1
|
Castilla-Sedano AJ, Zapana-García J, Valdivia-Del Águila E, Padilla-Huamantinco PG, Guerra DG. Quantification of early biofilm growth in microtiter plates through a novel image analysis software. J Microbiol Methods 2024; 223:106979. [PMID: 38944284 DOI: 10.1016/j.mimet.2024.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
Collapse
Affiliation(s)
- Anderson J Castilla-Sedano
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - José Zapana-García
- Biomedical Engineering Program PUCP-UPCH, Pontificia Universidad Católica del Perú, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Valdivia-Del Águila
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Pierre G Padilla-Huamantinco
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru.
| |
Collapse
|
2
|
Zhang Y, Young P, Traini D, Li M, Ong HX, Cheng S. Challenges and current advances in in vitro biofilm characterization. Biotechnol J 2023; 18:e2300074. [PMID: 37477959 DOI: 10.1002/biot.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Biofilms are structured communities of bacterial cells encased in a self-produced polymeric matrix, which develop over time and exhibit temporal responses to stimuli from internal biological processes or external environmental changes. They can be detrimental, threatening public health and causing economic loss, while they also play beneficial roles in ecosystem health, biotechnology processes, and industrial settings. Biofilms express extreme heterogeneity in their physical properties and structural composition, resulting in critical challenges in understanding them comprehensively. The lack of detailed knowledge of biofilms and their phenotypes has deterred significant progress in developing strategies to control their negative impacts and take advantage of their beneficial applications. A range of in vitro models and characterization tools have been developed and used to study biofilm growth and, specifically, to investigate the impact of environmental and growth factors on their development. This review article discusses the existing knowledge of biofilm properties and explains how external factors, such as flow condition, surface, interface, and host factor, may impact biofilm growth. The limitations of current tools, techniques, and in vitro models that are currently used for biofilms are also presented.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
O'Brien EP, Mondal K, Chen CC, Hanley L, Drummond JL, Rockne KJ. Relationships between composite roughness and Streptococcus mutans biofilm depth under shear in vitro. J Dent 2023; 134:104535. [PMID: 37156358 DOI: 10.1016/j.jdent.2023.104535] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE To investigate the effect of substrate, surface roughness, and hydraulic residence time (HRT) on Streptococcus mutans biofilms growing on dental composites under conditions relevant to the oral cavity. METHODS Dental composites were prepared with varying amounts of polishing and incubated in a CDC bioreactor with an approximate shear of 0.4 Pa. S. mutans biofilms developed in the bioreactors fed sucrose or glucose and at 10-h or 40-h HRT for one week. Biofilms were characterized by confocal laser microscopy (CLM). Composite surface roughness was characterized by optical profilometry, and pre- and post-incubation composite surface fine structure and elemental composition were determined using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). RESULTS Polishing had a significant impact on surface roughness, varying by a factor of 15 between the polished samples and the unpolished control. S. mutans biofilms grew statistically significantly thicker on the unpolished composites. Biofilm thickness was greater at shorter 10-h HRT compared to 40-h HRT. In most cases, biofilm thickness was not statistically significantly greater in sucrose-fed bioreactors than in glucose-fed bioreactors. SEM-EDS analysis did not identify any significant change in elemental composition after aging. CONCLUSIONS Accurate characterization of oral cavity biofilms must consider shear forces and the use of techniques that minimize alteration of the biofilm structure. Under shear, surface smoothness is the most important factor determining S. mutans biofilm thickness followed by HRT, while sucrose presence did not result in significantly greater biofilm thickness. CLINICAL SIGNIFICANCE The obvious patterns of S. mutans growth along sub-micron scale grooving created by the polishing process suggested that initial biofilm attachment occurred in the shear-protected grooves. These results suggest that fine polishing may help prevent the initial formation of S. mutans biofilms compared to unpolished/coarse polished composites.
Collapse
Affiliation(s)
- Evan P O'Brien
- Department of Civil, Materials, and Environmental Engineering, University of Illinois-Chicago, Chicago, Illinois
| | - Karabi Mondal
- Department of Civil, Materials, and Environmental Engineering, University of Illinois-Chicago, Chicago, Illinois
| | - Chien-Chia Chen
- Department of Chemistry, University of Illinois-Chicago, Chicago, Illinois
| | - Luke Hanley
- Department of Chemistry, University of Illinois-Chicago, Chicago, Illinois
| | - James L Drummond
- Professor Emeritus of Restorative Dentistry, University of Illinois Chicago, Chicago, Illinois
| | - Karl J Rockne
- Department of Civil, Materials, and Environmental Engineering, University of Illinois-Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Mansouri M, O'Brien EP, Mondal K, Chen CC, Drummond JL, Hanley L, Rockne KJ. Stoichiometric models of sucrose and glucose fermentation by oral streptococci: Implications for free acid formation and enamel demineralization. Dent Mater 2023; 39:351-361. [PMID: 36906504 PMCID: PMC10162441 DOI: 10.1016/j.dental.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES The objective of this study is to develop stoichiometric models of sugar fermentation and cell biosynthesis for model cariogenic Streptococcus mutans and non-cariogenic Streptococcus sanguinis to better understand and predict metabolic product formation. METHODS Streptococcus mutans (strain UA159) and Streptococcus sanguinis (strain DSS-10) were grown separately in bioreactors fed brain heart infusion broth supplemented with either sucrose or glucose at 37 °C. Cell mass concentration and fermentation products were measured at different hydraulic residence times (HRT) to determine cell growth yield. RESULTS Sucrose growth yields were 0.080 ± 0.0078 g cell/g and 0.18 ± 0.031 g cell/g for S. sanguinis and S. mutans, respectively. For glucose, this reversed, with S. sanguinis having a yield of 0.10 ± 0.0080 g cell/g and S. mutans 0.053 ± 0.0064 g cell/g. Stoichiometric equations to predict free acid concentrations were developed for each test case. Results demonstrate that S. sanguinis produces more free acid at a given pH than S. mutans due to lesser cell yield and production of more acetic acid. Greater amounts of free acid were produced at the shortest HRT of 2.5 hr compared to longer HRTs for both microorganisms and substrates. SIGNIFICANCE The finding that the non-cariogenic S. sanguinis produces greater amounts of free acids than S. mutans strongly suggests that bacterial physiology and environmental factors affecting substrate/metabolite mass transfer play a much greater role in tooth or enamel/dentin demineralization than acidogenesis. These findings enhance the understanding of fermentation production by oral streptococci and provide useful data for comparing studies under different environmental conditions.
Collapse
Affiliation(s)
- Marzieh Mansouri
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Evan P O'Brien
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Karabi Mondal
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Chien-Chia Chen
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - James L Drummond
- Professor Emeritus of Restorative Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Karl J Rockne
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Suttasattakrit K, Khamkeaw A, Tangwongsan C, Pavasant P, Phisalaphong M. Ionic Silver and Electrical Treatment for Susceptibility and Disinfection of Escherichia coli Biofilm-Contaminated Titanium Surface. Molecules 2021; 27:molecules27010180. [PMID: 35011409 PMCID: PMC8746777 DOI: 10.3390/molecules27010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, surface disinfection and biofilm susceptibility were investigated by applying ionic silver of 0.4–1.6 µg/mL and cathodic voltage-controlled electrical treatment of 1.8 V and a current of 30 mA to Escherichia coli (E. coli) ATCC 25922 biofilm-contaminated titanium substrates. Herein, it is evident that the treatment exhibited the potential use to enhance the susceptibility of bacterial biofilms for surface disinfection. In vitro studies have demonstrated that the ionic silver treatment of 60 min significantly increased the logarithmic reduction (LR) of bacterial populations on disinfectant-treated substrates and the electrical treatment enhanced the silver susceptibility of E. coli biofilms. The LR values after the ionic silver treatments and the electric-enhanced silver treatments were in the ranges of 1.94–2.25 and 2.10–2.73, respectively. The treatment was also associated with morphological changes in silver-treated E. coli cells and biofilm-contaminated titanium surfaces. Nevertheless, the treatments showed no cytotoxic effects on the L929 mouse skin fibroblast cell line and only a slight decrease in pH was observed during the electrical polarization of titanium substrate.
Collapse
Affiliation(s)
- Kritphudis Suttasattakrit
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Arnon Khamkeaw
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chanchana Tangwongsan
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +662-218-6875
| |
Collapse
|
6
|
Roveto PM, Gupta A, Schuler AJ. Effects of surface skewness on local shear stresses, biofilm activity, and microbial communities for wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124251. [PMID: 33157445 DOI: 10.1016/j.biortech.2020.124251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
This study's objective was to assess attachment surface skewness (asymmetric surface height variation) effects on biofilm development. 3D printed molds were used to create surfaces with 300 μm features to provide opposite skewness but identical roughness values. Surfaces with negative skewness had consistently greater nitrite oxidation and biomass growth than other surfaces during biofilm development when studied in annular bioreactor systems. CFD modelling predicted local shear stress differences that could explain experimental results. 16 s rRNA gene amplicon sequencing revealed population differences, including relatively high Acinetobacter and Terrimonas fractions on the negative skew surfaces, and PCoA analyses indicated the flat surface populations diverged from the skew surfaces by the study's end. The results suggest skewness is particularly important in systems where biofilms have not overgrown surface features, as in system startup, thin biofilms, and shorter time frame studies, which includes much previous microbial attachment research.
Collapse
Affiliation(s)
- Philip M Roveto
- University of New Mexico, 1 University Blvd, Albuquerque, NM 87131, United States.
| | - Adwaith Gupta
- Paanduv Applications, 124 Parwana Nagar, Bareilly, UP 243122, India.
| | - Andrew J Schuler
- University of New Mexico, 1 University Blvd, Albuquerque, NM 87131, United States.
| |
Collapse
|
7
|
A. KS, P. D, G. D, J. N, G.S. H, S. AS, K. J, R. M. Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Menezes BRC, Montanheiro TLDA, Sampaio ADG, Koga‐Ito CY, Thim GP, Montagna LS. PCL
/
β‐AgVO
3
nanocomposites obtained by solvent casting as potential antimicrobial biomaterials. J Appl Polym Sci 2020. [DOI: 10.1002/app.50130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasmas and Processes Technological Institute of Aeronautics São Paulo Brazil
- Technology Laboratory of Polymers and Biopolymers Federal University of São Paulo São Paulo Brazil
| | - Aline da Graça Sampaio
- Genoma Laboratory, São José dos Campos Institute of Science and Technology São Paulo State University (UNESP) São Paulo Brazil
| | - Cristiane Yumi Koga‐Ito
- Genoma Laboratory, São José dos Campos Institute of Science and Technology São Paulo State University (UNESP) São Paulo Brazil
| | - Gilmar Patrocínio Thim
- Laboratory of Plasmas and Processes Technological Institute of Aeronautics São Paulo Brazil
| | - Larissa Stieven Montagna
- Technology Laboratory of Polymers and Biopolymers Federal University of São Paulo São Paulo Brazil
| |
Collapse
|
9
|
Bhardwaj DK, Taneja NK, Dp S, Chakotiya A, Patel P, Taneja P, Sachdev D, Gupta S, Sanal MG. Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products. Int J Food Microbiol 2020; 336:108899. [PMID: 33160121 DOI: 10.1016/j.ijfoodmicro.2020.108899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Escherichia coli are commensal gastrointestinal microflora of humans, but few strains may cause food-borne diseases. Present study aimed to identify antimicrobial resistant (AMR), biofilm-forming E. coli from Indian dairy and meat products. A total of 32 E. coli isolates were identified and evaluated for biofilm-formation. EMC17, an E. coli isolate was established as a powerful biofilm-former that attained maximum biofilm-formation within 96 h on glass and stainless-steel surfaces. Presence and expression of virulence-associated genes (adhesins, invasins and polysaccharides) and ability to adhere and invade human liver carcinoma HepG2 cell lines implicates EMC17 to be pathotype belonging to Extra-intestinal Pathogenic E. coli (ExPEC). Antibiotic profiling of EMC17 identified it as multi-drug resistant (MDR) strain, possessing extended spectrum β-lactamases (ESBL's) and biofilm phenotype. Early production of quorum sensing molecules (AHLs) alongside EPS production facilitated early onset of biofilm formation by EMC17. Furthermore, the biofilm-forming genes of EMC17 were significantly upregulated 3-27 folds in the biofilm-state. This study showed prevalence of MDR, biofilm-forming, pathogenic E. coli in Indian dairy and meat products that potentially serve as reservoirs for transmission of antimicrobial-resistant (AMR) genes of bacteria from food to humans and pose serious food safety threat.
Collapse
Affiliation(s)
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India.
| | - Shivaprasad Dp
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Ankita Chakotiya
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Praveen Patel
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Pankaj Taneja
- Department of Life Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Divya Sachdev
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Sarita Gupta
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | | |
Collapse
|
10
|
Ostrov I, Polishchuk I, Shemesh M, Pokroy B. Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food. ACS APPLIED BIO MATERIALS 2019; 2:4932-4940. [DOI: 10.1021/acsabm.9b00674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
- Institute of Dental Sciences, Hebrew University−Hadassah Medical School, Jerusalem 91120, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Moshe Shemesh
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
11
|
Pogorelov AG, Kuznetsov AL, Panait AI, Pogorelova MA, Suvorov OA, Ivanitskii GR. Bacterial Film Disintegration with Electrochemically Reduced Water. DOKL BIOCHEM BIOPHYS 2019; 486:206-208. [PMID: 31367822 DOI: 10.1134/s1607672919030098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 11/22/2022]
Abstract
The aim of this work was to study the fine structure of bacterial films grown on the inner tube surface of a flow reactor. Using the scanning electron microscopy (SEM) approaches, the detailed biofilm relief was visualized. The action of electrochemically reduced water (ERW) on the biofilm ultrastructure generated by the plankton form of E. coli and/or lacto bacteria was investigated. The treatment with an ERW solution destroyed the biofilm organic polymer matrix and bacterial cells embedded in the matrix.
Collapse
Affiliation(s)
- A G Pogorelov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia.
| | - A L Kuznetsov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - A I Panait
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - M A Pogorelova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - O A Suvorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - G R Ivanitskii
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| |
Collapse
|
12
|
Kleine D, Chodorski J, Mitra S, Schlegel C, Huttenlochner K, Müller‐Renno C, Mukherjee J, Ziegler C, Ulber R. Monitoring of biofilms grown on differentially structured metallic surfaces using confocal laser scanning microscopy. Eng Life Sci 2019; 19:513-521. [PMID: 32625028 PMCID: PMC6999451 DOI: 10.1002/elsc.201800176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022] Open
Abstract
Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)-expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP-expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.
Collapse
Affiliation(s)
- Daniel Kleine
- Institute of Bioprocess EngineeringTU KaiserslauternKaiserslauternGermany
| | - Jonas Chodorski
- Institute of Bioprocess EngineeringTU KaiserslauternKaiserslauternGermany
| | - Sayani Mitra
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | - Christin Schlegel
- Institute of Bioprocess EngineeringTU KaiserslauternKaiserslauternGermany
| | | | | | | | - Christiane Ziegler
- Department of Physics and Research Center OPTIMASTU KaiserslauternKaiserslauternGermany
| | - Roland Ulber
- Institute of Bioprocess EngineeringTU KaiserslauternKaiserslauternGermany
| |
Collapse
|
13
|
Pogorelov AG, Kuznetsov AL, Pogorelova VN, Suvorov OA, Panait AI, Pogorelova MA. Destruction of a Bacterial Biofilm with an Electrochemically Activated Solution. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091904016x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Ostrov I, Sela N, Belausov E, Steinberg D, Shemesh M. Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiol 2019; 82:316-324. [PMID: 31027789 DOI: 10.1016/j.fm.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air-liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel; Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Doron Steinberg
- Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
15
|
Hrubanova K, Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Samek O. Monitoring Candida parapsilosis and Staphylococcus epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. SENSORS 2018; 18:s18124089. [PMID: 30469521 PMCID: PMC6308600 DOI: 10.3390/s18124089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 02/03/2023]
Abstract
The biofilm-forming microbial species Candida parapsilosis and Staphylococcus epidermidis have been recently linked to serious infections associated with implanted medical devices. We studied microbial biofilms by high resolution scanning electron microscopy (SEM), which allowed us to visualize the biofilm structure, including the distribution of cells inside the extracellular matrix and the areas of surface adhesion. We compared classical SEM (chemically fixed samples) with cryogenic SEM, which employs physical sample preparation based on plunging the sample into various liquid cryogens, as well as high-pressure freezing (HPF). For imaging the biofilm interior, we applied the freeze-fracture technique. In this study, we show that the different means of sample preparation have a fundamental influence on the observed biofilm structure. We complemented the SEM observations with Raman spectroscopic analysis, which allowed us to assess the time-dependent chemical composition changes of the biofilm in vivo. We identified the individual spectral peaks of the biomolecules present in the biofilm and we employed principal component analysis (PCA) to follow the temporal development of the chemical composition.
Collapse
Affiliation(s)
- Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Jana Nebesarova
- Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic.
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic.
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, CZ-61264 Brno, Czech Republic.
| |
Collapse
|
16
|
Disintegration of Bacterial Film by Electrochemically Activated Water Solution. Bull Exp Biol Med 2018; 165:493-496. [PMID: 30121931 DOI: 10.1007/s10517-018-4202-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 10/28/2022]
Abstract
The structure of bacterial film formed at the inner surface of the recirculation reactor tube, is studied. The surface relief of the biofilm was visualized by scanning electron microscopy. The effect of electrochemically activated water solution on the film formed from planktonic lactobacteria or E. coli was studied. Treatment with electrochemically activated water solution destroys cells and polymeric matrix of the biofilm.
Collapse
|
17
|
Hrubanova K, Nebesarova J, Ruzicka F, Krzyzanek V. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm. Micron 2018; 110:28-35. [PMID: 29715620 DOI: 10.1016/j.micron.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times.
Collapse
Affiliation(s)
- Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Nebesarova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
18
|
A Sustained-Release Membrane of Thiazolidinedione-8: Effect on Formation of a Candida/Bacteria Mixed Biofilm on Hydroxyapatite in a Continuous Flow Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3510124. [PMID: 29130039 PMCID: PMC5654278 DOI: 10.1155/2017/3510124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/23/2023]
Abstract
Thiazolidinediones (TZDs) have been found to act as effective quorum sensing quenchers, capable of preventing biofilm formation. Our previous studies demonstrated a profound antibiofilm effect of the TZD derivative thiazolidinedione-8 (S-8), either in solution or incorporated into a sustained-release membrane (SRM-S-8) under batch conditions. In the present study, we used a constant depth film fermenter model in order to investigate the impact of SRM-S-8 on mixed C. albicans-S. mutans biofilm development, under flow conditions. We found that essential parameters of cospecies biofilm maintenance and maturation, such as metabolic activity, biofilm thickness, roughness, extracellular polysaccharides production, and morphology of both pathogens, were altered by SRM-S-8 in the flow system. We propose that prolonged and sustained release of S-8 in a flow-through system allows better penetration of the active agent to deeper layers of the mixed biofilm, thereby increasing its activity against both pathogens. In conclusion, the use of a locally applied sustained-release drug delivery system of S-8 can affect the dental polymicrobial biofilm, resulting in clinical improvements and a better patient compliance.
Collapse
|
19
|
Berlanga M, Gomez-Perez L, Guerrero R. Biofilm formation and antibiotic susceptibility in dispersed cells versus planktonic cells from clinical, industry and environmental origins. Antonie van Leeuwenhoek 2017; 110:1691-1704. [PMID: 28770446 DOI: 10.1007/s10482-017-0919-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
We examined the cell-surface physicochemical properties, the biofilm formation capability and the antibiotic susceptibility in dispersed cells (from an artificial biofilm of alginate beads) and compared with their planktonic (free-swimming) counterparts. The strains used were from different origins, such as clinical (Acinetobacter baumannii AB4), cosmetic industry (Klebsiella oxytoca EU213, Pseudomonas aeruginosa EU190), and environmental (Halomonas venusta MAT28). In general, dispersed cells adhered better to surfaces (measured as the "biofilm index") and had a greater hydrophobicity [measured as the microbial affinity to solvents (MATS)] than planktonic cells. The susceptibility to two antibiotics (ciprofloxacin and tetracycline) of dispersed cells was higher compared with that of their planktonic counterparts (tested by the "bactericidal index"). Dispersed and planktonic cells exhibited differences in cell permeability, especially in efflux pump activity, which could be related to the differences observed in susceptibility to antibiotics. At 1 h of biofilm formation in microtiter plates, dispersed cells treated with therapeutic concentration of ciprofloxacin yielded a lower biofilm index than the control dispersed cells without ciprofloxacin. With respect to the planktonic cells, the biofilm index was similar with and without the ciprofloxacin treatment. In both cases there were a reduction of the number of bacteria measured as viable count of the supernatant. The lower biofilm formation in dispersed cells with ciprofloxacin treatment may be due to a significant increase of biofilm disruption with respect to the biofilm from planktonic cells. From a clinical point of view, biofilms formed on medical devices such as catheters, cells that can be related to an infection were the dispersed cells. Our results showed that early treatment with ciprofloxacin of dispersed cells could diminishe bacterial dispersion and facilitate the partial elimination of the new biofilm formed.
Collapse
Affiliation(s)
- Mercedes Berlanga
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Laura Gomez-Perez
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, IDIBELL, Barcelona, Spain
- Barcelona Knowledge Hub, Academia Europaea, Barcelona, Spain
| |
Collapse
|
20
|
Gusnaniar N, Sjollema J, Jong ED, Woudstra W, de Vries J, Nuryastuti T, van der Mei HC, Busscher HJ. Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber. Microb Biotechnol 2017; 10:1744-1752. [PMID: 28771954 PMCID: PMC5658628 DOI: 10.1111/1751-7915.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023] Open
Abstract
In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging.
Collapse
Affiliation(s)
- Niar Gusnaniar
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ed D Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Willem Woudstra
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Titik Nuryastuti
- Department of Microbiology, Universitas Gadjah Mada Yogyakarta, Yogyakarta, Indonesia
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
21
|
Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials. MATERIALS 2016; 9:ma9090770. [PMID: 28773891 PMCID: PMC5457037 DOI: 10.3390/ma9090770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
Abstract
Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications.
Collapse
|
22
|
Lüdecke C, Roth M, Yu W, Horn U, Bossert J, Jandt KD. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf B Biointerfaces 2016; 145:617-625. [DOI: 10.1016/j.colsurfb.2016.05.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/06/2023]
|
23
|
Gallo J, Panacek A, Prucek R, Kriegova E, Hradilova S, Hobza M, Holinka M. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E337. [PMID: 28773461 PMCID: PMC5503077 DOI: 10.3390/ma9050337] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| | - Ales Panacek
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, Olomouc 779 00, Czech Republic.
| | - Sarka Hradilova
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Martin Hobza
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| | - Martin Holinka
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| |
Collapse
|
24
|
Frenzel N, Maenz S, Sanz Beltrán V, Völpel A, Heyder M, Sigusch BW, Lüdecke C, Jandt KD. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties. Dent Mater 2016; 32:476-87. [PMID: 26775012 DOI: 10.1016/j.dental.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. METHODS Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). RESULTS All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. SIGNIFICANCE Modifying the composite surface structure may be a clinically suitable approach to control the microbial adhesion and thus, to reduce the risk of secondary caries at dental composite restorations. Smaller composite surface structures may be useful for accomplishing this.
Collapse
Affiliation(s)
- Nadja Frenzel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Stefan Maenz
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Vanesa Sanz Beltrán
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Andrea Völpel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Markus Heyder
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Bernd W Sigusch
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Claudia Lüdecke
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany.
| |
Collapse
|
25
|
Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2016; 7:493-512. [PMID: 25875875 DOI: 10.4155/fmc.15.6] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biofilms are communities of microorganisms that are attached to a surface and play a significant role in the persistence of bacterial infections. Bacteria within a biofilm are several orders of magnitude more resistant to antibiotics, compared with planktonic bacteria. Thus far, no drugs are in clinical use that specifically target bacterial biofilms. This is probably because until recently the molecular details of biofilm formation were poorly understood. Bacteria integrate information from the environment, such as quorum-sensing autoinducers and nutrients, into appropriate biofilm-related gene expression, and the identity of the key players, such as cyclic dinucleotide second messengers and regulatory RNAs are beginning to be uncovered. Herein, we highlight the current understanding of the processes that lead to biofilm formation in many bacteria.
Collapse
|
26
|
Elschner T, Lüdecke C, Kalden D, Roth M, Löffler B, Jandt KD, Heinze T. Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity. Macromol Biosci 2015; 16:522-34. [DOI: 10.1002/mabi.201500349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Elschner
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
| | - Claudia Lüdecke
- Materials Science; Otto Schott Institute of Materials Research; Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
- Jena Center of Microbial Communication (JCMC); Neugasse 23 07743 Jena Germany
| | - Diana Kalden
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
| | - Martin Roth
- Bio Pilot Plant; Leibniz Institute for Natural Product Research and Infection Biology; Hans Knöll Institute; Adolf-Reichwein-Straße 23 07745 Jena Germany
| | - Bettina Löffler
- Institute of Medical Microbiology; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
| | - Klaus D. Jandt
- Materials Science; Otto Schott Institute of Materials Research; Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
- Jena Center of Microbial Communication (JCMC); Neugasse 23 07743 Jena Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
| |
Collapse
|
27
|
Oh JK, Lu X, Min Y, Cisneros-Zevallos L, Akbulut M. Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19274-19281. [PMID: 26237234 DOI: 10.1021/acsami.5b05198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Because of the growing prevalence of antimicrobial resistance strains, there is an increasing need to develop material surfaces that prevent bacterial attachment and contamination in the absence of antibiotic agents. Herein, we present bacterial antiadhesive materials inspired from rice leaves. "Rice leaf-like surfaces" (RLLS) were fabricated by a templateless, self-masking reactive-ion etching approach. Bacterial attachment on RLLS was characterized under both static and dynamic conditions using Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. RLLS surfaces showed exceptional bacterial antiadhesion properties with a >99.9% adhesion inhibition efficiency. Furthermore, the optical properties of RLLS were investigated using UV-vis-NIR spectrophotometry. In contrast to most other bacterial antiadhesive surfaces, RLLS demonstrated optical-grade transparency (i.e., ≥92% transmission). We anticipate that the combination of bacterial antiadhesion efficiency, optical grade transparency, and the convenient single-step method of preparation makes RLLS a very attractive candidate for the surfaces of biosensors; endoscopes; and microfluidic, bio-optical, lab-on-a-chip, and touchscreen devices.
Collapse
Affiliation(s)
- Jun Kyun Oh
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Xiaoxu Lu
- Department of Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Younjin Min
- Department of Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77843, United States
| | - Mustafa Akbulut
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
28
|
Ren H, Colletta A, Koley D, Wu J, Xi C, Major TC, Bartlett RH, Meyerhoff ME. Thromboresistant/anti-biofilm catheters via electrochemically modulated nitric oxide release. Bioelectrochemistry 2015; 104:10-6. [PMID: 25588885 PMCID: PMC4480771 DOI: 10.1016/j.bioelechem.2014.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 12/17/2014] [Indexed: 01/25/2023]
Abstract
Inexpensive nitric oxide (NO) release strategies to prevent thrombosis and bacterial infections are desirable for implantable medical devices. Herein, we demonstrate the utility of electrochemically modulated NO release from a catheter model using an inner copper wire working electrode and an inorganic nitrite salt solution reservoir. These catheters generate NO surface fluxes of >1.0 × 10(-10)mol min(-1) cm(-2) for more than 60 h. Catheters with an NO flux of 1.1 × 10(-10)mol min(-1) cm(-2) are shown to significantly reduce surface thrombus formation when implanted in rabbit veins for 7h. Further, the ability of these catheters to exhibit anti-biofilm properties against bacterial species commonly causing bloodstream and urinary catheter infections is examined. Catheters releasing NO continuously during the 2d growth of Staphylococcus aureus exhibit a 6 log-unit reduction in viable surface bacteria. We also demonstrate that catheters generating NO for only 3h at a flux of 1.0 × 10(-10)mol min(-1) cm(-2) lower the live bacterial counts of both 2d and 4d pre-formed Escherichia coli biofilms by >99.9%. Overall, the new electrochemical NO-release devices could provide a cost-effective strategy to greatly enhance the biocompatibility and antimicrobial properties of intravascular and urinary catheters, as well as other implantable medical devices.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Alessandro Colletta
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Terry C Major
- Department of Surgery, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5686, USA
| | - Robert H Bartlett
- Department of Surgery, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5686, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
29
|
Siegismund D, Schroeter A, Lüdecke C, Undisz A, Jandt KD, Roth M, Rettenmayr M, Schuster S, Germerodt S. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis. BIOFOULING 2014; 30:1023-1033. [PMID: 25329612 DOI: 10.1080/08927014.2014.958999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2-3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation.
Collapse
Affiliation(s)
- Daniel Siegismund
- a Otto Schott Institute of Materials Research (OSIM) , Friedrich Schiller University Jena , Jena , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Y, Zha G, Luo Q, Zhang J, Zhang F, Li X, Zhao S, Zhu W, Li X. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability. Sci Rep 2014; 4:6172. [PMID: 25146099 PMCID: PMC4141259 DOI: 10.1038/srep06172] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/01/2014] [Indexed: 01/11/2023] Open
Abstract
The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed.
Collapse
Affiliation(s)
- Ying Huang
- 1] Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China [2] Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China [3]
| | - Guangyu Zha
- 1] Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China [2]
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, P. R. China
| | - Feng Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, P. R. China
| | - Shifang Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China
| | - Weipu Zhu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
31
|
Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 2014; 15:13849-80. [PMID: 25116685 PMCID: PMC4159828 DOI: 10.3390/ijms150813849] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
Collapse
|