness of the disease among practitioners, and evolutionary shifts among B. pertussis all likely contribute, collectively, these do not adequately explain the existing epidemiologic data, suggesting that additional factors also contribute. Key amongst these is recent data indicating that the immune responses induced by aP vaccines differ fundamentally from those induced by the whole cell pertussis (wP) vaccines, and do not lead to mucosal immunity. If so, it appears likely that differences in how the two categories of vaccines work, may be pivotal to our overall understanding of the pertussis resurgence.
Collapse
Affiliation(s)
- Rotem Lapidot
- Department of Pediatric Infectious Diseases, Boston Medical Center, Boston, MA USA
| | - Christopher J Gill
- Department of Global Health, Boston University School of Public Health, Boston, MA USA.,Center for Global Health and Development, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118 USA
| |
Collapse
|
37
|
Dorji D, Graham RM, Richmond P, Keil A, Mukkur TK. Biofilm forming potential and antimicrobial susceptibility of newly emerged Western Australian Bordetella pertussis clinical isolates. BIOFOULING 2016; 32:1141-1152. [PMID: 27669900 DOI: 10.1080/08927014.2016.1232715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/30/2016] [Indexed: 05/23/2023]
Abstract
Whooping cough caused by Bordetella pertussis is increasing in several countries despite high vaccine coverage. One potential reason for the resurgence is the emergence of genetic variants of the bacterium. Biofilm formation has recently been associated with the pathogenesis of B. pertussis. Biofilm formation of 21 Western Australian B. pertussis clinical isolates was investigated. All isolates formed thicker biofilms than the reference vaccine strain Tohama I while retaining susceptibility to ampicillin, erythromycin, azithromycin and streptomycin. When two biofilm-forming clinical isolates were compared with Tohama I, minimum bactericidal concentrations of antimicrobial agents increased. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis revealed significant differences in protein expression in B. pertussis biofilms, providing an opportunity for identification of novel biofilm-associated antigens for incorporation in current pertussis vaccines to improve their protective efficacy. The study also highlights the importance of determining antibiograms for biofilms to formulate improved antimicrobial therapeutic regimens.
Collapse
Affiliation(s)
- Dorji Dorji
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
- c Jigme Dorji Wangchuck National Referral Hospital , Khesar Gyalpo University of Medical Sciences of Bhutan , Thimphu , Bhutan
| | - Ross M Graham
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
| | | | - Anthony Keil
- b Princess Margaret Hospital , Perth , Australia
| | - Trilochan K Mukkur
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
| |
Collapse
|
38
|
Hoonakker ME, Verhagen LM, Pupo E, de Haan A, Metz B, Hendriksen CFM, Han WGH, Sloots A. Vaccine-Mediated Activation of Human TLR4 Is Affected by Modulation of Culture Conditions during Whole-Cell Pertussis Vaccine Preparation. PLoS One 2016; 11:e0161428. [PMID: 27548265 PMCID: PMC4993483 DOI: 10.1371/journal.pone.0161428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/05/2016] [Indexed: 12/01/2022] Open
Abstract
The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer.
Collapse
Affiliation(s)
- Marieke E. Hoonakker
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Lisa M. Verhagen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Alex de Haan
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Bernard Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Coenraad F. M. Hendriksen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wanda G. H. Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arjen Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
39
|
Shuel M, Lefebvre B, Whyte K, Hayden K, De Serres G, Brousseau N, Tsang RS. Antigenic and genetic characterization of Bordetella pertussis recovered from Quebec, Canada, 2002–2014: detection of a genetic shift. Can J Microbiol 2016; 62:437-41. [DOI: 10.1139/cjm-2015-0781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite vaccination, cyclical peaks of Bordetella pertussis incidence rates are still observed in Canada and other developed countries, making pertussis one of the most prevalent vaccine preventable bacterial diseases. In the postacellular vaccine era, evolution of bacterial strains has resulted in strains with altered vaccine antigens. Previous Canadian studies have focused on isolates mainly from the provinces of Ontario and Alberta, with only small numbers of isolates from other provinces. Therefore, in this study, we examined a larger sample (n = 52) of isolates from Quebec, Canada, between 2002 and 2014. Isolates were characterized by serotype, sequence type, and prevalence of pertactin deficiency. The Quebec isolates shared characteristics similar to other Canadian isolates and to isolates circulating globally. Although pertactin-deficient isolates were not present, a significant shift in sequence type was observed in more recent years. This study highlights the importance of continually monitoring disease-causing isolates to track evolutionary trends and gain a better understanding of the molecular epidemiology of pertussis in Canada.
Collapse
Affiliation(s)
- Michelle Shuel
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Kathleen Whyte
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Kristy Hayden
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Gaston De Serres
- Institut National de Sante Publique du Québec, Quebec, Canada
- Laval University, Quebec, Canada
| | | | - Raymond S.W. Tsang
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Page SC, Silversmith RE, Collins EJ, Bourret RB. Imidazole as a Small Molecule Analogue in Two-Component Signal Transduction. Biochemistry 2015; 54:7248-60. [PMID: 26569142 DOI: 10.1021/acs.biochem.5b01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In two-component signal transduction systems (TCSs), responses to stimuli are mediated through phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule analogues of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that additionally utilize Asp → His phosphotransfer through the use of an additional component, the histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to imidazole required the intact RR active site, indicating that the RR provided the core catalytic machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated RR·imidazole complex showed imidazole oriented in the RR active site similarly to the His of an Hpt. Imidazole interacted with RR nonconserved active site residues, which influenced the relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences exhibited by the YPD1 Hpt.
Collapse
Affiliation(s)
- Stephani C Page
- Department of Biochemistry & Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599-7260, United States
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| | - Edward J Collins
- Department of Biochemistry & Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599-7260, United States.,Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
41
|
Bart MJ, van der Heide HGJ, Zeddeman A, Heuvelman K, van Gent M, Mooi FR. Complete Genome Sequences of 11 Bordetella pertussis Strains Representing the Pandemic ptxP3 Lineage. GENOME ANNOUNCEMENTS 2015; 3:e01394-15. [PMID: 26607899 PMCID: PMC4661318 DOI: 10.1128/genomea.01394-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/31/2023]
Abstract
Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin.
Collapse
Affiliation(s)
- Marieke J Bart
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G J van der Heide
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anne Zeddeman
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees Heuvelman
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Frits R Mooi
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
42
|
Abstract
The introduction of vaccination in the 1950s significantly reduced the morbidity and mortality of pertussis. However, since the 1990s, a resurgence of pertussis has been observed in vaccinated populations, and a number of causes have been proposed for this phenomenon, including improved diagnostics, increased awareness, waning immunity, and pathogen adaptation. The resurgence of pertussis highlights the importance of standardized, sensitive, and specific laboratory diagnoses, the lack of which is responsible for the large differences in pertussis notifications between countries. Accurate laboratory diagnosis is also important for distinguishing between the several etiologic agents of pertussis-like diseases, which involve both viruses and bacteria. If pertussis is diagnosed in a timely manner, antibiotic treatment of the patient can mitigate the symptoms and prevent transmission. During an outbreak, timely diagnosis of pertussis allows prophylactic treatment of infants too young to be (fully) vaccinated, for whom pertussis is a severe, sometimes fatal disease. Finally, reliable diagnosis of pertussis is required to reveal trends in the (age-specific) disease incidence, which may point to changes in vaccine efficacy, waning immunity, and the emergence of vaccine-adapted strains. Here we review current approaches to the diagnosis of pertussis and discuss their limitations and strengths. In particular, we emphasize that the optimal diagnostic procedure depends on the stage of the disease, the age of the patient, and the vaccination status of the patient.
Collapse
Affiliation(s)
- Anneke van der Zee
- Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, The Netherlands
| | | | - Frits R Mooi
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 2015; 73:ftv073. [PMID: 26394801 DOI: 10.1093/femspd/ftv073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease.
Collapse
Affiliation(s)
- Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| |
Collapse
|
44
|
Bouchez V, Hegerle N, Strati F, Njamkepo E, Guiso N. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates. Vaccines (Basel) 2015; 3:751-70. [PMID: 26389958 PMCID: PMC4586476 DOI: 10.3390/vaccines3030751] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN), were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA) or pertussis toxin (PT) deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE) cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.
Collapse
Affiliation(s)
- Valérie Bouchez
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicolas Hegerle
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Francesco Strati
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Elisabeth Njamkepo
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicole Guiso
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| |
Collapse
|
45
|
Gaillard ME, Bottero D, Moreno G, Rumbo M, Hozbor D. Strategies and new developments to control pertussis, an actual health problem. Pathog Dis 2015; 73:ftv059. [PMID: 26260328 DOI: 10.1093/femspd/ftv059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this article is to describe the current epidemiological situation of pertussis, as well as different short-term strategies that have been implemented to alleviate this threat. The state of the art of the development of new vaccines that are expected to provide long-lasting immunity against pertussis was also included.
Collapse
Affiliation(s)
- María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| |
Collapse
|
46
|
Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P, Paulke-Korinek M, Repa A, Mooi FR, Kollaritsch H, Mittermayer H, Kessler HH, Stanek G, Steinborn R, Duchêne M, Wiedermann U. Genetic Variation of Bordetella pertussis in Austria. PLoS One 2015; 10:e0132623. [PMID: 26182210 PMCID: PMC4504479 DOI: 10.1371/journal.pone.0132623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.
Collapse
Affiliation(s)
- Birgit Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Helen Melzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Astellas Pharma, Vienna, Austria
| | - Georg Freymüller
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Sabine Stumvoll
- Department of Hygiene, Microbiology and Tropical Medicine, Elisabethinen Hospital, Linz, Austria
- analyse BioLab, Linz, Austria
| | - Pamela Rendi-Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Federal Ministry of Health, Vienna, Austria
| | - Maria Paulke-Korinek
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Federal Ministry of Health, Vienna, Austria
| | - Andreas Repa
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Frits R. Mooi
- Centre for Infectious Diseases Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Herwig Kollaritsch
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Helmut Mittermayer
- Department of Hygiene, Microbiology and Tropical Medicine, Elisabethinen Hospital, Linz, Austria
- analyse BioLab, Linz, Austria
| | - Harald H. Kessler
- Department of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Mooi FR, Zeddeman A, van Gent M. The pertussis problem: classical epidemiology and strain characterization should go hand in hand. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Mooi FR, Zeddeman A, van Gent M. The pertussis problem: classical epidemiology and strain characterization should go hand in hand. J Pediatr (Rio J) 2015; 91:315-7. [PMID: 25704450 DOI: 10.1016/j.jped.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Frits R Mooi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.
| | - Anne Zeddeman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marjolein van Gent
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
49
|
van Gent M, Heuvelman CJ, van der Heide HG, Hallander HO, Advani A, Guiso N, Wirsing von Kőnig CH, Vestrheim DF, Dalby T, Fry NK, Pierard D, Detemmerman L, Zavadilova J, Fabianova K, Logan C, Habington A, Byrne M, Lutyńska A, Mosiej E, Pelaz C, Gröndahl-Yli-Hannuksela K, Barkoff AM, Mertsola J, Economopoulou A, He Q, Mooi FR. Analysis of Bordetella pertussis clinical isolates circulating in European countries during the period 1998-2012. Eur J Clin Microbiol Infect Dis 2014; 34:821-30. [PMID: 25527446 PMCID: PMC4365279 DOI: 10.1007/s10096-014-2297-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Despite more than 50 years of vaccination, pertussis is still an endemic disease, with regular epidemic outbreaks. With the exception of Poland, European countries have replaced whole-cell vaccines (WCVs) by acellular vaccines (ACVs) in the 1990s. Worldwide, antigenic divergence in vaccine antigens has been found between vaccine strains and circulating strains. In this work, 466 Bordetella pertussis isolates collected in the period 1998–2012 from 13 European countries were characterised by multi-locus antigen sequence typing (MAST) of the pertussis toxin promoter (ptxP) and of the genes coding for proteins used in the ACVs: pertussis toxin (Ptx), pertactin (Prn), type 2 fimbriae (Fim2) and type 3 fimbriae (Fim3). Isolates were further characterised by fimbrial serotyping, multi-locus variable-number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). The results showed a very similar B. pertussis population for 12 countries using ACVs, while Poland, which uses a WCV, was quite distinct, suggesting that ACVs and WCVs select for different B. pertussis populations. This study forms a baseline for future studies on the effect of vaccination programmes on B. pertussis populations.
Collapse
Affiliation(s)
- M van Gent
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gabutti G, Azzari C, Bonanni P, Prato R, Tozzi AE, Zanetti A, Zuccotti G. Pertussis. Hum Vaccin Immunother 2014; 11:108-17. [PMID: 25483523 PMCID: PMC4514233 DOI: 10.4161/hv.34364] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 01/12/2023] Open
Abstract
Pertussis continues to be an important public-health issue. The high immunization coverage rates achieved, mainly in industrialized countries, have certainly decreased the spread of the pathogen. However, as immunity wanes, adolescents and adults play an important role in the dynamics of the infection. The surveillance system has several limitations and the underestimation of pertussis in adolescents, young adults and adults is mainly related to the atypical clinical characteristics of cases and the lack of lab confirmation. The real epidemiological impact of pertussis is not always perceived. The unavailability of comprehensive data should not hamper the adoption of active prophylactic measures designed to avoid the impact of waning immunity against pertussis. Different immunization strategies have been suggested and/or already adopted such as immunization of newborns, pre-school and school children, adolescents, adults, healthcare workers, childcare workers, pregnant women, cocoon strategy. Prevention of pertussis requires an integrated approach and the adoption of different immunization strategies, with the objective of achieving and maintaining high coverage rates.
Collapse
Affiliation(s)
- Giovanni Gabutti
- Department of Medical Sciences; University of Ferrara; Ferrara, Italy
| | - Chiara Azzari
- Department of Health Sciences; University of Florence and Anna Meyer Children’s University Hospital; Florence, Italy
| | - Paolo Bonanni
- Department of Health Sciences; University of Florence; Florence, Italy
| | - Rosa Prato
- Department of Medical and Surgical Sciences; University of Foggia; Foggia, Italy
| | - Alberto E Tozzi
- Bambino Gesù Children's Hospital and Research Institute; Rome, Italy
| | - Alessandro Zanetti
- Department of Biomedical Sciences for Health; University of Milan; Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics; University of Milan and Luigi Sacco Hospital; Milan, Italy
| |
Collapse
|