1
|
Randell AM, Salia S, Fowler LF, Aung T, Puts DA, Swift-Gallant A. A meta-analysis of sex differences in neonatal rodent ultrasonic vocalizations and the implication for the preclinical maternal immune activation model. Biol Sex Differ 2025; 16:4. [PMID: 39863873 PMCID: PMC11762899 DOI: 10.1186/s13293-025-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model. Results indicate that sex differences in USVs vary with developmental stage and are more pronounced in MIA offspring. Specifically, developmental stage is a moderator of sex differences in USV call duration, with control females emitting longer calls than males in early development (up to postnatal day [PND] 8), but this pattern reverses after PND8. MIA leads to a reduction in call numbers for females compared to same-sex controls in early development, with a reversal post-PND8. MIA decreased call duration and increased total call duration in males, but unlike females, developmental stage did not influence these differences. In males, MIA effects varied by species, with decreased call numbers in rats but increased call numbers in mice. MIA timing (gestational day ≤ 12.5 vs. > 12.5) did not significantly affect results. Our findings highlight the importance of considering sex, developmental timing, and species in USVs research. We discuss how analyzing USV call types and incorporating sex as a biological variable can enhance our understanding of neonatal ultrasonic communication and its translational value in NDD research.
Collapse
Affiliation(s)
- Alison M Randell
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Stephanie Salia
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Lucas F Fowler
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Toe Aung
- Department of Psychology and Counseling, Immaculata University, Immaculata, PA, USA
| | - David A Puts
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| |
Collapse
|
2
|
Rutovskaya MV, Volodin IA, Feoktistova NY, Surov AV, Gureeva AV, Volodina EV. Acoustic complexity of pup isolation calls in Mongolian hamsters: 3-frequency phenomena and chaos. Curr Zool 2024; 70:559-574. [PMID: 39463689 PMCID: PMC11502153 DOI: 10.1093/cz/zoad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/13/2023] [Indexed: 10/29/2024] Open
Abstract
Studying pup isolation calls of wild rodents provides background for developing new early-life animal models for biomedical research and drug testing. This study discovered a highly complex acoustic phenotype of pup isolation calls in 4-5-day-old Mongolian hamsters Allocricetulus curtatus. We analyzed the acoustic structure of 5,010 isolation calls emitted in the broad range of frequencies (sonic, below 20 kHz, and ultrasonic, from 20 to 128 kHz) by 23 pups during 2-min isolation test trials, 1 trial per pup. In addition, we measured 5 body size parameters and the body weight of each pup. The calls could contain up to 3 independent fundamental frequencies in their spectra, the low (f0), the medium (g0), and the high (h0), or purely consisted of chaos in which the fundamental frequency could not be tracked. By presence/absence of the 3 fundamental frequencies or their combinations and chaos, we classified calls into 6 distinctive categories (low-frequency [LF]-f0, LF-chaos, high-frequency [HF]-g0, HF-h0, HF-g0 + h0, and HF-chaos) and estimated the relative abundance of calls in each category. Between categories, we compared acoustic parameters and estimated their relationship with pup body size index. We discuss the results of this study with data on the acoustics of pup isolation calls reported for other species of rodents. We conclude that such high complexity of Mongolian hamster pup isolation calls is unusual for rodents. Decreased acoustic complexity serves as a good indicator of autism spectrum disorders in knockout mouse models, which makes knockout hamster models prospective new wild animal model of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina V Rutovskaya
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Ilya A Volodin
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Natalia Y Feoktistova
- Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Surov
- Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anna V Gureeva
- Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Elena V Volodina
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
3
|
Tóth A, Keserű D, Pethő M, Détári L, Bencsik N, Dobolyi Á, Hajnik T. Sleep and local field potential effect of the D2 receptor agonist bromocriptine during the estrus cycle and postpartum period in female rats. Pharmacol Biochem Behav 2024; 239:173754. [PMID: 38537873 DOI: 10.1016/j.pbb.2024.173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Norbert Bencsik
- Cellular Neurobiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| |
Collapse
|
4
|
Bagheri F, Goudarzi I. Postnatal melatonin administration to stressed dams for ameliorating risk-taking behaviour in rat pups through maternal care improvement. Int J Dev Neurosci 2023. [PMID: 37114289 DOI: 10.1002/jdn.10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND AIM Anxiety often occurs both concurrently and sequentially in childhood and adolescence in association with prenatal stress, which may reduce the quality of maternal care and then cause mood disorders among children in later life. Against this background, melatonin, as a powerful antioxidant, was used in the present study to ameliorate risk-taking behaviour induced by pure maternal care in rat pups. MATERIALS AND METHODS The Wistar rat dams recruited in this study were exposed to restraint stress from gestational day (GD) 11 until delivery. They further received melatonin (10 mg/kg) during the postnatal days (PNDs) 0-7 by intraperitoneal (IP) injections at 4:00 PM. The pregnant rats were then divided into four groups, namely, control, stress, stress + melatonin and melatonin, and their maternal behaviour and corticosterone levels were measured. In the offspring, the outcomes of some behavioural tasks, including the elevated plus-maze (EPM) and open-field (OF) tests were ultimately assessed. RESULTS The study results revealed that the quantity and quality of maternal care significantly declined and the plasma corticosterone levels compounded in the stressed dams. Melatonin treatment, however, improved their nursing behaviour and reduced their plasma corticosterone levels. The offspring performance in two tasks also showed an upward trend in risk-taking behaviour in the stress group, and melatonin administration ameliorated the effects of stress and lessened their anxiety-like behaviour. CONCLUSION It was concluded that prenatal restraint stress could impair stress responses and quality of maternal care, whereas postnatal melatonin administration potentially contributed to the normalization of stress reaction and anxiolysis.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
5
|
Wei RM, Zhang YM, Li Y, Wu QT, Wang YT, Li XY, Li XW, Chen GH. Altered cognition and anxiety in adolescent offspring whose mothers underwent different-pattern maternal sleep deprivation, and cognition link to hippocampal expressions of Bdnf and Syt-1. Front Behav Neurosci 2022; 16:1066725. [PMID: 36570704 PMCID: PMC9772274 DOI: 10.3389/fnbeh.2022.1066725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Inadequate sleep during pregnancy negatively affects the neural development of offspring. Previous studies have focused on the continuous sleep deprivation (CSD) paradigm, but the sleep pattern during late pregnancy is usually fragmented. Objective To compare the effects of CSD and fragmented sleep deprivation (FSD) in late pregnancy on emotion, cognition, and expression of synaptic plasticity-related proteins in offspring mice. Methods Pregnant CD-1 mice were either subjected to 3/6 h of CSD/FSD during gestation days 15-21, while those in the control group were left untreated. After delivery, the offspring were divided into five groups, i.e., control (CON), short or long CSD (CSD3h, CSD6h), and short or long FSD (FSD3h, FSD6h). When the offspring were 2 months old, the anxiety-like behavior level was tested using the open field (OF) and elevated plus maze (EPM) test, and spatial learning and memory were evaluated using the Morris water maze (MWM) test. The expression of hippocampal of brain-derived neurotrophic factor (Bdnf) and synaptotagmin-1 (Syt-1) was determined using RT-PCR and western blotting. Results The CSD6h, FSD3h, and FSD6h had longer latency, fewer center times in the OF test, less open arms time and fewer numbers of entries in the open arms of the EPM, longer learning distance swam and lower memory percentage of distance swam in the target quadrant in the MWM test, and decreased BDNF and increased Syt-1 mRNA and protein levels in the hippocampus. Compared to the CSD6h, the FSD3h and FSD6h had longer distance swam, a lower percentage of distance swam in the target quadrant, decreased BDNF, and increased Syt-1 mRNA and protein levels in the hippocampus. Conclusion The results suggested that maternal sleep deprivation during late pregnancy impairs emotion and cognition in offspring, and FSD worsened the cognitive performance to a higher extent than CSD. The observed cognitive impairment could be associated with the expression of altered hippocampal of Bdnf and Syt-1 genes.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,Xue-Wei Li
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China,*Correspondence: Gui-Hai Chen
| |
Collapse
|
6
|
Shishelova AY, Smirnov K, Raevskiĭ VV. Influence of early social isolation on general activity and spatial learning in adult WAG/Rij rats. Dev Psychobiol 2022; 64:e22318. [PMID: 36282738 DOI: 10.1002/dev.22319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023]
Abstract
The study identifies the critical period of early ontogeny, during which social factors have the greatest influence on the operant behavior with positive reinforcement in adult WAG/Rij rats. Individual social isolation of rats from dam and siblings was performed daily for 3 h during postnatal day (PND) 2-8, 9-15, and 16-22. General activity and water consumption were examined using the IntelliCage (IC) in adulthood. The operant behavior training was performed in four consecutive sessions: free exploration of the IC environment (adaptation), learning to retrieve water by nosepoking (nosepoke adaptation), spatial learning to retrieve water in the specific corner (place learning), and retraining with a change of a place preference (reversal learning). Social isolation during PND16-22 led to the greatest behavioral changes in all sessions of the experiment. These rats were more active, consumed more water, demonstrated a higher ratio of visits with drinking to the total number, and relearned faster after changing the location of the rewarded corner. Thus, the postnatal period between days 16 and 22 in WAG/Rij rat pups is more sensitive to social isolation for change of adaptive behavior in the IC in adulthood.
Collapse
Affiliation(s)
- Anna Y Shishelova
- Laboratory of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.,Department of Physiology, Faculty of Medicine and Biology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kirill Smirnov
- Laboratory of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Vladimir V Raevskiĭ
- Laboratory of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
7
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
8
|
Pires GN, Oliveira TB, Mello VFF, Bezerra AG, Leenaars CHC, Ritskes-Hoitinga M, Tufik S, Andersen ML. Effects of sleep deprivation on maternal behaviour in animal models: A systematic review and meta-analysis. J Sleep Res 2021; 30:e13333. [PMID: 33719116 DOI: 10.1111/jsr.13333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/12/2023]
Abstract
Pregnancy is a period of numerous physical and emotional changes in women's lives, including alterations in sleep patterns and worsening of pre-existing sleep disturbances, which possibly lead to impaired postpartum maternal behaviour and mother-infant relationship. The effects of sleep deprivation during pregnancy in maternal behaviour have been evaluated in preclinical studies, but have provided inconsistent results. Thus, in the present study, we aimed to evaluate the effects of sleep deprivation during pregnancy on maternal behaviour of animals through a systematic review and meta-analyses. After a two-step selection process, six articles were included, all of them describing rat studies. The most frequently used method of sleep deprivation was rapid eye movement sleep restriction, using the multiple-platform method. Four meta-analyses were performed, none of them presenting significant impact of sleep deprivation on maternal behaviour, failing to reproduce the results observed in previous clinical studies. In conclusion, our results show a lack of translational applicability of animal models to evaluate the effects of sleep deprivation during pregnancy on maternal behaviour.
Collapse
Affiliation(s)
- Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Thainá B Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Victoria F F Mello
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Andréia G Bezerra
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Merel Ritskes-Hoitinga
- Systematic Review Centre for Laboratory (animal) Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands.,AUGUST, Department for Clinical Medicine, Aarhus University, Denmark
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Pires GN, Tufik S, Andersen ML. Effects of sleep restriction during pregnancy on postpartum maternal behavior in female rats. Behav Processes 2020; 179:104200. [PMID: 32710991 DOI: 10.1016/j.beproc.2020.104200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
Preclinical studies evaluating the effects of gestational sleep restriction on maternal behavior are needed in order to provide information on the background mechanisms underlying this relationship. In this study, 32 female 90 days-old Wistar-Hannover rats were distributed in two groups: Control group (CTRL - n = 13), not subjected to any manipulation during pregnancy; and sleep restriction group (SR - n = 19) - subjected to sleep restriction during the whole pregnancy (21 days). Maternal behavioral analysis was conducted from postpartum day 1 (PPD1) to PPD7, based on observational ethograms. On PPD11 the animals were subjected to the grooming analysis algorithm, followed by the elevated plus maze. Results from an ethogram-based analysis indicated a decrease in self-grooming among sleep-deprived rats (denoting reduced anxiety-like behavior), but no significant differences were found in maternal behavior (except for a slight increase in high arched-back nursing). Controlled analysis detected an impairment in high-arched back nursing in sleep-deprived animals. The grooming microstructure analysis showed an increased frequency of incorrect transitions among sleep restricted animals, indicating increased anxiety-like behavior. No significant differences were observed in the elevated-plus maze. In conclusion, sleep-restricted pregnant rats display an equivalent or slightly increased maternal behavior during the postpartum period, when compared to control animals.
Collapse
Affiliation(s)
- Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Pires GN, Benedetto L, Cortese R, Gozal D, Gulia KK, Kumar VM, Tufik S, Andersen ML. Effects of sleep modulation during pregnancy in the mother and offspring: Evidences from preclinical research. J Sleep Res 2020; 30:e13135. [PMID: 32618040 DOI: 10.1111/jsr.13135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Disturbed sleep during gestation may lead to adverse outcomes for both mother and child. Animal research plays an important role in providing insights into this research field by enabling ethical and methodological requirements that are not possible in humans. Here, we present an overview and discuss the main research findings related to the effects of prenatal sleep deprivation in animal models. Using systematic review approaches, we retrieved 42 articles dealing with some type of sleep alteration. The most frequent research topics in this context were maternal sleep deprivation, maternal behaviour, offspring behaviour, development of sleep-wake cycles in the offspring, hippocampal neurodevelopment, pregnancy viability, renal physiology, hypertension and metabolism. This overview indicates that the number of basic studies in this field is growing, and provides biological plausibility to suggest that sleep disturbances might be detrimental to both mother and offspring by promoting increased risk at the behavioural, hormonal, electrophysiological, metabolic and epigenetic levels. More studies on the effects of maternal sleep deprivation are needed, in light of their major translational perspective.
Collapse
Affiliation(s)
- Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rene Cortese
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing - Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Han Y, Wang J, Zhao Q, Xie X, Song R, Xiao Y, Kang X, Zhang L, Zhang Y, Peng C, You Z. Pioglitazone alleviates maternal sleep deprivation-induced cognitive deficits in male rat offspring by enhancing microglia-mediated neurogenesis. Brain Behav Immun 2020; 87:568-578. [PMID: 32032783 DOI: 10.1016/j.bbi.2020.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal sleep disturbance in pregnancy causes cognitive impairments and emotional disorders in offspring. Microglia-mediated inflammatory processes contribute to prenatal stress-induced neurodevelopmental deficits. Peroxisome proliferator-activated receptor gamma (PPARγ) activation underlies the switching of microglial activation phenotypes, which has emerged as a pharmacological target for regulating neuroinflammatory responses in the treatment of neuropsychiatric disorders. Here we investigated the effects of PPARγ-dependent microglial activation on neurogenesis and cognitive behavioral outcomes in male rat offspring exposed to maternal sleep deprivation (MSD) for 72 h from days 18-21 of pregnancy. In the Morris water maze test, male MSD rat offspring needed more time than control offspring to escape to the hidden platform and spent less time in the target quadrant when the hidden platform was removed. In MSD rat offspring, microglial density as determined by immunofluorescence was higher, microglia showed fewer and shorter processes, and neurogenesis in the hippocampus was significantly reduced. Levels of mRNA encoding pro-inflammatory markers IL-6, TNFα, and IL-1β were higher in male MSD offspring, whereas levels of anti-inflammatory markers Arg1, IL-4, and IL-10 were lower, as was PPARγ expression in the hippocampus. PPARγ activation by pioglitazone (30 mg/kg/day, i.p., 7 d) mitigated these negative effects of MSD, rescuing hippocampal neurogenesis and improving cognitive function. The PPARγ inhibitor GW9662 (1 mg/kg/day, i.p., 7 d) eliminated the effects of pioglitazone. Conditioned medium from pioglitazone-treated microglia promoted proliferation and differentiation of neural progenitor cells. These results suggest that MSD-induced deficits in spatial learning and memory can be ameliorated through PPARγ-dependent modulation of microglial phenotypes.
Collapse
Affiliation(s)
- Yue Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiutai Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuying Zhao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Song
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Xiao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xixi Kang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijuan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yue Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
12
|
Tóth A, Pethő M, Keserű D, Simon D, Hajnik T, Détári L, Dobolyi Á. Complete sleep and local field potential analysis regarding estrus cycle, pregnancy, postpartum and post-weaning periods and homeostatic sleep regulation in female rats. Sci Rep 2020; 10:8546. [PMID: 32444809 PMCID: PMC7244504 DOI: 10.1038/s41598-020-64881-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Sleep and local field potential (LFP) characteristics were addressed during the reproductive cycle in female rats using long-term (60-70 days) recordings. Changes in homeostatic sleep regulation was tested by sleep deprivation (SDep). The effect of mother-pup separation on sleep was also investigated during the postpartum (PP) period. First half of the pregnancy and early PP period showed increased wakefulness (W) and higher arousal indicated by elevated beta and gamma activity. Slow wave sleep (SWS) recovery was suppressed while REM sleep replacement was complete after SDep in the PP period. Pup separation decreased maternal W during early-, but increased during middle PP while did not affect during late PP. More W, less SWS, higher light phase beta activity but lower gamma activity was seen during the post-weaning estrus cycle compared to the virgin one. Maternal sleep can be governed by the fetuses/pups needs and their presence, which elevate W of mothers. Complete REM sleep- and incomplete SWS replacement after SDep in the PP period may reflect the necessity of maternal REM sleep for the offspring while SWS increase may compete with W essential for maternal care. Maternal experience may cause sleep and LFP changes in the post-weaning estrus cycle.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Dorina Simon
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
13
|
Tsuji C, Fujisaku T, Tsuji T. Oxytocin ameliorates maternal separation-induced ultrasonic vocalisation calls in mouse pups prenatally exposed to valproic acid. J Neuroendocrinol 2020; 32:e12850. [PMID: 32321197 DOI: 10.1111/jne.12850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/23/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder estimated by the World Health Organization to occur in one of 160 children worldwide. No pharmaceutical treatments are available to improve the deficits in social communication that are common symptoms of ASD. Recent clinical trials have focused on the nasal application of oxytocin, a neuronal peptide known to regulate a variety of social behaviours. However, the effect of oxytocin on this deficit is inconclusive. By contrast, evidence from ASD animal model studies indicates that when animals are treated with oxytocin during early development, improvements in social deficits are observed in adulthood. Thus, it is necessary to examine the effect of therapeutic target medication prescribed in early development. Mice prenatally exposed to valproic acid (VPA) are widely used as an animal model of ASD. However, many behavioural studies have been conducted during adulthood rather than early development. To establish a screening system to identify therapeutic drugs that are effective when delivered during the early postnatal period, it is important to examine the early developmental changes in their communicative behaviours. In the present study, we examined the ultrasonic vocalisation (USV) of VPA-exposed mice pups during their early postnatal developmental days. USV rates were comparable to those of the controls until the first week of their life but declined more on postnatal day 11. We checked the expression of oxytocin system in the hypothalamus and found the down-regulation of oxytocin and CD38, and up-regulation of oxytocin receptor in the VPA pups. Acute administration of oxytocin on postnatal day 11 increased the call rate of VPA pups. Taken together, we have demonstrated there was a deficiency in the oxytocinergic signalling in the VPA pups and also shown the existence of time periods that are effective with respect to screening the therapeutic drugs.
Collapse
Affiliation(s)
- Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Fujisaku
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Ophthalmology, Faculty of Medical Sciences, Life science innovation center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
14
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
15
|
Karthikeyan R, Cardinali DP, Shakunthala V, Spence DW, Brown GM, Pandi-Perumal SR. Understanding the role of sleep and its disturbances in Autism spectrum disorder. Int J Neurosci 2020; 130:1033-1046. [PMID: 31903819 DOI: 10.1080/00207454.2019.1711377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several studies have established a positive relationship between sleep difficulties and symptomatology in ASD children. The rationale for this review is to describe and discuss the sleep difficulties, which are one of the significant complications associated with autism spectrum disorder (ASD). PURPOSE Many types of sleep disorders have been reported in ASD individuals, but still lack a comprehensive study and in-depth analysis. Despite the contribution of sleep problems to the overall symptoms of ASD, the symptoms of disturbed sleep experienced by many affected patients have only recently started to receive attention from clinicians and family members. MATERIALS AND METHODS This narrative overview has been prepared based on searching standard research databases with specific keywords; b. Additional search was made using the bibliographies of the retrieved articles; and c. author's collection of relevant peer-reviewed articles. Once selected, manuscripts are then compared and summarized based on the author's perspective. Results are based on a qualitative rather than a quantitative level. RESULTS This article highlights the role of sleep in the brain and neural development of children and emphasizes that the intensity of sleep problems is associated with an increased occurrence of ASD symptoms. It also suggests the significance of treating sleep problems in ASD individuals. CONCLUSIONS The review provides broader perspectives and a better understanding of sleep problems in pathophysiology, mechanism, and management with respect to ASD individuals. Finally, the implications for clinical practice and future agendas have also been discussed.
Collapse
Affiliation(s)
- Ramanujam Karthikeyan
- Department of Animal Behavior & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Venkat Shakunthala
- Department of Zoology, University of Mysuru, Manasagangotri, Karnataka, India
| | - David Warren Spence
- Independent Researcher, Department of Sleep Medicine, Toronto, Ontario, Canada
| | - Gregory M Brown
- Molecular Brain Science, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Budylin T, Guariglia SR, Duran LI, Behring BM, Shaikh Z, Neuwirth LS, Banerjee P. Ultrasonic vocalization sex differences in 5-HT-R deficient mouse pups: Predictive phenotypes associated with later-life anxiety-like behaviors. Behav Brain Res 2019; 373:112062. [DOI: 10.1016/j.bbr.2019.112062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
|
17
|
Zaytseva AS, Volodin IA, Ilchenko OG, Volodina EV. Ultrasonic vocalization of pup and adult fat-tailed gerbils (Pachyuromys duprasi). PLoS One 2019; 14:e0219749. [PMID: 31356642 PMCID: PMC6663002 DOI: 10.1371/journal.pone.0219749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrasonic vocalizations (USVs) of laboratory rodents indicate animal emotional arousal and may serve as models of human disorders. We analysed spectrographically USV calls of pup and adult fat-tailed gerbils Pachyuromys duprasi during 420-s tests, including isolation, touch and handling. Based on combination of six different USV syllable contour shapes and six different note compositions, we classified 782 USV syllables of 24 pups aged 5-10 days to 18 types and 232 syllables of 7 adults to 24 types. Pups and adults shared 16 of these 26 USV types. Percentages of USV syllables with certain contour shapes differed between pups and adults. The contour shape and note composition significantly affected most acoustic variables of USV syllables in either pups or adults. The 1-note USV syllables were most common in either pups or adults. Pup USV syllables were overall longer and higher-frequency than adult ones, reminiscent of the USV ontogenetic pathway of bats and distinctive to rats and mice. We discuss that the USV syllable types of fat-tailed gerbils were generally similar in contour shapes and note compositions with USV syllable types of mice and rats, what means that software developed for automated classifying of mice ultrasound might be easily adapted or re-tuned to gerbil USV calls. However, using fat-tailed gerbils as model for biomedical research including control of USV vocalization is only possible since 6th day of pup life, because of the delayed emergence of USV calls in ontogeny of this species.
Collapse
Affiliation(s)
- Alexandra S. Zaytseva
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
18
|
Monk C, Lugo-Candelas C, Trumpff C. Prenatal Developmental Origins of Future Psychopathology: Mechanisms and Pathways. Annu Rev Clin Psychol 2019; 15:317-344. [PMID: 30795695 PMCID: PMC7027196 DOI: 10.1146/annurev-clinpsy-050718-095539] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The developmental origins of health and disease hypothesis applied to neurodevelopmental outcomes asserts that the fetal origins of future development are relevant to mental health. There is a third pathway for the familial inheritance of risk for psychiatric illness beyond shared genes and the quality of parental care: the impact of pregnant women's distress-defined broadly to include perceived stress, life events, depression, and anxiety-on fetal and infant brain-behavior development. We discuss epidemiological and observational clinical data demonstrating that maternal distress is associated with children's increased risk for psychopathology: For example, high maternal anxiety is associated with a twofold increase in the risk of probable mental disorder in children. We review several biological systems hypothesized to be mechanisms by which maternal distress affects fetal and child brain and behavior development, as well as the clinical implications of studies of the developmental origins of health and disease that focus on maternal distress. Development and parenting begin before birth.
Collapse
Affiliation(s)
- Catherine Monk
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| | - Claudia Lugo-Candelas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| | - Caroline Trumpff
- Department of Psychiatry, Columbia University, New York, NY 10032, USA;
- New York State Psychiatric Institute, New York, NY 10032, USA; ,
| |
Collapse
|
19
|
Aswathy B, Kumar VM, Gulia KK. Immature sleep pattern in newborn rats when dams encountered sleep restriction during pregnancy. Int J Dev Neurosci 2018; 69:60-67. [DOI: 10.1016/j.ijdevneu.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/09/2018] [Accepted: 06/24/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- B.S. Aswathy
- Division of Sleep ResearchBiomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrum695012KeralaIndia
| | - Velayudhan M. Kumar
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrum695012KeralaIndia
| | - Kamalesh K. Gulia
- Division of Sleep ResearchBiomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrum695012KeralaIndia
| |
Collapse
|
20
|
Yu Y, Huang Z, Dai C, Du Y, Han H, Wang YT, Dong Z. Facilitated AMPAR endocytosis causally contributes to the maternal sleep deprivation-induced impairments of synaptic plasticity and cognition in the offspring rats. Neuropharmacology 2018; 133:155-162. [PMID: 29378210 DOI: 10.1016/j.neuropharm.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Maternal sleep deprivation (MSD) has been suggested to be associated with increased frequency of neurodevelopmental disorders in offspring in both humans and animal models. However, the underlying cellular and molecular mechanism is still unclear. We have recently reported that MSD at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal CA1 long-term potentiation (LTP) in the offspring rats. Here, we report that the MSD induced LTP impairment at the CA1 hippocampus of the offspring rats is associated with increased long-term depression (LTD) and reduced expression of postsynaptic GluA2-containing α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs). Importantly, we found that inhibition of AMPAR endocytosis by a synthetic peptide Tat-GluA23Y (3 μmol/kg, i.p.) not only increased level of AMPARs and reduced LTD, but also restored LTP. Moreover, treatment with Tat-GluA23Y peptide markedly alleviated the MSD-induced impairments of spatial learning and memory; and decreased depressive- and anxiety-like behaviors in the offspring. Together, our findings suggest that the MSD-induced postsynaptic AMPAR endocytosis causally contributes to the impairments of hippocampal synaptic plasticity, thereby disrupting the emotional and cognitive functions in the offspring.
Collapse
Affiliation(s)
- Yanzhi Yu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunfang Dai
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yehong Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huili Han
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Brain Research Center, The University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
21
|
Infantile Vocalizations in Rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Aswathy B, Kumar VM, Gulia KK. The effects of rapid eye movement sleep deprivation during late pregnancy on newborns' sleep. J Sleep Res 2017; 27:197-205. [DOI: 10.1111/jsr.12564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Affiliation(s)
- B.S. Aswathy
- Division of Sleep Research; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Velayudhan M. Kumar
- Biomedical Technology Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Kamalesh K. Gulia
- Division of Sleep Research; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| |
Collapse
|
23
|
Sivadas N, Radhakrishnan A, Aswathy B, Kumar VM, Gulia KK. Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Behav Brain Res 2017; 320:264-274. [DOI: 10.1016/j.bbr.2016.11.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
|
24
|
Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry 2016; 6:e902. [PMID: 27676443 PMCID: PMC5048215 DOI: 10.1038/tp.2016.182] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.
Collapse
|
25
|
Pardo GVE, Goularte JF, Hoefel AL, de Castro AL, Kucharski LC, da Rosa Araujo AS, Lucion AB. Effects of sleep restriction during pregnancy on the mother and fetuses in rats. Physiol Behav 2016; 155:66-76. [DOI: 10.1016/j.physbeh.2015.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
|
26
|
Peng Y, Wang W, Tan T, He W, Dong Z, Wang YT, Han H. Maternal sleep deprivation at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal long-term potentiation in the offspring rats. Mol Brain 2016; 9:17. [PMID: 26876533 PMCID: PMC4753670 DOI: 10.1186/s13041-016-0197-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022] Open
Abstract
Background Sleep deprivation during pregnancy is a serious public health problem as it can affect the health of pregnant women and newborns. However, it is not well studied whether sleep deprivation at different stages of pregnancy has similar effects on emotional and cognitive functions of the offspring, and if so, the potential cellular mechanisms also remain poorly understood. Methods In the present study, the pregnant rats were subjected to sleep deprivation for 6 h per day by gentle handling during the first (gestational days 1–7), second (gestational days 8–14) and third trimester (gestational days 15–21) of pregnancy, respectively. The emotional and cognitive functions as well as hippocampal long-term potentiation (LTP) were tested in the offspring rats (postnatal days 42-56). Results The offspring displayed impaired hippocampal-dependent spatial learning and memory, and increased depressive- and anxiety-like behaviors. Quantification of BrdU-positive cells revealed that adult hippocampal neurogenesis was significantly reduced compared to control. Electrophysiological recording showed that maternal sleep deprivation impaired hippocampal CA1 LTP and reduced basal synaptic transmission, as reflected by a decrease in the frequency and amplitude of miniature excitatory postsynaptic current in the hippocampal CA1 pyramidal neurons. Conclusions Taken together, these results suggest that maternal sleep deprivation at different stages of pregnancy disrupts the emotional and cognitive functions of the offspring that might be attributable to the suppression of hippocampal LTP and basal synaptic transmission.
Collapse
Affiliation(s)
- Yan Peng
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Wenting He
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Huili Han
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
27
|
Pires GN, Tufik S, Andersen ML. Effects of REM sleep restriction during pregnancy on rodent maternal behavior. REVISTA BRASILEIRA DE PSIQUIATRIA 2015; 37:303-9. [DOI: 10.1590/1516-4446-2014-1629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
Affiliation(s)
| | - Sergio Tufik
- Universidade Federal de São Paulo (UNIFESP), Brazil
| | | |
Collapse
|
28
|
Increased ultrasonic vocalizations and risk-taking in rat pups of sleep-deprived dams. Physiol Behav 2015; 139:59-66. [DOI: 10.1016/j.physbeh.2014.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022]
|
29
|
Radhakrishnan A, Aswathy BS, Kumar VM, Gulia KK. Sleep deprivation during late pregnancy produces hyperactivity and increased risk-taking behavior in offspring. Brain Res 2014; 1596:88-98. [PMID: 25446439 DOI: 10.1016/j.brainres.2014.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 11/09/2014] [Indexed: 11/28/2022]
Abstract
Sleep deprivation in women resulting from their modern lifestyle, especially during pregnancy, is a serious concern as it can affect the health of the newborn. Anxiety disorders and cognitive deficits in the offspring are also on the rise. However, experimental studies on the effects of sleep loss during pregnancy, on emotional development and cognitive function of the newborn, are scanty in literature. In the current study, female rats were sleep-deprived for 5h by gentle handling, during the 6 days of the third trimester (days 14-19 of pregnancy). The effects of this sleep deprivation on anxiety-related behaviors of pups during their peri-adolescence age were studied using elevated plus maze (EPM). In addition to body weights of dams and offspring, the maternal behavior was also monitored. The weanlings of sleep-deprived dams showed heightened risk-taking behavior as they made increased explorations into the open arms of EPM. They also showed higher mobility in comparison to the control group. Though the body weights of sleep-deprived dams were comparable to those of the control group, their newborns had lower birth weight. Nevertheless, these pups gained weight and reached the control group values during the initial post-natal week. But after weaning, their rate of growth was lower than that of the control group. This is the first report providing evidences for the role of sleep during late pregnancy in shaping the neuropsychological development in offspring.
Collapse
Affiliation(s)
- Arathi Radhakrishnan
- Sleep Disorders Research Laboratory, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala, India.
| | - B S Aswathy
- Sleep Disorders Research Laboratory, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala, India.
| | - Velayudhan Mohan Kumar
- Sleep Disorders Research Laboratory, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala, India.
| | - Kamalesh K Gulia
- Sleep Disorders Research Laboratory, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala, India.
| |
Collapse
|