1
|
Lin Z, Qin Y, Chen H, Shi D, Zhong M, An T, Chen L, Wang Y, Lin F, Li G, Ji ZL. TransIntegrator: capture nearly full protein-coding transcript variants via integrating Illumina and PacBio transcriptomes. Brief Bioinform 2023; 24:bbad334. [PMID: 37779246 DOI: 10.1093/bib/bbad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Genes have the ability to produce transcript variants that perform specific cellular functions. However, accurately detecting all transcript variants remains a long-standing challenge, especially when working with poorly annotated genomes or without a known genome. To address this issue, we have developed a new computational method, TransIntegrator, which enables transcriptome-wide detection of novel transcript variants. For this, we determined 10 Illumina sequencing transcriptomes and a PacBio full-length transcriptome for consecutive embryo development stages of amphioxus, a species of great evolutionary importance. Based on the transcriptomes, we employed TransIntegrator to create a comprehensive transcript variant library, namely iTranscriptome. The resulting iTrancriptome contained 91 915 distinct transcript variants, with an average of 2.4 variants per gene. This substantially improved current amphioxus genome annotation by expanding the number of genes from 21 954 to 38 777. Further analysis manifested that the gene expansion was largely ascribed to integration of multiple Illumina datasets instead of involving the PacBio data. Moreover, we demonstrated an example application of TransIntegrator, via generating iTrancriptome, in aiding accurate transcriptome assembly, which significantly outperformed other hybrid methods such as IDP-denovo and Trinity. For user convenience, we have deposited the source codes of TransIntegrator on GitHub as well as a conda package in Anaconda. In summary, this study proposes an affordable but efficient method for reliable transcriptomic research in most species.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| | - Yangmei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Dan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Mindong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Te An
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Linshan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Fan Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| |
Collapse
|
2
|
Schafhauser T, Wibberg D, Binder A, Rückert C, Busche T, Wohlleben W, Kalinowski J. Genome Assembly and Genetic Traits of the Pleuromutilin-Producer Clitopilus passeckerianus DSM1602. J Fungi (Basel) 2022; 8:jof8080862. [PMID: 36012850 PMCID: PMC9410065 DOI: 10.3390/jof8080862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The gilled mushroom Clitopilus passeckerianus (Entolomataceae, Agaricales, Basidiomycota) is well known to produce the terpenoid pleuromutilin, which is the biotechnological basis for medically important antibiotics such as lefamulin and retapamulin. Their unique mode of action and good tolerance entails an increasing demand of pleuromutilin-derived antibiotics in veterinary and human health care. Surprisingly, despite their pharmaceutical importance, no genome sequence is available of any pleuromutilin-producing fungus. Here, we present the high-quality draft genome sequence of the pleuromutilin-producer C. passeckerianus DSM1602 including functional genome annotation. More precisely, we employed a hybrid assembly strategy combining Illumina sequencing and Nanopore sequencing to assemble the mitochondrial genome as well as the nuclear genome. In accordance with the dikaryotic state of the fungus, the nuclear genome has a diploid character. Interestingly, the mitochondrial genome appears duplicated. Bioinformatic analysis revealed a versatile secondary metabolism with an emphasis on terpenoid biosynthetic enzymes in C. passeckerianus and also in related strains. Two alleles of biosynthetic gene clusters for pleuromutilin were found in the genome of C. passeckerianus. The pleuromutilin genes were reassembled with yeast-specific elements for heterologous expression in Saccharomyces cerevisiae. Our work lays the foundation for metabolic strain engineering towards higher yields of the valuable compound pleuromutilin.
Collapse
Affiliation(s)
- Thomas Schafhauser
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Correspondence: (T.S.); (J.K.)
| | - Daniel Wibberg
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
- Institute of Bio- and Geosciences IBG-5, Computational Metagenomics, Forschungszentrum Jülich GmbH, 52425 Juelich, Germany
| | - Antonia Binder
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Christian Rückert
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Wolfgang Wohlleben
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tuebingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tuebingen, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
- Correspondence: (T.S.); (J.K.)
| |
Collapse
|
3
|
Tang R, Dong H, He L, Li P, Shi Y, Yang Q, Jia X, Li XQ. Genome-wide identification, evolutionary and functional analyses of KFB family members in potato. BMC PLANT BIOLOGY 2022; 22:226. [PMID: 35501691 PMCID: PMC9063267 DOI: 10.1186/s12870-022-03611-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kelch repeat F-box (KFB) proteins play vital roles in the regulation of multitudinous biochemical and physiological processes in plants, including growth and development, stress response and secondary metabolism. Multiple KFBs have been characterized in various plant species, but the family members and functions have not been systematically identified and analyzed in potato. RESULTS Genome and transcriptome analyses of StKFB gene family were conducted to dissect the structure, evolution and function of the StKFBs in Solanum tuberosum L. Totally, 44 StKFB members were identified and were classified into 5 groups. The chromosomal localization analysis showed that the 44 StKFB genes were located on 12 chromosomes of potato. Among these genes, two pairs of genes (StKFB15/16 and StKFB40/41) were predicted to be tandemly duplicated genes, and one pair of genes (StKFB15/29) was segmentally duplicated genes. The syntenic analysis showed that the KFBs in potato were closely related to the KFBs in tomato and pepper. Expression profiles of the StKFBs in 13 different tissues and in potato plants with different treatments uncovered distinct spatial expression patterns of these genes and their potential roles in response to various stresses, respectively. Multiple StKFB genes were differentially expressed in yellow- (cultivar 'Jin-16'), red- (cultivar 'Red rose-2') and purple-fleshed (cultivar 'Xisen-8') potato tubers, suggesting that they may play important roles in the regulation of anthocyanin biosynthesis in potato. CONCLUSIONS This study reports the structure, evolution and expression characteristics of the KFB family in potato. These findings pave the way for further investigation of functional mechanisms of StKFBs, and also provide candidate genes for potato genetic improvement.
Collapse
Affiliation(s)
- Ruimin Tang
- College of life sciences, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Haitao Dong
- College of life sciences, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Peng Li
- College of life sciences, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Yuanrui Shi
- College of life sciences, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Qing Yang
- College of life sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Xiaoyun Jia
- College of life sciences, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick E3B 4Z7 Canada
| |
Collapse
|
4
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
5
|
Stadermann A, Gamer M, Fieder J, Lindner B, Fehrmann S, Schmidt M, Schulz P, Gorr IH. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Biotechnol Bioeng 2021; 119:868-880. [PMID: 34935125 PMCID: PMC10138747 DOI: 10.1002/bit.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next Generation Sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome. Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished. Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite of their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared to conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- R&D Project Management NBEs, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Jürgen Fieder
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Steffen Fehrmann
- Genedata AG, Selector BU, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Ingo H Gorr
- Analytical Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
6
|
Luttermann T, Rückert C, Wibberg D, Busche T, Schwarzhans JP, Friehs K, Kalinowski J. Establishment of a near-contiguous genome sequence of the citric acid producing yeast Yarrowia lipolytica DSM 3286 with resolution of rDNA clusters and telomeres. NAR Genom Bioinform 2021; 3:lqab085. [PMID: 34661101 PMCID: PMC8515841 DOI: 10.1093/nargab/lqab085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast that is particularly suitable for the sustainable production of secondary metabolites. The genome of this yeast is characterized by its relatively large size and its high number of different rDNA clusters located in its telomeric regions. However, due to the presence of long repetitive elements in the sub-telomeric regions, rDNA clusters and telomeres are missing in current genome assemblies of Y. lipolytica. Here, we present the near-contiguous genome sequence of the biotechnologically relevant strain DSM 3286. We employed a hybrid assembly strategy combining Illumina and nanopore sequencing reads to integrate all six rDNA clusters as well as telomeric repeats into the genome sequence. By fine-tuning of DNA isolation and library preparation protocols, we were able to create ultra-long reads that not only contained multiples of mitochondrial genomes but also shed light on the inter- and intra-chromosomal diversity of rDNA cluster types. We show that there are ten different rDNA units present in this strain that additionally appear in a predefined order in a cluster. Based on single reads, we also demonstrate that the number of rDNA repeats in a specific cluster varies from cell to cell within a population.
Collapse
Affiliation(s)
- Tobias Luttermann
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, NRW 33615, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, NRW 33615, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Bielefeld University, Bielefeld, NRW 33615, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, NRW 33615, Germany
| | | | - Karl Friehs
- Fermentation Engineering, Bielefeld University, Bielefeld, NRW 33615, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, NRW 33615, Germany
| |
Collapse
|
7
|
Genome Analyses of the Less Aggressive Rhizoctonia solani AG1-IB Isolates 1/2/21 and O8/2 Compared to the Reference AG1-IB Isolate 7/3/14. J Fungi (Basel) 2021; 7:jof7100832. [PMID: 34682252 PMCID: PMC8537455 DOI: 10.3390/jof7100832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/26/2023] Open
Abstract
Rhizoctonia solani AG1-IB of the phylum Basidiomycota is known as phytopathogenic fungus affecting various economically important crops, such as bean, rice, soybean, figs, cabbage and lettuce. The isolates 1/2/21 and O8/2 of the anastomosis group AG1-IB originating from lettuce plants with bottom rot symptoms represent two less aggressive R. solani isolates, as confirmed in a pathogenicity test on lettuce. They were deeply sequenced on the Illumina MiSeq system applying the mate-pair and paired-end mode to establish their genome sequences. Assemblies of obtained sequences resulted in 2092 and 1492 scaffolds, respectively, for isolate 1/2/21 and O8/2, amounting to a size of approximately 43 Mb for each isolate. Gene prediction by applying AUGUSTUS (v. 3.2.1.) yielded 12,827 and 12,973 identified genes, respectively. Based on automatic functional annotation, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the AG1-IB genomes. The annotated genome sequences of the less aggressive AG1-IB isolates were compared with the isolate 7/3/14, which is highly aggressive on lettuce and other vegetable crops such as bean, cabbage and carrot. This analysis revealed the first insights into core genes of AG1-IB isolates and unique determinants of each genome that may explain the different aggressiveness levels of the strains.
Collapse
|
8
|
Šečić E, Zanini S, Wibberg D, Jelonek L, Busche T, Kalinowski J, Nasfi S, Thielmann J, Imani J, Steinbrenner J, Kogel KH. A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biol 2021; 19:171. [PMID: 34429124 PMCID: PMC8385953 DOI: 10.1186/s12915-021-01104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silvia Zanini
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Sabrine Nasfi
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jennifer Thielmann
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jens Steinbrenner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Schmieder V, Novak N, Dhiman H, Nguyen LN, Serafimova E, Klanert G, Baumann M, Kildegaard HF, Borth N. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells. ACTA ACUST UNITED AC 2021; 31:e00649. [PMID: 34277363 PMCID: PMC8261548 DOI: 10.1016/j.btre.2021.e00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
• Development of a small-scale CRISPR/AsCpf1 screen in CHO. • Usage of paired gRNAs enables full deletion of coding or noncoding genomic regions. • Growth perturbing paired gRNAs identified. • Key points for considerations in future screens identified.
Chinese hamster ovary (CHO) cells are the most widely used host for the expression of therapeutic proteins. Recently, significant progress has been made due to advances in genome sequence and annotation quality to unravel the black box CHO. Nevertheless, in many cases the link between genotype and phenotype in the context of suspension cultivated production cell lines is still not fully understood. While frameshift approaches targeting coding genes are frequently used, the non-coding regions of the genome have received less attention with respect to such functional annotation. Importantly, for non-coding regions frameshift knock-out strategies are not feasible. In this study, we developed a CRISPR-mediated screening approach that performs full deletions of genomic regions to enable the functional study of both the translated and untranslated genome. An in silico pipeline for the computational high-throughput design of paired guide RNAs (pgRNAs) directing CRISPR/AsCpf1 was established and used to generate a library tackling process-related genes and long non-coding RNAs. Next generation sequencing analysis of the plasmid library revealed a sufficient, but highly variable pgRNA composition. Recombinase-mediated cassette exchange was applied for pgRNA library integration rather than viral transduction to ensure single copy representation of pgRNAs per cell. After transient AsCpf1 expression, cells were cultivated over two sequential batches to identify pgRNAs which massively affected growth and survival. By comparing pgRNA abundance, depleted candidates were identified and individually validated to verify their effect.
Collapse
Key Words
- AsCpf1, Cpf1 from Acidaminococcus sp BV3L6
- CHO, Chinese hamster ovary
- CPM, counts per million reads mapped
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- CRISPR/AsCpf1
- Cas9, CRISPR-associated protein 9
- Chinese hamster ovary cells
- Cpf1, CRISPR-associated protein in Prevotella and Francisella
- DE, differentially expressed
- DOWN-TTS, downstream transcription termination site
- DR, differentially represented
- EV, empty vector
- EpoFc, Erythropoietin Fc fusion protein
- FACS, fluorescence activated cell sorting
- FC, fold change
- FDR, false discovery rate
- GS, glutamine synthetase
- Genetic screen
- NGS, next generation sequencing
- NTC, no template control
- PAM, protospacer adjacent motif
- PCA, principal component analysis
- Qp, specific productivity
- RMCE, recombinase-mediated cassette exchange
- TMM, trimmed mean of M values
- UP-TSS, upstream transcription start site
- VCD, viable cell density
- dCas9, deactivated Cas9
- gRNA, guide RNA
- genomic deletion
- lncRNA, long non-coding RNA
- ncGene, non-coding gene
- oligo, oligonucleotide
- paired gRNAs
- pgRNA, paired gRNA
- sgRNA, single guide RNA
- µ, growth rate
Collapse
Affiliation(s)
- Valerie Schmieder
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Neža Novak
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Heena Dhiman
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Ly Ngoc Nguyen
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Evgenija Serafimova
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Gerald Klanert
- acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Martina Baumann
- acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, Kgs. Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| |
Collapse
|
10
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
11
|
Brinkrolf K, Shukla SP, Griep S, Rupp O, Heise P, Goesmann A, Heckel DG, Vogel H, Vilcinskas A. Genomic analysis of novel Yarrowia-like yeast symbionts associated with the carrion-feeding burying beetle Nicrophorus vespilloides. BMC Genomics 2021; 22:323. [PMID: 33941076 PMCID: PMC8091737 DOI: 10.1186/s12864-021-07597-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mutualistic interactions with microbes can help insects adapt to extreme environments and unusual diets. An intriguing example is the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses. Its fungal microbiome is dominated by yeasts that potentially facilitate carcass utilization by producing digestive enzymes, eliminating cadaver-associated toxic volatiles (that would otherwise attract competitors), and releasing antimicrobials to sanitize the microenvironment. Some of these yeasts are closely related to the biotechnologically important species Yarrowia lipolytica. Results To investigate the roles of these Yarrowia-like yeast (YLY) strains in more detail, we selected five strains from two different phylogenetic clades for third-generation sequencing and genome analysis. The first clade, represented by strain B02, has a 20-Mb genome containing ~ 6400 predicted protein-coding genes. The second clade, represented by strain C11, has a 25-Mb genome containing ~ 6300 predicted protein-coding genes, and extensive intraspecific variability within the ITS–D1/D2 rDNA region commonly used for species assignments. Phenotypic microarray analysis revealed that both YLY strains were able to utilize a diverse range of carbon and nitrogen sources (including microbial metabolites associated with putrefaction), and can grow in environments with extreme pH and salt concentrations. Conclusions The genomic characterization of five yeast strains isolated from N. vespilloides resulted in the identification of strains potentially representing new YLY species. Given their abundance in the beetle hindgut, and dominant growth on beetle-prepared carcasses, the analysis of these strains has revealed the genetic basis of a potential symbiotic relationship between yeasts and burying beetles that facilitates carcass digestion and preservation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07597-z.
Collapse
Affiliation(s)
- Karina Brinkrolf
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany. .,Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany.
| | - Shantanu P Shukla
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sven Griep
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - Philipp Heise
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
12
|
Zrenner R, Verwaaijen B, Genzel F, Flemer B, Grosch R. Transcriptional Changes in Potato Sprouts upon Interaction with Rhizoctonia solani Indicate Pathogen-Induced Interference in the Defence Pathways of Potato. Int J Mol Sci 2021; 22:ijms22063094. [PMID: 33803511 PMCID: PMC8002989 DOI: 10.3390/ijms22063094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants' molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants' comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (-Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term "response to abiotic stimulus" was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.
Collapse
Affiliation(s)
- Rita Zrenner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Correspondence: ; Tel.: +49-(0)33701-78-216
| | - Bart Verwaaijen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Faculty of Biology/Computational Biology, Bielefeld University, 26 Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Franziska Genzel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Institute of Bio- and Geosciences IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Burkhardt Flemer
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
| |
Collapse
|
13
|
High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00447-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Hypoxylaceae (Xylariales, Ascomycota) is a diverse family of mainly saprotrophic fungi, which commonly occur in angiosperm-dominated forests around the world. Despite their importance in forest and plant ecology as well as a prolific source of secondary metabolites and enzymes, genome sequences of related taxa are scarce and usually derived from environmental isolates. To address this lack of knowledge thirteen taxonomically well-defined representatives of the family and one member of the closely related Xylariaceae were genome sequenced using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing. The workflow leads to high quality draft genome sequences with an average N50 of 3.0 Mbp. A backbone phylogenomic tree was calculated based on the amino acid sequences of 4912 core genes reflecting the current accepted taxonomic concept of the Hypoxylaceae. A Percentage of Conserved Proteins (POCP) analysis revealed that 70% of the proteins are conserved within the family, a value with potential application for the definition of family boundaries within the order Xylariales. Also, Hypomontagnella spongiphila is proposed as a new marine derived lineage of Hypom. monticulosa based on in-depth genomic comparison and morphological differences of the cultures. The results showed that both species share 95% of their genes corresponding to more than 700 strain-specific proteins. This difference is not reflected by standard taxonomic assessments (morphology of sexual and asexual morph, chemotaxonomy, phylogeny), preventing species delimitation based on traditional concepts. Genetic changes are likely to be the result of environmental adaptations and selective pressure, the driving force of speciation. These data provide an important starting point for the establishment of a stable phylogeny of the Xylariales; they enable studies on evolution, ecological behavior and biosynthesis of natural products; and they significantly advance the taxonomy of fungi.
Collapse
|
14
|
Klanert G, Fernandez DJ, Weinguny M, Eisenhut P, Bühler E, Melcher M, Titus SA, Diendorfer AB, Gludovacz E, Jadhav V, Xiao S, Stern B, Lal M, Shiloach J, Borth N. A cross-species whole genome siRNA screen in suspension-cultured Chinese hamster ovary cells identifies novel engineering targets. Sci Rep 2019; 9:8689. [PMID: 31213643 PMCID: PMC6582146 DOI: 10.1038/s41598-019-45159-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
High-throughput siRNA screens were only recently applied to cell factories to identify novel engineering targets which are able to boost cells towards desired phenotypes. While siRNA libraries exist for model organisms such as mice, no CHO-specific library is publicly available, hindering the application of this technique to CHO cells. The optimization of these cells is of special interest, as they are the main host for the production of therapeutic proteins. Here, we performed a cross-species approach by applying a mouse whole-genome siRNA library to CHO cells, optimized the protocol for suspension cultured cells, as this is the industrial practice for CHO cells, and developed an in silico method to identify functioning siRNAs, which also revealed the limitations of using cross-species libraries. With this method, we were able to identify several genes that, upon knockdown, enhanced the total productivity in the primary screen. A second screen validated two of these genes, Rad21 and Chd4, whose knockdown was tested in additional CHO cell lines, confirming the induced high productivity phenotype, but also demonstrating the cell line/clone specificity of engineering effects.
Collapse
Affiliation(s)
- Gerald Klanert
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Marcus Weinguny
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eugen Bühler
- Division of Preclinical Innovation, NCATS, NIH, Rockville, MD, USA
| | - Michael Melcher
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Steven A Titus
- Division of Preclinical Innovation, NCATS, NIH, Rockville, MD, USA
| | | | - Elisabeth Gludovacz
- University of Natural Resources and Life Sciences, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Vaibhav Jadhav
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Su Xiao
- Biotechnology Core Laboratory, NIDDK, NIH, Bethesda, MD, USA
| | - Beate Stern
- Department of Biomedicine, University of Bergen, Bergen, Norway
- UniTargetingResearch AS, Bergen, Norway
| | - Madhu Lal
- Division of Preclinical Innovation, NCATS, NIH, Rockville, MD, USA.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, NIDDK, NIH, Bethesda, MD, USA.
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Graz, Austria.
- University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
15
|
Li S, Cha SW, Heffner K, Hizal DB, Bowen MA, Chaerkady R, Cole RN, Tejwani V, Kaushik P, Henry M, Meleady P, Sharfstein ST, Betenbaugh MJ, Bafna V, Lewis NE. Proteogenomic Annotation of Chinese Hamsters Reveals Extensive Novel Translation Events and Endogenous Retroviral Elements. J Proteome Res 2019; 18:2433-2445. [PMID: 31020842 DOI: 10.1021/acs.jproteome.8b00935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A high-quality genome annotation greatly facilitates successful cell line engineering. Standard draft genome annotation pipelines are based largely on de novo gene prediction, homology, and RNA-Seq data. However, draft annotations can suffer from incorrect predictions of translated sequence, inaccurate splice isoforms, and missing genes. Here, we generated a draft annotation for the newly assembled Chinese hamster genome and used RNA-Seq, proteomics, and Ribo-Seq to experimentally annotate the genome. We identified 3529 new proteins compared to the hamster RefSeq protein annotation and 2256 novel translational events (e.g., alternative splices, mutations, and novel splices). Finally, we used this pipeline to identify the source of translated retroviruses contaminating recombinant products from Chinese hamster ovary (CHO) cell lines, including 119 type-C retroviruses, thus enabling future efforts to eliminate retroviruses to reduce the costs incurred with retroviral particle clearance. In summary, the improved annotation provides a more accurate resource for CHO cell line engineering, by facilitating the interpretation of omics data, defining of cellular pathways, and engineering of complex phenotypes.
Collapse
Affiliation(s)
| | | | | | - Deniz Baycin Hizal
- Antibody Discovery and Protein Engineering , AstraZeneca , Gaithersburg , Maryland , United States
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering , AstraZeneca , Gaithersburg , Maryland , United States
| | - Raghothama Chaerkady
- Antibody Discovery and Protein Engineering , AstraZeneca , Gaithersburg , Maryland , United States
| | | | - Vijay Tejwani
- Colleges of Nanoscale Science and Engineering , SUNY Polytechnic Institute , Albany , New York 12203 , United States
| | - Prashant Kaushik
- National Institute for Cellular Biotechnology , Dublin City University , Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology , Dublin City University , Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology , Dublin City University , Dublin 9, Ireland
| | - Susan T Sharfstein
- Colleges of Nanoscale Science and Engineering , SUNY Polytechnic Institute , Albany , New York 12203 , United States
| | | | | | | |
Collapse
|
16
|
Celis JS, Wibberg D, Ramírez-Portilla C, Rupp O, Sczyrba A, Winkler A, Kalinowski J, Wilke T. Binning enables efficient host genome reconstruction in cnidarian holobionts. Gigascience 2018; 7:5039706. [PMID: 29917104 PMCID: PMC6049006 DOI: 10.1093/gigascience/giy075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Many cnidarians, including stony corals, engage in complex symbiotic associations, comprising the eukaryotic host, photosynthetic algae, and highly diverse microbial communities—together referred to as holobiont. This taxonomic complexity makes sequencing and assembling coral host genomes extremely challenging. Therefore, previous cnidarian genomic projects were based on symbiont-free tissue samples. However, this approach may not be applicable to the majority of cnidarian species for ecological reasons. We therefore evaluated the performance of an alternative method based on sequence binning for reconstructing the genome of the stony coral Porites rus from a hologenomic sample and compared it to traditional approaches. Results Our results demonstrate that binning performs well for hologenomic data, producing sufficient reads for assembling the draft genome of P. rus. An assembly evaluation based on operational criteria showed results that were comparable to symbiont-free approaches in terms of completeness and usefulness, despite a high degree of fragmentation in our assembly. In addition, we found that binning provides sufficient data for exploratory k-mer estimation of genomic features, such as genome size and heterozygosity. Conclusions Binning constitutes a powerful approach for disentangling taxonomically complex coral hologenomes. Considering the recent decline of coral reefs on the one hand and previous limitations to coral genome sequencing on the other hand, binning may facilitate rapid and reliable genome assembly. This study also provides an important milestone in advancing binning from the metagenomic to the hologenomic and from the prokaryotic to the eukaryotic level.
Collapse
Affiliation(s)
- Juan Sebastián Celis
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Corporation Center of Excellence in Marine Sciences, Cra 54 No 106-18, Bogotá, Colombia
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Catalina Ramírez-Portilla
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Evolutionary Biology and Ecology, Université libre de Bruxelles, Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Thomas Wilke
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Corporation Center of Excellence in Marine Sciences, Cra 54 No 106-18, Bogotá, Colombia
| |
Collapse
|
17
|
Goey CH, Alhuthali S, Kontoravdi C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol Adv 2018; 36:1223-1237. [DOI: 10.1016/j.biotechadv.2018.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
|
18
|
Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A. Nat Commun 2018; 9:1963. [PMID: 29773797 PMCID: PMC5958101 DOI: 10.1038/s41467-018-04364-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023] Open
Abstract
Xenovulene A is a complex fungal meroterpenoid, produced by the organism hitherto known as Acremonium strictum IMI 501407, for which limited biosynthetic evidence exists. Here, we generate a draft genome and show that the producing organism is previously unknown and should be renamed as Sarocladium schorii. A biosynthetic gene cluster is discovered which bears resemblance to those involved in the biosynthesis of fungal tropolones, with additional genes of unknown function. Heterologous reconstruction of the entire pathway in Aspergillus oryzae allows the chemical steps of biosynthesis to be dissected. The pathway shows very limited similarity to the biosynthesis of other fungal meroterpenoids. The pathway features: the initial formation of tropolone intermediates; the likely involvement of a hetero Diels–Alder enzyme; a terpene cyclase with no significant sequence homology to any known terpene cyclase and two enzymes catalysing oxidative-ring contractions. Xenovulene A is a fungal compound that has the potential to be used as an antidepressant. Here, the authors unravel the pathway leading to its formation in fungi and discover a new class of enzymes, which accounts for some unusual chemistry in the synthesis of xenovulene.
Collapse
|
19
|
Bertrand V, Vogg S, Villiger TK, Stettler M, Broly H, Soos M, Morbidelli M. Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform. J Biotechnol 2018; 279:27-36. [PMID: 29719200 DOI: 10.1016/j.jbiotec.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022]
Abstract
The pharmaceutical production of recombinant proteins, such as monoclonal antibodies, is rather complex and requires proper development work. Accordingly, it is essential to develop appropriate scale-down models, which can mimic the corresponding production scale. In this work, we investigated the impact of the bioreactor scale on intracellular micro-heterogeneities of a CHO cell line producing monoclonal antibodies in fed-batch mode, using a 10 mL micro-bioreactor (ambr™) scale-down model and the corresponding 300 L pilot-scale bioreactor. For each scale, we measured the time evolution of the proteome, which enabled us to compare the impact of the bioreactor scale on the intracellular processes. Nearly absolute accordance between the scales was verified by data mining methods, such as hierarchical clustering and in-detail analysis on a single protein base. The time response of principal enzymes related to N-glycosylation was discussed, emphasizing major dissimilarities between the glycan fractions adorning the heavy chain and the corresponding protein abundance. The enzyme expression displayed mainly a constant profile, whereas the resulting glycan pattern changed over time. It is concluded that the enzymatic activity is influenced by the changing environmental conditions present in the fed-batch processes leading to the observed time-dependent variation.
Collapse
Affiliation(s)
- Vania Bertrand
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Sebastian Vogg
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas K Villiger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Matthieu Stettler
- Merck, Biotech Process Sciences, Corsier-sur -Vevey, ZI B 1809, Switzerland
| | - Hervé Broly
- Merck, Biotech Process Sciences, Corsier-sur -Vevey, ZI B 1809, Switzerland
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic.
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Verwaaijen B, Wibberg D, Nelkner J, Gordin M, Rupp O, Winkler A, Bremges A, Blom J, Grosch R, Pühler A, Schlüter A. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome. J Biotechnol 2018; 267:12-18. [PMID: 29278726 DOI: 10.1016/j.jbiotec.2017.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany; Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Miriam Gordin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Oliver Rupp
- Justus Liebig University, Bioinformatics and Systems Biology, Giessen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Jochen Blom
- Justus Liebig University, Bioinformatics and Systems Biology, Giessen, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany.
| |
Collapse
|
21
|
Mannala GK, Izar B, Rupp O, Schultze T, Goesmann A, Chakraborty T, Hain T. Listeria monocytogenes Induces a Virulence-Dependent microRNA Signature That Regulates the Immune Response in Galleria mellonella. Front Microbiol 2017; 8:2463. [PMID: 29312175 PMCID: PMC5733040 DOI: 10.3389/fmicb.2017.02463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates.
Collapse
Affiliation(s)
- Gopala K Mannala
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Benjamin Izar
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard University, Cambridge, MA, United States
| | - Oliver Rupp
- Department of Bioinformatics and Systems Biology, Justus-Liebig University, Giessen, Germany
| | - Tilman Schultze
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Goesmann
- Department of Bioinformatics and Systems Biology, Justus-Liebig University, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
22
|
Heffner KM, Hizal DB, Yerganian GS, Kumar A, Can Ö, O’Meally R, Cole R, Chaerkady R, Wu H, Bowen MA, Betenbaugh MJ. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison. J Proteome Res 2017; 16:3672-3687. [DOI: 10.1021/acs.jproteome.7b00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Amit Kumar
- Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Özge Can
- Acibadem University, Medical Biochemistry, Istanbul, Maltepe, Turkey
| | - Robert O’Meally
- Johns Hopkins Medical Institute, Baltimore, Maryland 21205, United States
| | - Robert Cole
- Johns Hopkins Medical Institute, Baltimore, Maryland 21205, United States
| | | | - Herren Wu
- MedImmune, Gaithersburg, Maryland 20878, United States
| | | | | |
Collapse
|
23
|
Shridhar S, Klanert G, Auer N, Hernandez-Lopez I, Kańduła MM, Hackl M, Grillari J, Stralis-Pavese N, Kreil DP, Borth N. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. J Biotechnol 2017; 257:13-21. [DOI: 10.1016/j.jbiotec.2017.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 11/26/2022]
|
24
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
25
|
Jahn L, Schafhauser T, Wibberg D, Rückert C, Winkler A, Kulik A, Weber T, Flor L, van Pée KH, Kalinowski J, Ludwig-Müller J, Wohlleben W. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin. J Biotechnol 2017. [PMID: 28647529 DOI: 10.1016/j.jbiotec.2017.06.410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.
Collapse
Affiliation(s)
- Linda Jahn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Schafhauser
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Daniel Wibberg
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Anika Winkler
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Andreas Kulik
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Tilmann Weber
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Liane Flor
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Wolfgang Wohlleben
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3. Arch Microbiol 2017; 199:1065-1068. [PMID: 28597196 DOI: 10.1007/s00203-017-1394-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
The basidiomycetes fungus Rhizoctonia solani AG3 is responsible for black scurf disease on potato and occurs in each potato growing area world-wide. In this study, the draft genome sequence of the black scurf pathogen R. solani AG3-PT isolate Ben3 is presented. The genome sequence of R. solani AG3-PT isolate Ben3 consists of 1385 scaffolds. These scaffolds amount to a size of approx. 51 Mb. Considering coverage analyses of contigs, the size of the diploid genome was estimated to correspond to 116 Mb. Gene prediction by applying AUGUSTUS (3.2.1.) resulted in 12,567 identified genes. Based on automatic annotation using GenDBE, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the R. solani AG3-PT isolate Ben3 genome. Comparative analyses including the R. solani AG3 isolate Rhs1AP, also originating from potato, revealed first insights into core genes shared by both isolates and unique determinants of each isolate.
Collapse
|
27
|
Trenti F, Cox RJ. Structural Revision and Biosynthesis of the Fungal Phytotoxins Phyllostictines A and B. JOURNAL OF NATURAL PRODUCTS 2017; 80:1235-1240. [PMID: 28467083 DOI: 10.1021/acs.jnatprod.7b00183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The structure of the fungal phytotoxins known as the phyllostictines has been revised to a series of bicyclic 3-methylene tetramic acids. Genome sequencing of the producing organism Phyllostica cirsii has revealed a biosynthetic gene cluster responsible for the biosynthesis of the phyllostictines, and targeted knockout experiments have proven the link and produced an intermediate.
Collapse
Affiliation(s)
- Francesco Trenti
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover , Schneiderberg 38, Hannover 30167, Germany
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover , Schneiderberg 38, Hannover 30167, Germany
| |
Collapse
|
28
|
Kelly PS, Clarke C, Costello A, Monger C, Meiller J, Dhiman H, Borth N, Betenbaugh MJ, Clynes M, Barron N. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells. Metab Eng 2017; 41:11-22. [DOI: 10.1016/j.ymben.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
29
|
Kracht ON, Ammann AC, Stockmann J, Wibberg D, Kalinowski J, Piotrowski M, Kerr R, Brück T, Kourist R. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases. PHYTOCHEMISTRY 2017; 136:15-22. [PMID: 28162767 DOI: 10.1016/j.phytochem.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 05/22/2023]
Abstract
Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus.
Collapse
Affiliation(s)
- Octavia Natascha Kracht
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Ann-Christin Ammann
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Julia Stockmann
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Daniel Wibberg
- Centre for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Centre for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Markus Piotrowski
- Chair of Plant Physiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Russell Kerr
- Marine Natural Products Lab, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada
| | - Thomas Brück
- Chair of Industrial Biocatalysis, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
30
|
Hsu HH, Araki M, Mochizuki M, Hori Y, Murata M, Kahar P, Yoshida T, Hasunuma T, Kondo A. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture. Sci Rep 2017; 7:43518. [PMID: 28252038 PMCID: PMC5333161 DOI: 10.1038/srep43518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/27/2017] [Indexed: 11/11/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.
Collapse
Affiliation(s)
- Han-Hsiu Hsu
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masao Mochizuki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoshimi Hori
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masahiro Murata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
31
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol 2016; 257:150-161. [PMID: 27890772 DOI: 10.1016/j.jbiotec.2016.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023]
Abstract
The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.
Collapse
Affiliation(s)
- Anna Wippermann
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Karina Brinkrolf
- Department of Biorescources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Raimund Hoffrogge
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
32
|
Lee N, Shin J, Park JH, Lee GM, Cho S, Cho BK. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture. ACS Synth Biol 2016; 5:1211-1219. [PMID: 26854539 DOI: 10.1021/acssynbio.5b00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host for the production of a wide array of biopharmaceuticals. Thus, efficient and rational CHO cell line engineering methods have been in high demand to improve quality and productivity. Here, we provide a novel genome engineering platform for increasing desirable phenotypes of CHO cells based upon the integrative protocol of high-throughput RNA sequencing and DNA-free RNA-guided Cas9 (CRISPR associated protein9) nuclease-based genome editing. For commercial production of therapeutic proteins, CHO cells have been adapted for suspension culture in serum-free media, which is highly beneficial with respect to productivity and economics. To engineer CHO cells for rapid adaptation to a suspension culture, we exploited strand-specific RNA-seq to identify genes differentially expressed according to their adaptation trajectory in serum-free media. More than 180 million sequencing reads were generated and mapped to the currently available 109,152 scaffolds of the CHO-K1 genome. We identified significantly downregulated genes according to the adaptation trajectory and then verified their effects using the genome editing method. Growth-based screening and targeted amplicon sequencing revealed that the functional deletions of Igfbp4 and AqpI gene accelerate suspension adaptation of CHO-K1 cells. The availability of this strand-specific transcriptome sequencing and DNA-free RNA-guided Cas9 nuclease mediated genome editing facilitates the rational design of the CHO cell genome for efficient production of high quality therapeutic proteins.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
| | - JongOh Shin
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
| | - Jin Hyoung Park
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, KAIST , Daejeon 305-701, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 305-701, Republic of Korea
| |
Collapse
|
33
|
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8285428. [PMID: 27119084 PMCID: PMC4826915 DOI: 10.1155/2016/8285428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Collapse
|
34
|
Bedoya-López A, Estrada K, Sanchez-Flores A, Ramírez OT, Altamirano C, Segovia L, Miranda-Ríos J, Trujillo-Roldán MA, Valdez-Cruz NA. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture. PLoS One 2016; 11:e0151529. [PMID: 26991106 PMCID: PMC4798216 DOI: 10.1371/journal.pone.0151529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/28/2016] [Indexed: 12/30/2022] Open
Abstract
Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system.
Collapse
Affiliation(s)
- Andrea Bedoya-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Karel Estrada
- Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Juan Miranda-Ríos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio A. Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Norma A. Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
35
|
Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Pühler A, Fogelqvist J, Varrelmann M, Schlüter A, Dixelius C. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics 2016; 17:245. [PMID: 26988094 PMCID: PMC4794925 DOI: 10.1186/s12864-016-2561-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
Background Sugar beet (Beta vulgaris) is a crop cultivated for its high content in sugar, but it is vulnerable to many soil-borne pathogens. One of them is the basidiomycete Rhizoctonia solani. This fungal species has a compatibility system regulating hyphal fusions (anastomosis). Consequently, R. solani species are categorized in anastomosis groups (AGs). AG2-2IIIB isolates are most aggressive on sugar beet. In the present study, we report on the draft genome of R. solani AG2-2IIIB using the Illumina technology. Genome analysis, interpretation and comparative genomics of five sequenced R. solani isolates were carried out. Results The draft genome of R. solani AG2-2IIIB has an estimated size of 56.02 Mb. In addition, two normalized EST libraries were sequenced. In total 20,790 of 21,980 AG2-2IIIB isotigs (transcript isoforms) were mapped on the genome with more than 95 % sequence identity. The genome of R. solani AG2-2IIIB was predicted to harbor 11,897 genes and 4908 were found to be isolate-specific. R. solani AG2-2IIIB was predicted to contain 1142 putatively secreted proteins and 473 of them were found to be unique for this isolate. The R. solani AG2-2IIIB genome encodes a high number of carbohydrate active enzymes. The highest numbers were observed for the polysaccharide lyases family 1 (PL-1), glycoside hydrolase family 43 (GH-43) and carbohydrate estarase family 12 (CE-12). Transcription analysis of selected genes representing different enzyme clades revealed a mixed pattern of up- and down-regulation six days after infection on sugar beets featuring variable levels of resistance compared to mycelia of the fungus grown in vitro. Conclusions The established R. solani AG2-2IIIB genome and EST sequences provide important information on the gene content, gene structure and transcriptional activity for this sugar beet pathogen. The enriched genomic platform provides an important platform to enhance our understanding of R. solani biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2561-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Wibberg
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501, Bielefeld, Germany
| | - Louise Andersson
- Syngenta Seeds AB, Säbyholmsvägen 24, 26191, Landskrona, Sweden.,Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007, Uppsala, Sweden
| | - Georgios Tzelepis
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007, Uppsala, Sweden
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Gießen University, D-35392, Gießen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Gießen University, D-35392, Gießen, Germany
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Gießen University, D-35392, Gießen, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501, Bielefeld, Germany
| | - Johan Fogelqvist
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007, Uppsala, Sweden
| | | | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501, Bielefeld, Germany.
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007, Uppsala, Sweden.
| |
Collapse
|
36
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
37
|
Wibberg D, Rupp O, Blom J, Jelonek L, Kröber M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Pühler A, Schlüter A. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. PLoS One 2015; 10:e0144769. [PMID: 26690577 PMCID: PMC4686921 DOI: 10.1371/journal.pone.0144769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022] Open
Abstract
Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags—ESTs) were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI) and Average Amino-acid Identity (AAI) analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.
Collapse
Affiliation(s)
- Daniel Wibberg
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Gießen University, Gießen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Gießen University, Gießen, Germany
| | - Lukas Jelonek
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
- Bioinformatics and Systems Biology, Gießen University, Gießen, Germany
| | - Magdalena Kröber
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bart Verwaaijen
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Stefan Albaum
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetables and Ornamental Crops, Großbeeren, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
38
|
Lewis AM, Abu-Absi NR, Borys MC, Li ZJ. The use of 'Omics technology to rationally improve industrial mammalian cell line performance. Biotechnol Bioeng 2015; 113:26-38. [PMID: 26059229 DOI: 10.1002/bit.25673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Biologics represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 being in this class. Furthermore, health authority approval of biologics in the immuno-oncology space is expected to transform treatment of patients with debilitating and deadly diseases. The growing importance of biologics in the healthcare field has also resulted in the recent approvals of several biosimilars. These recent developments, combined with pressure to provide treatments at lower costs to payers, are resulting in increasing need for the industry to quickly and efficiently develop high yielding, robust processes for the manufacture of biologics with the ability to control quality attributes within narrow distributions. Achieving this level of manufacturing efficiency and the ability to design processes capable of regulating growth, death and other cellular pathways through manipulation of media, feeding strategies, and other process parameters will undoubtedly be facilitated through systems biology tools generated in academic and public research communities. Here we discuss the intersection of systems biology, 'Omics technologies, and mammalian bioprocess sciences. Specifically, we address how these methods in conjunction with traditional monitoring techniques represent a unique opportunity to better characterize and understand host cell culture state, shift from an empirical to rational approach to process development and optimization of bioreactor cultivation processes. We summarize the following six key areas: (i) research applied to parental, non-recombinant cell lines; (ii) systems level datasets generated with recombinant cell lines; (iii) datasets linking phenotypic traits to relevant biomarkers; (iv) data depositories and bioinformatics tools; (v) in silico model development, and (vi) examples where these approaches have been used to rationally improve cellular processes. We critically assess relevant and state of the art research being conducted in academic, government and industrial laboratories. Furthermore, we apply our expertise in bioprocess to define a potential model for integration of these systems biology approaches into biologics development.
Collapse
Affiliation(s)
- Amanda M Lewis
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts.
| | - Nicholas R Abu-Absi
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Michael C Borys
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| |
Collapse
|
39
|
The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms. J Biotechnol 2015; 211:20-30. [PMID: 26150016 DOI: 10.1016/j.jbiotec.2015.06.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The yeast Cyberlindnera jadinii is a close relative of Candida utilis that is being used in the food and feed industries. Here, we present the 12.7Mb genome sequence of C. jadinii strain CBS 1600 generated by next generation sequencing. The deduced draft genome sequence consists of seven large scaffolds analogous to the seven largest chromosomes of C. utilis. An automated annotation of the C. jadinii genome identified 6147 protein-coding sequences. The level of ploidy for both genomes was analyzed by calling single nucleotide polymorphisms (SNPs) and was verified measuring nuclear DNA contents by florescence activated cell sorting (FACS). Both analyses determined the level of ploidy to diploid for C. jadinii and to triploid for C. utilis. However, SNP calling for C. jadinii also identified scaffold regions that seem to be haploid, triploid or tetraploid.
Collapse
|
40
|
Monger C, Kelly PS, Gallagher C, Clynes M, Barron N, Clarke C. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling. Biotechnol J 2015; 10:950-66. [DOI: 10.1002/biot.201500107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/08/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
|
41
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J Biotechnol 2015; 199:38-46. [DOI: 10.1016/j.jbiotec.2015.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
|
43
|
Vishwanathan N, Yongky A, Johnson KC, Fu HY, Jacob NM, Le H, Yusufi FNK, Lee DY, Hu WS. Global insights into the Chinese hamster and CHO cell transcriptomes. Biotechnol Bioeng 2015; 112:965-76. [PMID: 25450749 DOI: 10.1002/bit.25513] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/26/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022]
Abstract
Transcriptomics is increasingly being used on Chinese hamster ovary (CHO) cells to unveil physiological insights related to their performance during production processes. The rich transcriptome data can be exploited to provide impetus for systems investigation such as modeling the central carbon metabolism or glycosylation pathways, or even building genome-scale models. To harness the power of transcriptome assays, we assembled and annotated a set of RNA-Seq data from multiple CHO cell lines and Chinese hamster tissues, and constructed a DNA microarray. The identity of genes involved in major functional pathways and their transcript levels generated in this study will serve as a reference for future studies employing kinetic models. In particular, the data on glycolysis and glycosylation pathways indicate that the variability of gene expression level among different cell lines and tissues may contribute to their differences in metabolism and glycosylation patterns. Thereby, these insights can potentially lead to opportunities for cell engineering. This repertoire of transcriptome data also enables the identification of potential sequence variants in cell lines and allows tracing of cell lineages. Overall the study is an illustration of the potential benefit of RNA-Seq that is yet to be exploited.
Collapse
Affiliation(s)
- Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota, 55455-0132
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Klein T, Niklas J, Heinzle E. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol 2015; 42:453-64. [PMID: 25561318 DOI: 10.1007/s10295-014-1569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022]
Abstract
Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.
Collapse
Affiliation(s)
- Tobias Klein
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | | | | |
Collapse
|
45
|
Vishwanathan N, Le H, Le T, Hu WS. Advancing biopharmaceutical process science through transcriptome analysis. Curr Opin Biotechnol 2014; 30:113-9. [DOI: 10.1016/j.copbio.2014.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 01/02/2023]
|
46
|
Toward genome-scale models of the Chinese hamster ovary cells: incentives, status and perspectives. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Statistical methods for mining Chinese hamster ovary cell ‘omics data: from differential expression to integrated multilevel analysis of the biological system. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Lei W, Herington J, Galindo CL, Ding T, Brown N, Reese J, Paria BC. Cross-species transcriptomic approach reveals genes in hamster implantation sites. Reproduction 2014; 148:607-21. [PMID: 25252651 DOI: 10.1530/rep-14-0388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS.
Collapse
Affiliation(s)
- Wei Lei
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jennifer Herington
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Cristi L Galindo
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Tianbing Ding
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Naoko Brown
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jeff Reese
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Bibhash C Paria
- Division of NeonatologyDepartment of PediatricsDivision of Cardiovascular MedicineDepartment of Obstetrics and GynecologyVanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
49
|
Jakobi T, Brinkrolf K, Tauch A, Noll T, Stoye J, Pühler A, Goesmann A. Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing. J Biotechnol 2014; 190:64-75. [PMID: 25086342 DOI: 10.1016/j.jbiotec.2014.07.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/30/2022]
Abstract
Chinese hamster ovary (CHO) cell lines are one of the major production tools for monoclonal antibodies, recombinant proteins, and therapeutics. Although many efforts have significantly improved the availability of sequence information for CHO cells in the last years, forthcoming draft genomes still lack the information depth known from the mouse or human genomes. Many genes annotated for CHO cells and the Chinese hamster reference genome still are in silico predictions, only insufficiently verified by biological experiments. The correct annotation of transcription start sites (TSSs) is of special interest for CHO cells, as these directly define the location of the eukaryotic core promoter. Our study aims to elucidate these largely unexplored regions, trying to shed light on promoter landscapes in the Chinese hamster genome. Based on a 5' enriched dual library RNA sequencing approach 6547 TSSs were identified, of which over 90% were assigned to known genes. These TSSs were used to perform extensive promoter studies using a novel, modular bioinformatics pipeline, incorporating analyses of important regulatory elements of the eukaryotic core promoter on per-gene level and on genomic scale.
Collapse
Affiliation(s)
- Tobias Jakobi
- Institut für Bioinformatik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Karina Brinkrolf
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Thomas Noll
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Jens Stoye
- Institut für Bioinformatik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany; Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany.
| | - Alexander Goesmann
- Bioinformatik und Systembiologie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany.
| |
Collapse
|
50
|
Transcriptome analyses of CHO cells with the next-generation microarray CHO41K: development and validation by analysing the influence of the growth stimulating substance IGF-1 substitute LongR(3.). J Biotechnol 2014; 178:23-31. [PMID: 24613301 DOI: 10.1016/j.jbiotec.2014.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 11/24/2022]
Abstract
The increasing importance of Chinese hamster ovary (CHO) cells for the production of pharmaceutical proteins has awakened the demand to understand the cellular metabolism of these cells. However, satisfactory gene expression studies have yet been impractical due to insufficient coverage of sequences. In this work, previously determined sequence information of CHO cells and newly derived data from 454 and Illumina sequencing was used to establish the CHO41K microarray which contains 41,304 probes. Self-hybridisation was performed for replica determination and samples were run in triplicates to increase statistical power. For determination of technical variance, confidence intervals at an M-value of ±0.6 for 95% and at ±2.3 for 99% of the probes were calculated. Intra-microarray and slide to slide variance was not detectable. In a first application, this microarray enabled an in-depth look inside the cellular transcriptome of CHO cells cultured in the presence or absence of the growth supporting substance "insulin like growth factor 1" (IGF-1) analogue LongR(3). Its effect on the cells ranged from enhanced growth to delay of cell death as well as cytoskeletal installation. Suggesting that under supplementation, a minimised cellular effort in installation of a large cytoskeleton occurs, possibly in favour of promoting faster cell division.
Collapse
|