1
|
Maurya S, Verma T, Aggarwal A, Kumar Singh M, Dutt Tripathi A, Trivedi A. Metabolomics and microscopic profiling of flaxseed meal- incorporated Peda. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100217. [PMID: 39308762 PMCID: PMC11416507 DOI: 10.1016/j.fochms.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Functional dairy foods are in high demand due to their convenience, enhanced nutrition, intriguing flavors, and natural ingredients. The valorization of flaxseed by-products can potentially boost the functionality of these foods. This work involves the optimization of flaxseed meal powder (2%, 2.5%, 3%) during Peda preparation based on sensory and textural attributes. The optimized Peda (2%) exhibited significantly reduction in moisture (39.6%) and water activity (18.9%), while significantly increasing crude fiber (1.88%), protein (26.4%), fat (8%) and DPPH inhibition (274.5%) as compared to control Peda. Scanning electron microscopy of the optimized Peda revealed the surface displayed a dense, uneven texture, heavily coated with fat, and intergranular spaces filled with milk serum. Twenty-three primary compounds were recognized in high-resolution mass spectrometry (HR-MS), including 6 organic acids, 6 amino acids, 3 fatty acids, 3 other metabolite derivatives, 2 lipids, 2 bioactive components, and 1 sugar. Besides gas chromatography mass spectrometry (GC-MS) found six separate types of fatty acids. These compounds have been proven to possess various bioactivities, such as promoting brain activity, antioxidant, anti-diabetic, anti-inflammatory, cardiovascular-protective effects, etc. Flaxseed meal, as a plant-based substitute for dairy ingredients, offers a sustainable and healthy alternative, making flaxseed-incorporated Peda a functional food.
Collapse
Affiliation(s)
- Sachin Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Aggarwal
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Singh
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Trivedi
- Department of Dairy Technology, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
3
|
Malar DS, Verma K, Prasanth MI, Tencomnao T, Brimson JM. Network analysis-guided drug repurposing strategies targeting LPAR receptor in the interplay of COVID, Alzheimer's, and diabetes. Sci Rep 2024; 14:4328. [PMID: 38383841 PMCID: PMC10882047 DOI: 10.1038/s41598-024-55013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has greatly affected global health. Emerging evidence suggests a complex interplay between Alzheimer's disease (AD), diabetes (DM), and COVID-19. Given COVID-19's involvement in the increased risk of other diseases, there is an urgent need to identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic acid receptors (LPARs), belonging to the G protein-coupled receptor family, have been implicated in various pathological conditions, including inflammation. In this regard, the study aimed to investigate the involvement of LPARs (specifically LPAR1, 3, 6) in the tri-directional relationship between AD, DM, and COVID-19 through network analysis, as well as explore the therapeutic potential of selected anti-AD, anti-DM drugs as LPAR, SPIKE antagonists. We used the Coremine Medical database to identify genes related to DM, AD, and COVID-19. Furthermore, STRING analysis was used to identify the interacting partners of LPAR1, LPAR3, and LPAR6. Additionally, a literature search revealed 78 drugs on the market or in clinical studies that were used for treating either AD or DM. We carried out docking analysis of these drugs against the LPAR1, LPAR3, and LPAR6. Furthermore, we modeled the LPAR1, LPAR3, and LPAR6 in a complex with the COVID-19 spike protein and performed a docking study of selected drugs with the LPAR-Spike complex. The analysis revealed 177 common genes implicated in AD, DM, and COVID-19. Protein-protein docking analysis demonstrated that LPAR (1,3 & 6) efficiently binds with the viral SPIKE protein, suggesting them as targets for viral infection. Furthermore, docking analysis of the anti-AD and anti-DM drugs against LPARs, SPIKE protein, and the LPARs-SPIKE complex revealed promising candidates, including lupron, neflamapimod, and nilotinib, stating the importance of drug repurposing in the drug discovery process. These drugs exhibited the ability to bind and inhibit the LPAR receptor activity and the SPIKE protein and interfere with LPAR-SPIKE protein interaction. Through a combined network and targeted-based therapeutic intervention approach, this study has identified several drugs that could be repurposed for treating COVID-19 due to their expected interference with LPAR(1, 3, and 6) and spike protein complexes. In addition, it can also be hypothesized that the co-administration of these identified drugs during COVID-19 infection may not only help mitigate the impact of the virus but also potentially contribute to the prevention or management of post-COVID complications related to AD and DM.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
- Department of Molecular Epidemiology, ICMR- National Institute of Malaria Research (NIMR), New Delhi, India.
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research Unit for Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Kajitani N, Okada-Tsuchioka M, Inoue A, Miyano K, Masuda T, Boku S, Iwamoto K, Ohtsuki S, Uezono Y, Aoki J, Takebayashi M. G protein-biased LPAR1 agonism of prototypic antidepressants: Implication in the identification of novel therapeutic target for depression. Neuropsychopharmacology 2024; 49:561-572. [PMID: 37673966 PMCID: PMC10789764 DOI: 10.1038/s41386-023-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on β-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan.
| |
Collapse
|
5
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
7
|
Wang H, Li M, St Onge CM, Fuss B, Zhang Y. Elucidating the binding mechanism of LPA species and analogs in an LPA 4 receptor homology model. J Mol Graph Model 2022; 116:108274. [PMID: 35868118 DOI: 10.1016/j.jmgm.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid receptor 4 (LPA4) has emerged as a potential therapeutic target for the treatment of a variety of diseases, including cancer and obesity-induced diabetes, but its structure remains to be revealed. In the present work, a homology model of LPA4 was built for studying the binding mechanism of LPA species and analogs. Then five selected LPA species and analogs with structural variations in their phosphate groups, substitutions on the glycerol backbone, and fatty acyl chains were docked into the LPA4 model, followed by molecular dynamics simulations and energy analyses. The computational results revealed that the aliphatic residues located at the vertical cleft of LPA4 may form a hydrophobic environment for the fatty acyl moiety of LPA species and their analogs. Meanwhile, the positively charged residues in the central cavity of LPA4 may form ionic interactions with the negatively charged hydrophilic head group of LPA species and their analogs. In addition, it was noted that a different binding mode of the hydrophilic head group in each species with the central cavity of the LPA4 might lead to a special rearrangement of the fatty acyl moiety. Taken together, these results may facilitate understanding of the activation mechanism of LPA4 and help design selective ligands to modulate its function for therapeutic purposes.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
8
|
Flores-López M, García-Marchena N, Araos P, Requena-Ocaña N, Porras-Perales O, Torres-Galván S, Suarez J, Pizarro N, de la Torre R, Rubio G, Ruiz-Ruiz JJ, Rodríguez de Fonseca F, Serrano A, Pavón-Morón FJ. Sex Differences in Plasma Lysophosphatidic Acid Species in Patients with Alcohol and Cocaine Use Disorders. Brain Sci 2022; 12:brainsci12050588. [PMID: 35624975 PMCID: PMC9139721 DOI: 10.3390/brainsci12050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in drug addiction. Recently, we reported alterations in the plasma concentrations of LPA species in patients with alcohol use disorder (AUD). As there are sex differences in drug addiction, the main aim of the present study was to investigate whether relevant LPA species (16:0-LPA, 18:0-LPA, 18:1-LPA, 18:2-LPA and 20:4-LPA) were associated with sex and/or substance use disorder (SUD). This exploratory study was conducted in 214 abstinent patients with lifetime SUD, and 91 healthy control subjects. The SUD group was divided according to the diagnosis of AUD and/or cocaine use disorder (CUD). Participants were clinically assessed, and plasma samples were collected to determine LPA species and total LPA. We found that LPA concentrations were significantly affected by sex, and women showed higher concentrations than men. In addition, there were significantly lower 16:0-LPA, 18:2-LPA and total LPA concentrations in patients with SUD than in controls. Namely, patients with CUD and AUD + CUD showed lower LPA concentrations than controls or patients with AUD. In conclusion, our data suggest that LPA species could be potential biomarkers for SUD in women and men, which could contribute to a better stratification of these patients in treatment programs.
Collapse
Affiliation(s)
- María Flores-López
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Unidad de Adicciones-Servicio de Medicina Interna, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Oscar Porras-Perales
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Sandra Torres-Galván
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Nieves Pizarro
- Grup de Recerca en Farmacologia Integrada i Neurociència de Sistemes, Programa de Recerca en Neurociéncia, Institut Hospital del Mar d’Investigacions Mèdiques-IMIM, 08003 Barcelona, Spain; (N.P.); (R.d.l.T.)
| | - Rafael de la Torre
- Grup de Recerca en Farmacologia Integrada i Neurociència de Sistemes, Programa de Recerca en Neurociéncia, Institut Hospital del Mar d’Investigacions Mèdiques-IMIM, 08003 Barcelona, Spain; (N.P.); (R.d.l.T.)
- Centro de Investigación Biomédica en Red de Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gabriel Rubio
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Juan Jesús Ruiz-Ruiz
- Centro Provincial de Drogodependencias de Málaga, Diputación Provincial de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence:
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain; (M.F.-L.); (N.G.-M.); (P.A.); (N.R.-O.); (O.P.-P.); (S.T.-G.); (J.S.); (F.R.d.F.); (F.J.P.-M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Rosell-Valle C, Pedraza C, Manuel I, Moreno-Rodríguez M, Rodríguez-Puertas R, Castilla-Ortega E, Caramés JM, Gómez Conde AI, Zambrana-Infantes E, Ortega-Pinazo J, Serrano-Castro PJ, Chun J, Rodríguez De Fonseca F, Santín LJ, Estivill-Torrús G. Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110156. [PMID: 33152386 DOI: 10.1016/j.pnpbp.2020.110156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain; Unidad de Producción de Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Iván Manuel
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José María Caramés
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Ana I Gómez Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro J Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fernando Rodríguez De Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain.
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
10
|
García-Marchena N, Pizarro N, Pavón FJ, Martínez-Huélamo M, Flores-López M, Requena-Ocaña N, Araos P, Silva-Peña D, Suárez J, Santín LJ, de la Torre R, Rodríguez de Fonseca F, Serrano A. Potential association of plasma lysophosphatidic acid (LPA) species with cognitive impairment in abstinent alcohol use disorders outpatients. Sci Rep 2020; 10:17163. [PMID: 33051508 PMCID: PMC7555527 DOI: 10.1038/s41598-020-74155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Lysophosphatidic acid (LPA) species are bioactive lipids participating in neurodevelopmental processes. The aim was to investigate whether the relevant species of LPA were associated with clinical features of alcohol addiction. A total of 55 abstinent alcohol use disorder (AUD) patients were compared with 34 age/sex/body mass index-matched controls. Concentrations of total LPA and 16:0-LPA, 18:0-LPA, 18:1-LPA, 18:2-LPA and 20:4-LPA species were quantified and correlated with neuroplasticity-associated growth factors including brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and IGF-2, and neurotrophin-3 (NT-3). AUD patients showed dysexecutive syndrome (22.4%) and memory impairment (32.6%). Total LPA, 16:0-LPA, 18:0-LPA and 18:1-LPA concentrations, were decreased in the AUD group compared to control group. Total LPA, 16:0-LPA, 18:2-LPA and 20:4-LPA concentrations were decreased in men compared to women. Frontal lobe functions correlated with plasma LPA species. Alcohol-cognitive impairments could be related with the deregulation of the LPA species, especially in 16:0-LPA, 18:1-LPA and 20:4-LPA. Concentrations of BDNF correlated with total LPA, 18:2-LPA and 20:4-LPA species. The relation between LPA species and BDNF is interesting in plasticity and neurogenesis functions, their involvement in AUD might serve as a biomarker of cognitive impairment.
Collapse
Affiliation(s)
- Nuria García-Marchena
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain. .,Institut D, Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Unidad de Adicciones-Servicio de Medicina Interna, Campus Can Ruti, Carrer del Canyet s/n, 08916, Badalona, Spain.
| | - Nieves Pizarro
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Francisco J Pavón
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Unidad de Gestión Clínica del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria de Málaga, Malaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Martínez-Huélamo
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain.,Departamento de Nutrición, Ciencias de los Alimentos y Gastronomía, Facultad de Farmacia y Ciencias de los Alimentos, Universidad de Barcelona, Barcelona, Spain
| | - María Flores-López
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Nerea Requena-Ocaña
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Pedro Araos
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga (UMA), Malaga, Spain
| | - Daniel Silva-Peña
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga (UMA), Malaga, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
| |
Collapse
|
11
|
Weiss HR, Mellender SJ, Kiss GK, Chiricolo A, Liu X, Chi OZ. Lysophosphatidic Acid Reduces Microregional Oxygen Supply/Consumption Balance after Cerebral Ischemia-Reperfusion. J Vasc Res 2020; 57:178-184. [PMID: 32434183 DOI: 10.1159/000506011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a small phospholipid-signaling molecule, which can alter responses to stress in the central nervous system. OBJECTIVE We hypothesized that exogenous LPA would increase the size of infarct and reduce microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. METHODS This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with or without LPA (1 mg/kg, at 30, 60, and 90 min after reperfusion). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel (20-60 µm in diameter) arterial and venous oxygen saturations were determined microspectrophotometrically. RESULTS There were no significant hemodynamic or arterial blood gas differences between groups. The control ischemic-reperfused cortex had a similar O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex with many areas of low O2 saturation (43 of 80 veins with O2 saturation below 50%). LPA did not significantly alter cerebral blood flow, but it did significantly increase O2 extraction and consumption of the ischemic-reperfused region. It also significantly increased the number of small veins with low O2 saturations in the reperfused region (76 of 80 veins with O2 saturation below 50%). This was associated with a significantly increased cortical infarct size after LPA administration (11.4 ± 0.5% control vs. 16.4 ± 0.6% LPA). CONCLUSION This suggests that LPA reduces cell survival and that it is associated with an increase in the number of small microregions with reduced local oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA,
| | - Scott J Mellender
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Geza K Kiss
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Antonio Chiricolo
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
12
|
LPA 1 receptor and chronic stress: Effects on behaviour and the genes involved in the hippocampal excitatory/inhibitory balance. Neuropharmacology 2020; 164:107896. [PMID: 31811875 DOI: 10.1016/j.neuropharm.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
The LPA1 receptor, one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts, is likely involved in promoting normal emotional behaviours. Current data suggest that the LPA-LPA1-receptor pathway may be involved in mediating the negative consequences of stress on hippocampal function. However, to date, there is no available information regarding the mechanisms whereby the LPA1 receptor mediates this adaptation. To gain further insight into how the LPA-LPA1 pathway may prevent the negative consequences of chronic stress, we assessed the effects of the continuous delivery of LPA on depressive-like behaviours induced by a chronic restraint stress protocol. Because a proper excitatory/inhibitory balance seems to be key for controlling the stress response system, the gene expression of molecular markers of excitatory and inhibitory neurotransmission was also determined. In addition, the hippocampal expression of mineralocorticoid receptor genes and glucocorticoid receptor genes and proteins as well as plasma corticosterone levels were determined. Contrary to our expectations, the continuous delivery of LPA in chronically stressed animals potentiated rather than inhibited some (e.g., anhedonia, reduced latency to the first immobility period), though not all, behavioural effects of stress. Furthermore, this treatment led to an alteration in the genes coding for proteins involved in the excitatory/inhibitory balance in the ventral hippocampus and to changes in corticosterone levels. In conclusion, the results of this study reinforce the assumption that LPA is involved in emotional regulation, mainly through the LPA1 receptor, and regulates the effects of stress on hippocampal gene expression and hippocampus-dependent behaviour.
Collapse
|
13
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Cocaine-induced changes in CX 3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β. Neuropharmacology 2019; 162:107840. [PMID: 31704270 DOI: 10.1016/j.neuropharm.2019.107840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1β) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1β and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (CPP). We observed significant increases in CX3CL1 and IL1β concentrations after cocaine, although repeated cocaine produced an enhancement of CX3CL1 concentrations. CX3CL1 and IL1β concentrations were positively correlated in acute (r = +0.61) and repeated (r = +0.82) cocaine-treated mice. Inflammatory signal transduction pathways were assessed. Whereas acute cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2 and p-p65/p65 NFκB ratios after cocaine injection, repeated cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2, p-p38/p38 MAPK, p-NFκB p65/NF-κB p65 and p-CREB/CREB ratios. Baseline p-p38/p38 MAPK and p-CREB/CREB ratios were downregulated in repeated cocaine-treated mice. Regarding the cocaine-induced CPP, Cx3cr1-KO mice showed a notably impaired extinction but no differences during acquisition and reinstatement. These results indicate that cocaine induces alterations in CX3CL1 concentrations, which are associated with IL1β concentrations, and activates convergent inflammatory pathways in the hippocampus. Furthermore, the CX3CL1/CX3CR1 signaling could mediate the processes involved in the extinction of cocaine-induced CPP.
Collapse
|
15
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
16
|
Ladrón de Guevara‐Miranda D, Moreno‐Fernández RD, Gil‐Rodríguez S, Rosell‐Valle C, Estivill‐Torrús G, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory. Addict Biol 2019; 24:458-470. [PMID: 29480526 DOI: 10.1111/adb.12612] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine.
Collapse
Affiliation(s)
- David Ladrón de Guevara‐Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Román Darío Moreno‐Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Sara Gil‐Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Cristina Rosell‐Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
- Unidad de Producción de Reprogramación CelularGMP‐Iniciativa Andaluza en Terapia Avanzadas, Junta de Andalucía Spain
| | - Guillermo Estivill‐Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Francisco J. Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Estela Castilla‐Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| |
Collapse
|
17
|
Gotoh L, Yamada M, Hattori K, Sasayama D, Noda T, Yoshida S, Kunugi H, Yamada M. Lysophosphatidic acid levels in cerebrospinal fluid and plasma samples in patients with major depressive disorder. Heliyon 2019; 5:e01699. [PMID: 31193411 PMCID: PMC6526395 DOI: 10.1016/j.heliyon.2019.e01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is the most common psychiatric disorders. However, a biochemical marker has yet to be established for clinical purposes. It is proposed that lysophosphatidic acid (LPA, 1-acyl-2-sn-glycerol-3-phosphoate) plays some important roles in emotional regulation of experimental animals. Therefore, in this study, we measured LPA levels using enzyme-linked immunosorbent assays of cerebrospinal fluid (CSF) and plasma samples from patients with MDD. The participants were 52 patients and 49 normal healthy controls for CSF study, and 47 patients and 44 controls for plasma study. We used the Japanese version of the GRID Hamilton Depression Rating Scale (17-item version) for the assessment of depressive symptoms. We found no associations between LPA levels (CSF or plasma) and either diagnosis or severity of MDD, or with psychotropic medication. In conclusion, our data suggest that LPA levels likely would not serve as a practical biomarker of MDD.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takamasa Noda
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
| | - Sumiko Yoshida
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
18
|
Gotoh L, Yamada M, Hattori K, Sasayama D, Noda T, Yoshida S, Kunugi H, Yamada M. Levels of lysophosphatidic acid in cerebrospinal fluid and plasma of patients with schizophrenia. Psychiatry Res 2019; 273:331-335. [PMID: 30682553 DOI: 10.1016/j.psychres.2019.01.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
It is suggested that lysophosphatidic acid (LPA) plays a key role in the pathophysiology of schizophrenia. In this study, we measured LPA levels by enzyme-linked immunosorbent assay in cerebrospinal fluid (CSF) and plasma samples. The participants were 49 patients with schizophrenia and 49 normal healthy controls for CSF study, and 42 patients and 44 controls for plasma study. We found that LPA levels in the patients were not significantly different from those of controls in CSF (controls: 0.189 ± 0.077 µM, patients: 0.175 ± 0.067 µM; P = 0.318) and plasma samples (controls: 0.131 ± 0.067 µM, patients: 0.120 ± 0.075 µM; P = 0.465). On the other hand, CSF levels in medicated patients (0.162 ± 0.061 µM) were significantly lower than those observed in unmedicated patients (0.224 ± 0.067 µM, P = 0.038), suggesting that our findings could be masked by the influence of medication with antipsychotics. Interestingly, we detected significant negative correlation between PANSS scores and plasma LPA levels, especially in males and in unmedicated patients. Our result suggests that LPA levels in CSF and plasma samples would not serve as a diagnostic biomarker, but plasma levels could be used for symptomatic assessment of schizophrenia.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Faculty of Medicine, Department of Psychiatry, Laboratory of Neuroscience, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takamasa Noda
- National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Sumiko Yoshida
- National Center of Neurology and Psychiatry Hospital, Tokyo, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan.
| |
Collapse
|
19
|
Moreno-Fernández RD, Nieto-Quero A, Gómez-Salas FJ, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pérez-Martín M, Pedraza C. Effects of genetic deletion versus pharmacological blockade of the LPA 1 receptor on depression-like behaviour and related brain functional activity. Dis Model Mech 2018; 11:dmm.035519. [PMID: 30061118 PMCID: PMC6177006 DOI: 10.1242/dmm.035519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Animal models of psychopathology are particularly useful for studying the neurobiology of depression and characterising the subtypes. Recently, our group was the first to identify a possible relationship between the LPA1 receptor and a mixed anxiety-depression phenotype. Specifically, maLPA1-null mice exhibited a phenotype characterised by depressive and anxious features. However, the constitutive lack of the gene encoding the LPA1 receptor (Lpar1) can induce compensatory mechanisms that might have resulted in the observed deficits. Therefore, in the present study, we have compared the impact of permanent loss and acute pharmacological inhibition of the LPA1 receptor on despair-like behaviours and on the functional brain map associated with these behaviours, as well as on the degree of functional connectivity among structures. Although the antagonist (intracerebroventricularly administered Ki16425) mimicked some, but not all, effects of genetic deletion of the LPA1 receptor on the results of behavioural tests and engaged different brain circuits, both treatments induced depression-like behaviours with an agitation component that was linked to functional changes in key brain regions involved in the stress response and emotional regulation. In addition, both Ki16425 treatment and LPA1 receptor deletion modified the functional brain maps in a way similar to the changes observed in depressed patients. In summary, the pharmacological and genetic approaches could ultimately assist in dissecting the function of the LPA1 receptor in emotional regulation and brain responses, and a combination of those approaches might provide researchers with an opportunity to develop useful drugs that target the LPA1 receptor as treatments for depression, mainly the anxious subtype. This article has an associated First Person interview with the first author of the paper. Summary: Animal models of psychopathology are useful for studying the neurobiology of depression. Here, we have assessed by pharmacological approach and knockout models the contribution of the LPA-LPA1 signalling pathway to anxious depression.
Collapse
Affiliation(s)
- Román Darío Moreno-Fernández
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Francisco Javier Gómez-Salas
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Luis Javier Santín
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología. Facultad de Ciencias. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Carmen Pedraza
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
20
|
Sakamoto K, Noguchi Y, Ueshima K, Yamakuni H, Ohtake A, Sato S, Ishizu K, Hosogai N, Kawaminami E, Takeda M, Masuda N. Effect of ASP6432, a Novel Type 1 Lysophosphatidic Acid Receptor Antagonist, on Urethral Function and Prostate Cell Proliferation. J Pharmacol Exp Ther 2018; 366:390-396. [DOI: 10.1124/jpet.118.247908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
|
21
|
Dario MFR, Sara T, Estela CO, Margarita PM, Guillermo ET, Fernando RDF, Javier SL, Carmen P. Stress, Depression, Resilience and Ageing: A Role for the LPA-LPA1 Pathway. Curr Neuropharmacol 2018; 16:271-283. [PMID: 28699486 PMCID: PMC5843979 DOI: 10.2174/1570159x15666170710200352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic stress affects health and the quality of life, with its effects being particularly relevant in ageing due to the psychobiological characteristics of this population. However, while some people develop psychiatric disorders, especially depression, others seem very capable of dealing with adversity. There is no doubt that along with the identification of neurobiological mechanisms involved in developing depression, discovering which factors are involved in positive adaptation under circumstances of extreme difficulty will be crucial for promoting resilience. METHODS Here, we review recent work in our laboratory, using an animal model lacking the LPA1 receptor, together with pharmacological studies and clinical evidence for the possible participation of the LPA1 receptor in mood and resilience to stress. RESULTS Substantial evidence has shown that the LPA1 receptor is involved in emotional regulation and in coping responses to chronic stress, which, if dysfunctional, may induce vulnerability to stress and predisposition to the development of depression. Given that there is commonality of mechanisms between those involved in negative consequences of stress and in ageing, this is not surprising, considering that the LPA1 receptor may be involved in coping with adversity during ageing. CONCLUSION Alterations in this receptor may be a susceptibility factor for the presence of depression and cognitive deficits in the elderly population. However, because this is only a promising hypothesis based on previous data, future studies should focus on the involvement of the LPA-LPA1 pathway in coping with stress and resilience in ageing.
Collapse
Affiliation(s)
- Moreno-Fernández Román Dario
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Tabbai Sara
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Castilla-Ortega Estela
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Pérez-Martín Margarita
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de
Málaga; Málaga 29071, Spain
| | - Estivill-Torrús Guillermo
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitarios de Málaga, Málaga, Spain
| | - Rodríguez de Fonseca Fernando
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Santin Luis Javier
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Pedraza Carmen
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| |
Collapse
|
22
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
23
|
maLPA1-null mice as an endophenotype of anxious depression. Transl Psychiatry 2017; 7:e1077. [PMID: 28375206 PMCID: PMC5416683 DOI: 10.1038/tp.2017.24] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 12/29/2022] Open
Abstract
Anxious depression is a prevalent disease with devastating consequences and a poor prognosis. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intracellular signalling molecule. The loss of this receptor induces anxiety and several behavioural and neurobiological changes that have been strongly associated with depression. In this study, we sought to investigate the involvement of the LPA1 receptor in mood. We first examined hedonic and despair-like behaviours in wild-type and maLPA1 receptor null mice. Owing to the behavioural response exhibited by the maLPA1-null mice, the panic-like reaction was assessed. In addition, c-Fos expression was evaluated as a measure of the functional activity, followed by interregional correlation matrices to establish the brain map of functional activation. maLPA1-null mice exhibited anhedonia, agitation and increased stress reactivity, behaviours that are strongly associated with the psychopathological endophenotype of depression with anxiety features. Furthermore, the functional brain maps differed between the genotypes. The maLPA1-null mice showed increased limbic-system activation, similar to that observed in depressive patients. Antidepressant treatment induced behavioural improvements and functional brain normalisation. Finally, based on validity criteria, maLPA1-null mice are proposed as an animal model of anxious depression. Here, for we believe the first time, we have identified a possible relationship between the LPA1 receptor and anxious depression, shedding light on the unknown neurobiological basis of this subtype of depression and providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, especially for the anxious subtype of depression.
Collapse
|
24
|
Lu X, Wang Y, Liu C, Wang Y. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats. PLoS One 2017; 12:e0172339. [PMID: 28212441 PMCID: PMC5315315 DOI: 10.1371/journal.pone.0172339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/04/2017] [Indexed: 01/30/2023] Open
Abstract
In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive, and psychiatric symptoms of depression commonly observed after myocardial infarction. Peripheral 5-hydroxytryptamine is an important substance in the gut-brain axis, and its abnormal metabolism is a critical finding after myocardial infarct.
Collapse
Affiliation(s)
- Xiaofang Lu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
- * E-mail: (YGW); (XFL)
| | - Yuefen Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Chunyan Liu
- Department of Rheumatology, The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yangang Wang
- Department of Gastroenterology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
- * E-mail: (YGW); (XFL)
| |
Collapse
|
25
|
Chiurchiù V, Maccarrone M. Bioactive lipids as modulators of immunity, inflammation and emotions. Curr Opin Pharmacol 2016; 29:54-62. [DOI: 10.1016/j.coph.2016.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
|
26
|
Castilla-Ortega E, Pavón FJ, Sánchez-Marín L, Estivill-Torrús G, Pedraza C, Blanco E, Suárez J, Santín L, Rodríguez de Fonseca F, Serrano A. Both genetic deletion and pharmacological blockade of lysophosphatidic acid LPA1 receptor results in increased alcohol consumption. Neuropharmacology 2016; 103:92-103. [DOI: 10.1016/j.neuropharm.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
|
27
|
González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 2015; 134:471-85. [PMID: 25857358 DOI: 10.1111/jnc.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.
Collapse
Affiliation(s)
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Guillermo Estivill-Torrús
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Luis Javier Santín
- Departmento de Psicobiología y Metodología de las Ciencias del Comportamiento. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad of Málaga, Málaga, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital Bellvitge, University of Barcelona, Ciberned, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
28
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats. Pharmaceuticals (Basel) 2014; 8:21-37. [PMID: 25551398 PMCID: PMC4381199 DOI: 10.3390/ph8010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/16/2014] [Indexed: 12/05/2022] Open
Abstract
We tested the hypothesis that etomidate and ketamine produce residual effects that modify functional mobility (measured by the balance beam test) and adrenal function (adrenocorticotropic hormone (ACTH) stimulation) immediately following recovery from loss of righting reflex in rats. Intravenous etomidate or ketamine was administered in a randomized, crossover fashion (2 or 4 mg/kg and 20 or 40 mg/kg, respectively) on eight consecutive days. Following recovery of righting reflex, animals were assessed for residual effects on functional mobility on the balance beam, motor behavior in the open field and adrenal function through ACTH stimulation. We evaluated the consequences of the effects of the anesthetic agent-induced motor behavior on functional mobility. On the balance beam, etomidate-treated rats maintained their grip longer than ketamine-treated rats, indicating greater balance abilities (mean ± SD, 21.5 ± 25.1 s vs. 3.0 ± 4.3 s respectively, p < 0.021). In the open field test, both dosages of etomidate and ketamine had opposite effects on travel behavior, showing ketamine-induced hyperlocomotion and etomidate-induced hypolocomotion. There was a significant interaction between anesthetic agent and motor behavior effects for functional mobility effects (p < 0.001). Corticosterone levels were lower after both 40 mg/kg ketamine and 4 mg/kg etomidate anesthesia compared to placebo, an effect stronger with etomidate than ketamine (p < 0.001). Following recovery from anesthesia, etomidate and ketamine have substantial side effects. Ketamine-induced hyperlocomotion with 20 and 40 mg/kg has stronger effects on functional mobility than etomidate-induced hypolocomotion with 2 and 4 mg/kg. Etomidate (4 mg/kg) has stronger adrenal suppression effects than ketamine (40 mg/kg).
Collapse
|
30
|
Yamada M, Tsukagoshi M, Hashimoto T, Oka JI, Saitoh A, Yamada M. Lysophosphatidic acid induces anxiety-like behavior via its receptors in mice. J Neural Transm (Vienna) 2014; 122:487-94. [PMID: 25119538 DOI: 10.1007/s00702-014-1289-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/02/2014] [Indexed: 12/22/2022]
Abstract
Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator with diverse biological properties. We previously found altered expression of the LPA-related genes in rodents after treatment with sertraline, which is widely used to treat anxiety disorders and depression. However, little is known about the behavioral effects of LPA. In the present study, we investigated the behavioral effects of intracerebroventricular injection of LPA in adult mice. LPA did not significantly affect spontaneous locomotor activity, suggesting that LPA does not induce hyperactivity, ataxia, or sedation. We next investigated the emotional effects of LPA via the hole-board test. LPA significantly increased the number of head-dips in a dose- and time-related manner. A significant induction of head-dip counts occurred 15 and 30 min after LPA administration. To clarify the involvement of LPA receptors, we examined the effect of the non-selective LPA1-4 receptor antagonist, 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA) co-administered with LPA. BrP-LPA dose-dependently inhibited LPA-induced head-dip counts. We next investigated anxiety-like behavior via the elevated plus-maze test. LPA significantly reduced the percentage of time spent in the open arms and BrP-LPA dose-dependently inhibited this anxiety-like behavior. In conclusion, LPA induced anxiety-like behavior in mice via LPA receptors. Our results suggest that LPA signaling plays an important role in regulating anxiety in mice.
Collapse
Affiliation(s)
- Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8553, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Intranigral lipopolysaccharide induced anxiety and depression by altered BDNF mRNA expression in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:126-32. [PMID: 24508447 DOI: 10.1016/j.pnpbp.2014.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/15/2014] [Accepted: 01/26/2014] [Indexed: 01/15/2023]
Abstract
It is known that lipopolysaccharide (LPS) treatment induces neuroinflammation and memory deterioration. One of the mechanisms may be the interference with brain-derived neurotrophic factor (BDNF) gene expression and function. Lipopolysaccharide (3 μg/kg and 10 μg/kg) was unilaterally injected into the substantia nigra of adult male Wistar rats. Pergolide-induced rotational behavior test was employed to validate unilateral damage to the dopamine nigrostriatal neurons. Anxiety-depression-like behaviors were studied by means of elevated plus-maze task and forced swimming test, as animal models of anxiety and depression. Rats given LPS exhibited the following: decrease of the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming and increase of immobility times within forced swimming test. In addition, these behaviors are associated with decreased BDNF mRNA expression in rat hippocampus. Taken together, these data indicate that intranigral LPS infusion influences the induction of BDNF mRNA expression within hippocampus which contributes to observed behavioral responses in rats, with relevance for Parkinson's disease conditions.
Collapse
|