1
|
Fazekas B, Hamon S, De Marco Verissimo C, Cwiklinski K, López Corrales J, Gaughan S, Ryan S, Taggart CC, Weldon S, Griffin MD, Dalton JP, Lalor R. PROTECTION OF MICE AGAINST CECAL LIGATION AND PUNCTURE-INDUCED POLYMICROBIAL SEPSIS BY A FASCIOLA HEPATICA HELMINTH DEFENSE MOLECULE. Shock 2025; 63:132-140. [PMID: 39455069 DOI: 10.1097/shk.0000000000002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
ABSTRACT Sepsis results from a dysregulated host immune response to infection and is responsible for ~11 million deaths each year. In the laboratory, many aspects of sepsis can be replicated using a cecal ligation and puncture model, which is considered the most clinically relevant rodent model of sepsis. In the present study, histological and biomarker multiplex analyses revealed that the cecal ligation and puncture model initiated a large-scale inflammatory response in mice by 24 h, with evidence of acute organ damage by 48-72 h. While many typical proinflammatory cytokine/chemokines were systemically elevated, a specific array including IL-10, eotaxin, MIP-1α, MIP-1β, MCP-1, and RANTES noticeably increased just prior to animals reaching the humane endpoint. Treatment of mice with 10 μg of a synthetic 68-amino acid peptide derived from an immunomodulatory molecule secreted by a parasitic worm of humans and livestock, F. hepatica , termed F. hepatica helminth defense molecule, potently suppressed the systemic inflammatory profile, protected mice against acute kidney injury, and improved survival between 48 and 72 h after procedure. These results suggest that the anti-inflammatory parasite-derived F. hepatica helminth defense molecule peptide has potential as a biotherapeutic treatment for sepsis.
Collapse
Affiliation(s)
- Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Gong JZ, Huang JJ, Pan M, Jin QW, Fan YM, Shi WQ, Huang SY. Cathepsin L of Fasciola hepatica meliorates colitis by altering the gut microbiome and inflammatory macrophages. Int J Biol Macromol 2025; 286:138270. [PMID: 39638178 DOI: 10.1016/j.ijbiomac.2024.138270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Helminths can relieve the development of autoimmune diseases and inflammatory diseases, by inducing anti-inflammatory innate immune responses. Here, we report that CL7, a Cathepsin L protein secreted by Fasciola hepatica, inhibited the activation of the NF-κB and MAPK signaling resulting in reduced secretion of inflammatory mediators in macrophages. Furthermore,we found that CL7 could prevent dextran sulfate sodium (DSS) induced ulcerative colitis (UC). CL7 and ESP administration restored DSS-induced body weight loss, colon shortening, and injury, significantly decreased the disease activity index (DAI) and alleviated colonic epithelial injury. CL7 noticeably suppressed the DSS-triggered M1 polarization upregulation and inhibited IL-17 and other inflammatory mediator production in UC mice. Additionally, CL7 ameliorated DSS-induced microbiota dysbiosis. Results of Antibiotic treatment (ABX) and fecal microbial transplants (FMT) suggested that the gut microbiota played an important role in CL7 treating UC. These findings propose that CL7 could be a promising strategy for UC therapy.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun-Jie Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Wen-Qian Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
3
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Tanabe MB, Caravedo MA, Clinton White A, Cabada MM. An Update on the Pathogenesis of Fascioliasis: What Do We Know? Res Rep Trop Med 2024; 15:13-24. [PMID: 38371362 PMCID: PMC10874186 DOI: 10.2147/rrtm.s397138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/27/2024] [Indexed: 02/20/2024] Open
Abstract
Fasciola hepatica is a trematode parasite distributed worldwide. It is known to cause disease in mammals, producing significant economic loses to livestock industry and burden to human health. After ingestion, the parasites migrate through the liver and mature in the bile ducts. A better understanding of the parasite's immunopathogenesis would help to develop efficacious therapeutics and vaccines. Currently, much of our knowledge comes from in vitro and in vivo studies in animal models. Relatively little is known about the host-parasite interactions in humans. Here, we provide a narrative review of what is currently know about the pathogenesis and host immune responses to F. hepatica summarizing the evidence available from the multiple hosts that this parasite infects.
Collapse
Affiliation(s)
- Melinda B Tanabe
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria A Caravedo
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - A Clinton White
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Miguel M Cabada
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| |
Collapse
|
6
|
Chowdhury S, Sais D, Donnelly S, Tran N. The knowns and unknowns of helminth-host miRNA cross-kingdom communication. Trends Parasitol 2024; 40:176-191. [PMID: 38151361 DOI: 10.1016/j.pt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
7
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli-lipopolysaccharide, whereas it modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. Microbiol Spectr 2024; 12:e0347523. [PMID: 38018982 PMCID: PMC10782955 DOI: 10.1128/spectrum.03475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Loyda B. Mendez
- School of Sciences and Technologies, University Ana G. Mendez, Carolina, Puerto Rico
| | - Ana M. Espino
- Department of Microbiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
8
|
Zhang QZ, Liu JH, Gao YR, Liang J, Tang CL. Effect of macrophage polarization on parasitic protection against type 1 diabetes mellitus. Exp Parasitol 2024; 256:108649. [PMID: 37914152 DOI: 10.1016/j.exppara.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Qi-Zhi Zhang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jun-Hui Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yan-Ru Gao
- Basic Medical Science Teaching Center, Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China.
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
9
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli -lipopolysaccharide whereas modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552847. [PMID: 37609327 PMCID: PMC10441391 DOI: 10.1101/2023.08.10.552847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The helminth Fasciola hepatica is known as a master of immunomodulation. It suppresses antigen specific Th1 responses in concurrent bacterial infections while promoting the Th2/Treg regulatory responses, thus demonstrating its anti-inflammatory ability in vivo . We have recently demonstrated that a single intraperitoneal injection with native F. hepatica Glutathione S -Transferase (nFhGST), mostly comprised of mu-class isoforms, can suppresses the cytokine storm and increasing the survival rate in a mouse model of septic shock (1). Knowing that the peritoneal macrophages in response to microbial stimuli play essential roles in the defense, tissue repairment, and maintenance of homeostasis, the present study aimed to determine whether nFhGST could modulate the amount and dynamic of these cells concurrently to the suppression of pro-inflammatory cytokines. The remarkable findings described in this article are, (i) nFhGST suppresses serum IL-12, TNF-α, and IFN-γ in BALB/c mice challenged with a lethal dose of LPS, (ii) Although nFhGST does not elicit IL-10, it was able to significantly suppress the high levels of LPS-induced IL-10, which is considered a key cytokine in the pathophysiology of sepsis (2). iii) nFhGST prevent the disappearance of large peritoneal macrophages (LPM) whereas significantly increasing this population in the peritoneal cavity (PerC) of LPS treated animals, (iv) nFhGST promotes the alternative activation of macrophages whereas suppress the classical activation of macrophages in vitro by expressing high levels of Ym-1, a typical M2-type marker, secreting the production of IL-37, and preventing the production of TNF-α, iNOS2 and nitric oxide, which are typical markers of M1-type macrophages, (v) nFhGST suppress the bacterial phagocytosis of macrophages, a role that plays both, M1-and M2-macrophages, thus partially affecting the capacity of macrophages in destroying microbial pathogens. These findings present the first evidence that nFhGST is an excellent modulator of the PerC content in vivo, reinforcing the capacity of nFhGST as an anti-inflammatory drug against sepsis in animal models. Importance Sepsis is an infection that can lead to a life-threatening complication. Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cells' activation by bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by toll-like receptor 4 (TLR4). For this reason, scientists aimed to develop antagonists able to block the cytokine storm by blocking TLR4. We report here that a mixture of mu-class isoforms from the F. hepatica glutathione S-transferase (nFhGST) protein family administered intraperitoneally 1 h after a lethal LPS injection, is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock whereas modulate the dynamic and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice. These results suggest that nFhGST is a prominent candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
|
10
|
Camaya I, O’Brien B, Donnelly S. How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk. Front Endocrinol (Lausanne) 2023; 14:1205219. [PMID: 37564976 PMCID: PMC10411736 DOI: 10.3389/fendo.2023.1205219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic β-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional β-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise β-cell function. Furthermore, it is the crosstalk between macrophages and β-cells that orchestrates the inflammatory response and ensuing β-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of β-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and β-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on β-cells, and the modulation of signal exchange between macrophages and β-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with β-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent β-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease.
Collapse
Affiliation(s)
| | | | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
11
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
12
|
Kondo Y, Ito D, Taniguchi R, Tademoto S, Horie T, Otsuki H. Extracellular vesicles derived from Spirometra erinaceieuropaei plerocercoids inhibit activation of murine macrophage RAW264.7 cells. Parasitol Int 2023; 95:102742. [PMID: 36870444 DOI: 10.1016/j.parint.2023.102742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Parasitic helminths modify host immune reactions to promote long-term parasitism. We previously purified a glycoprotein, plerocercoid-immunosuppressive factor (P-ISF), from the excretory/secretory products of Spirometra erinaceieuropaei plerocercoids and reported its cDNA and genomic DNA sequences. In this study, we isolated extracellular vesicles (EVs) from the excretory/secretory products of S. erinaceieuropaei plerocercoids and found that they suppressed the production of nitric oxide and the gene expression of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in lipopolysaccharide-stimulated macrophages. EVs are membrane-bound vesicles 50-250 nm in diameter and are localized in the whole bodies of plerocercoids. EVs from plerocercoids encapsulate a variety of unidentified proteins and microRNAs (miRNAs), which are non-coding RNAs that play essential roles in post-transcriptional gene regulation. The miRNAs of the EVs were analyzed, and 334,137 sequencing reads were mapped to the genomes of other organisms. A total of 26 different miRNA families were identified, including miR-71, miR-10-5p, miR-223, and let-7-5p, which have been reported to have immunosuppressive effects. We confirmed that P-ISF was present in the supernatant but not in the EVs by western blotting with an anti-P-ISF antibody. These results suggest that S. erinaceieuropaei plerocercoids suppress host immunity by releasing P-ISF and EVs.
Collapse
Affiliation(s)
- Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Rika Taniguchi
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Sayuri Tademoto
- Technical Department, Tottori University, Yonago 683-8503, Japan
| | - Takashi Horie
- Technical Department, Tottori University, Yonago 683-8503, Japan; Laboratory of Electron Microscopy, Tottori University, Yonago 683-8503, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| |
Collapse
|
13
|
Pham K, Mertelsmann A, Mages K, Kingery JR, Mazigo HD, Jaka H, Kalokola F, Changalucha JM, Kapiga S, Peck RN, Downs JA. Effects of helminths and anthelmintic treatment on cardiometabolic diseases and risk factors: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011022. [PMID: 36827239 PMCID: PMC9956023 DOI: 10.1371/journal.pntd.0011022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Globally, helminth infections and cardiometabolic diseases often overlap in populations and individuals. Neither the causal relationship between helminth infections and cardiometabolic diseases nor the effect of helminth eradication on cardiometabolic risk have been reviewed systematically in a large number of human and animal studies. METHODS We conducted a systematic review assessing the reported effects of helminth infections and anthelmintic treatment on the development and/or severity of cardiometabolic diseases and risk factors. The search was limited to the most prevalent human helminths worldwide. This study followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42021228610). Searches were performed on December 10, 2020 and rerun on March 2, 2022 using Ovid MEDLINE ALL (1946 to March 2, 2022), Web of Science, Cochrane Library, Global Index Medicus, and Ovid Embase (1974 to March 2, 2022). Randomized clinical trials, cohort, cross-sectional, case-control, and animal studies were included. Two reviewers performed screening independently. RESULTS Eighty-four animal and human studies were included in the final analysis. Most studies reported on lipids (45), metabolic syndrome (38), and diabetes (30), with fewer on blood pressure (18), atherosclerotic cardiovascular disease (11), high-sensitivity C-reactive protein (hsCRP, 5), and non-atherosclerotic cardiovascular disease (4). Fifteen different helminth infections were represented. On average, helminth-infected participants had less dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. Eleven studies examined anthelmintic treatment, of which 9 (82%) reported post-treatment increases in dyslipidemia, metabolic syndrome, and diabetes or glucose levels. Results from animal and human studies were generally consistent. No consistent effects of helminth infections on blood pressure, hsCRP, or cardiac function were reported except some trends towards association of schistosome infection with lower blood pressure. The vast majority of evidence linking helminth infections to lower cardiometabolic diseases was reported in those with schistosome infections. CONCLUSIONS Helminth infections may offer protection against dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. This protection may lessen after anthelmintic treatment. Our findings highlight the need for mechanistic trials to determine the pathways linking helminth infections with cardiometabolic diseases. Such studies could have implications for helminth eradication campaigns and could generate new strategies to address the global challenge of cardiometabolic diseases.
Collapse
Affiliation(s)
- Khanh Pham
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
| | - Anna Mertelsmann
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Keith Mages
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Justin R. Kingery
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Humphrey D. Mazigo
- Department of Parasitology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Hyasinta Jaka
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Internal Medicine, Mwanza College of Health and Allied Sciences, Mwanza, Tanzania
| | - Fredrick Kalokola
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | | | - Saidi Kapiga
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Jennifer A. Downs
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
14
|
von Willebrand factor links primary hemostasis to innate immunity. Nat Commun 2022; 13:6320. [PMID: 36329021 PMCID: PMC9633696 DOI: 10.1038/s41467-022-33796-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.
Collapse
|
15
|
Quinteros SL, O'Brien B, Donnelly S. Exploring the role of macrophages in determining the pathogenesis of liver fluke infection. Parasitology 2022; 149:1364-1373. [PMID: 35621040 PMCID: PMC11010472 DOI: 10.1017/s0031182022000749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
The food-borne trematodes, Opisthorchis viverrini and Clonorchis sinensis, are classified as group 1 biological carcinogens: definitive causes of cancer. By contrast, infections with Fasciola hepatica, also a food-borne trematode of the phylum Platyhelminthes, are not carcinogenic. This review explores the premise that the differential activation of macrophages during infection with these food-borne trematodes is a major determinant of the pathological outcome of infection. Like most helminths, the latter stages of infection with all 3 flukes induce M2 macrophages, a phenotype that mediates the functional repair of tissue damaged by the feeding and migratory activities of the parasites. However, there is a critical difference in how the development of pro-inflammatory M1 macrophages is regulated during infection with these parasites. While the activation of the M1 macrophage phenotype is largely suppressed during the early stages of infection with F. hepatica, M1 macrophages predominate in the bile ducts following infection with O. viverrini and C. sinensis. The anti-microbial factors released by M1 macrophages create an environment conducive to mutagenesis, and hence the initiation of tumour formation. Subsequently, the tissue remodelling processes induced by the M2 macrophages promote the proliferation of mutated cells, and the expansion of cancerous tissue. This review will also explore the interactions between macrophages and parasite-derived signals, and their contributions to the stark differences in the innate immune responses to infection with these parasites.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
16
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
Administration of Hookworm Excretory/Secretory Proteins Improves Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Biomolecules 2022; 12:biom12050637. [PMID: 35625566 PMCID: PMC9138508 DOI: 10.3390/biom12050637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes is recognised as the world’s fastest growing chronic condition globally. Helminth infections have been shown to be associated with a lower prevalence of type 2 diabetes (T2D), in part due to their ability to induce a type 2 immune response. Therefore, to understand the molecular mechanisms that underlie the development of T2D-induced insulin resistance, we treated mice fed on normal or diabetes-promoting diets with excretory/secretory products (ES) from the gastrointestinal helminth Nippostrongylus brasiliensis. We demonstrated that treatment with crude ES products from adult worms (AES) or infective third-stage larvae (L3ES) from N. brasiliensis improved glucose tolerance and attenuated body weight gain in mice fed on a high glycaemic index diet. N. brasiliensis ES administration to mice was associated with a type 2 immune response measured by increased eosinophils and IL-5 in peripheral tissues but not IL-4, and with a decrease in the level of IL-6 in adipose tissue and corresponding increase in IL-6 levels in the liver. Moreover, treatment with AES or L3ES was associated with significant changes in the community composition of the gut microbiota at the phylum and order levels. These data highlight a role for N. brasiliensis ES in modulating the immune response associated with T2D, and suggest that N. brasiliensis ES contain molecules with therapeutic potential for treating metabolic syndrome and T2D.
Collapse
|
18
|
Camaya I, Donnelly S, O'Brien B. Targeting the PI3K/Akt signaling pathway in pancreatic β-cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. J Diabetes 2022; 14:247-260. [PMID: 35191175 PMCID: PMC9060113 DOI: 10.1111/1753-0407.13252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of the insulin-producing β-cells within the pancreas. Islet transplantation represents one cure; however, during islet preparation and post transplantation significant amounts of β-cell death occur. Therefore, prevention and cure of T1D is dependent upon the preservation of β-cell function and the prevention of β-cell death. Phosphoinositide 3-kinase (PI3K)/Akt signaling represents a promising therapeutic target for T1D due to its pronounced effects on cellular survival, proliferation, and metabolism. A growing amount of evidence indicates that PI3K/Akt signaling is a critical determinant of β-cell mass and function. Modulation of the PI3K/Akt pathway, directly (via the use of highly specific protein and peptide-based biologics, excretory/secretory products of parasitic worms, and complex constituents of plant extracts) or indirectly (through microRNA interactions) can regulate the β-cell processes to ultimately determine the fate of β-cell mass. An important consideration is the identification of the specific PI3K/Akt pathway modulators that enhance β-cell function and prevent β-cell death without inducing excessive β-cell proliferation, which may carry carcinogenic side effects. Among potential PI3K/Akt pathway agonists, we have identified a novel parasite-derived protein, termed FhHDM-1 (Fasciola hepatica helminth defense molecule 1), which efficiently stimulates the PI3K/Akt pathway in β-cells to enhance function and prevent death without concomitantly inducing proliferation unlike several other identified stimulators of PI3K/Akt signaling . As such, FhHDM-1 will inform the design of biologics aimed at targeting the PI3K/Akt pathway to prevent/ameliorate not only T1D but also T2D, which is now widely recognized as an inflammatory disease characterized by β-cell dysfunction and death. This review will explore the modulation of the PI3K/Akt signaling pathway as a novel strategy to enhance β-cell function and survival.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
19
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Healy M, Aldridge A, Glasgow A, Mahon BP, English K, O'Neill SM. Helminth antigens modulate human PBMCs, attenuating disease progression in a humanised mouse model of graft versus host disease. Exp Parasitol 2022; 235:108231. [DOI: 10.1016/j.exppara.2022.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
|
21
|
Camaya I, Mok TY, Lund M, To J, Braidy N, Robinson MW, Santos J, O'Brien B, Donnelly S. The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. J Mol Med (Berl) 2021; 99:1605-1621. [PMID: 34374810 DOI: 10.1007/s00109-021-02122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by the destruction of the insulin-producing beta (β)-cells within the pancreatic islets. We have previously identified a novel parasite-derived molecule, termed Fasciola hepatica helminth defence molecule 1 (FhHDM-1), that prevents T1D development in non-obese diabetic (NOD) mice. In this study, proteomic analyses of pancreas tissue from NOD mice suggested that FhHDM-1 activated the PI3K/Akt signalling pathway, which is associated with β-cell metabolism, survival and proliferation. Consistent with this finding, FhHDM-1 preserved β-cell mass in NOD mice. Examination of the biodistribution of FhHDM-1 after intraperitoneal administration in NOD mice revealed that the parasite peptide localised to the pancreas, suggesting that it exerted a direct effect on the survival/function of β-cells. This was confirmed in vitro, as the interaction of FhHDM-1 with the NOD-derived β-cell line, NIT-1, resulted in increased levels of phosphorylated Akt, increased NADH and NADPH and reduced activity of the NAD-dependent DNA nick sensor, poly(ADP-ribose) polymerase (PARP-1). As a consequence, β-cell survival was enhanced and apoptosis was prevented in the presence of the pro-inflammatory cytokines that destroy β-cells during T1D pathogenesis. Similarly, FhHDM-1 protected primary human islets from cytokine-induced apoptosis. Importantly, while FhHDM-1 promoted β-cell survival, it did not induce proliferation. Collectively, these data indicate that FhHDM-1 has significant therapeutic applications to promote β-cell survival, which is required for T1D and T2D prevention and islet transplantation. KEY MESSAGES: FhHDM-1 preserves β-cell mass in NOD mice and prevents the development of T1D. FhHDM-1 enhances phosphorylation of Akt in mouse β-cell lines. FhHDM-1 increases levels of NADH/NADPH in mouse β-cell lines in vitro. FhHDM-1 prevents cytokine-induced cell death of mouse β-cell lines and primary human β-cells in vitro via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Tsz Y Mok
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Maria Lund
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Joyce To
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Randwick, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
22
|
Li SH, Li SD, Wu KL, Li JY, Li HJ, Wang WQ, Yang LJ, Xu JJ, Chang GJ, Zhang YL, Shu QH, Zhuang SS, Ma ZQ, He SM, Zhu M, Wang WL, Huang HL. Transcriptome Analysis Reveals Possible Virulence Factors of Paragonimus proliferus. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200728203648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
To identify the possible virulence factors (VFs) of P. proliferus.
Methods:
By Illumina HiSeq 4000 RNA-Seq platform, transcriptomes of adult P. proliferus
worms were sequenced to predict VFs via screening the homologues of traditional VFs of parasites
based on the annotations in the functional databases. Homology analysis was also performed to
screen homologous genes between P. proliferus and other four Paragonimus species (i.e., P.
kellicotti, P. skrjabini, P. miyazakii and P. westermani) whose transcriptomes were downloaded
from the National Center for Biotechnology Information (NCBI) database, and then the
differential-expressed homologous genes (DEHGs) were screened via comparisons of P. proliferus
and P. kellicotti, P. skrjabini, P. miyazakii and P. westermani, respectively. Finally, an overlap of
the predicted VFs and DEHGs was performed to identify possible key VFs that do not only belong
to the predicted VFs but also DEHGs.
Results:
A total of 1,509 genes of P. proliferus homologous to traditional VFs, including surface
antigens (SAGs), secreted proteins (SPs), ATP-Binding Cassette (ABC) Transporters, actin-related
proteins (ARPs), aminopeptidases (APases), glycoproteins (GPs), cysteine proteases (CPs), and
heat shock proteins (HSPs), were identified. Meanwhile, homology analysis identified 6279
DEHGs among the five species, of which there were 48 DEHGs being mutually differentialexpressed
among the four pairs of comparisons, such as MRP, Tuba 3, PI3K, WASF2, ADK,
Nop56, DNAH1, PFK-2/FBPase2, Ppp1r7, SSP7. Furthermore, the overlap between the predicted
VFs and DEHGs showed 97 genes of the predicted VFs that simultaneously belonged to DEHGs.
Strikingly, of these 97 genes, only 26, including Chymotrypsin, Leucine APases, Cathepsin L, HSP
70, and so on, were higher expressed in P. proliferus while all the remaining were lower expressed
than in the four other species.
Conclusions:
This work provides a fundamental context for further studies of the pathogenicity of
P. proliferus. Most of the predicted VFs which simultaneously belonged to DEHGs were lower
expressed in P. proliferus.
Collapse
Affiliation(s)
- Sheng-Hao Li
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Shu-De Li
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Kun-Li Wu
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Jun-Yi Li
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Hong-Juan Li
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Wei-Qun Wang
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Li-Jun Yang
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Jing-Jing Xu
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Guo-Ji Chang
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Yan-Ling Zhang
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| | - Qiu-Hong Shu
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Shan-Shan Zhuang
- Department of Clinical Laboratory, Yan’an Hospital of Kunming, Kunming 650000, China
| | - Zhi-Qiang Ma
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Shu-Meiqi He
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Min Zhu
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Wen-Lin Wang
- School of Basic Medicine, Kunming Medical University, Kunming 650504, China
| | - Hong-Li Huang
- Department of Hepatology, Oncology, Infectious Disease, Health Care or Tuberculosis, the Third People’s Hospital of Kunming, Kunming 650043, China
| |
Collapse
|
23
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
24
|
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators. Acta Trop 2020; 210:105548. [PMID: 32505597 DOI: 10.1016/j.actatropica.2020.105548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
Through the years, helminths have co-existed with many species. This process has allowed parasites to live within them for long periods and, in some cases, to generate offspring. In particular, this ability has allowed Fasciola hepatica to survive the diverse immunological responses faced within its wide range of hosts. The vast repertoire of molecules that are constantly secreted in large quantities by the parasite, acts directly on several cells of the immune system affecting their antiparasitic capacities. Interestingly, these molecules can direct the host immune response to an anti-inflammatory and regulatory phenotype that assures the survival of the parasite with less harm to the host. Based on these observations, some of the products of F. hepatica, as well as those of other helminths, have been studied, either as a total extract, extracellular vesicles or as purified molecules, to establish and characterize their anti-inflammatory mechanisms. Until now, the results obtained encourage further research directed to discover new helminth-derived alternatives to replace current therapies, which can be useful for people suffering from inflammatory diseases like autoimmunity or allergy processes that affect their life quality. In this review, some of the most studied molecules derived from F. hepatica and their modulating capacities are discussed.
Collapse
Affiliation(s)
- Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México.
| |
Collapse
|
25
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Shayesteh Z, Hosseini H, Nasiri V, Haddadi Z, Moradi N, Beikzadeh L, Sezavar M, Heidari A, Zibaei M. Evaluating the preventive and curative effects of Toxocara canis larva in Freund's complete adjuvant-induced arthritis. Parasite Immunol 2020; 42:e12760. [PMID: 32472559 DOI: 10.1111/pim.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022]
Abstract
Helminthic infection and the parallel host immune reactions are the results of a protracted dynamic co-interaction between the host and worms. An assessment of the effect of Toxocara canis infection on arthritis in rats stimulated by Freund's complete adjuvant (FCA) was the main purpose of the investigation. An arthritis model was established by the administration of 0.1 mL FCA in the palmar surface. Cytokine assessment, evaluating oedema and the use of a rheumatoid arthritis (RA) score provided evidence of the protective effects of T canis against adjuvant-induced arthritis (AIA). The cytokines TGF-β, IFN-ɣ, IL-10 and IL-17 were measured to assess the anti-inflammatory effect of T canis infection. Besides, arthritis swelling findings were evaluated in rat paws. The data showed that T canis infection significantly modulated the immune response by alleviating inflammatory cytokines and increasing TGF-β as an anti-inflammatory cytokine. Evaluations of arthritis swelling showed low severity and faster recuperation. These findings suggest that the products derived from T canis eggs might be a potential therapeutic candidate to treat autoimmune diseases like the arthritis.
Collapse
Affiliation(s)
- Zahra Shayesteh
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Hamid Hosseini
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Nasiri
- Protozoology Laboratory, Parasitology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zeinab Haddadi
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Najmeh Moradi
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Monireh Sezavar
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliehsan Heidari
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
27
|
Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res 2019; 119:203-214. [PMID: 31845020 DOI: 10.1007/s00436-019-06511-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Infection with helminth parasites or the administration of their antigens can prevent or attenuate autoimmune diseases. To date, the specific molecules that prime the amelioration are only limited. In this study, recombinant Schistosoma japonicum cystatin (rSjcystatin) and fructose-1,6-bisphosphate aldolase (rSjFBPA) were administered to female NOD mice via intraperitoneal (i.p.) injection to characterize the immunological response by the recombinant proteins. We have shown that the administration of rSjcystatin or rSjFBPA significantly reduced the diabetes incidence and ameliorated the severity of type 1 diabetes mellitus (T1DM). Disease attenuation was associated with suppressed interferon-gamma (IFN-γ) production in autoreactive T cells and with a switch to the production of Th2 cytokines. Following rSjcystatin or rSjFBPA injection, regulatory T cells (Tregs) were remarkably increased, which was accompanied by increased expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β). Our study suggests that helminth-derived proteins may be useful in strategies to limit pathology by promoting the Th2 response and upregulating Tregs during the inflammatory tissue-damage process in T1DM.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. The purpose of this review is to examine the major genetic and environmental factors that contribute to CD pathogenesis. RECENT FINDINGS We reviewed the current state of knowledge on the genetic and environmental components that play a role in CD onset. A genome-wide association study (GWAS) analysis has highlighted several genes other than HLA involved in CD. Recent studies have shown that HLA haplotype influences the microbiome composition in infants and that dysbiosis in the intestinal microflora, in turn, contributes to loss of tolerance to gluten. Recently, observational studies have discussed the hypothesis stating that breast-feeding had a protective role against CD onset. CD etiology is influenced by genetic and environmental factors. A better understanding of these components would deepen our knowledge on the mechanisms that lead to loss of tolerance and could help in developing a more "personalized medicine."
Collapse
|
29
|
Ramos-Martínez E, Rojas-Serrano J, García-Hernández O, García-Vázquez FJ, Andrade WA, Avila G, Salinas-Pasquier L, López-Vancell MR. The immune response to Hymenolepis nana in mice decreases tumorigenesis induced by 7,12 dimethylbenz-anthracene. Cytokine 2019; 123:154743. [PMID: 31255915 DOI: 10.1016/j.cyto.2019.154743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer is a high-impact disease throughout the world. A negative correlation has been established between the development of cancer and the Th2 immune response. Infection by helminth parasites is characterized by the induction of a strong and long-lasting Th2 response. The aim of this work was to evaluate the effect of the immune response induced by the infection with the helminth Hymenolepis nana, on the tumorigenesis induced by dimethylbenz-anthracene (DMBA) in mice. METHODOLOGY Four different groups of 14 female BALB/c mice were formed; Group A, dimethyl sulfoxide (DMSO) (vehicle) was administered cutaneously, Group B infected with H. nana, group C, cutaneously DMBA and finally Group D infected with H. nana and cutaneous DMBA. The tumor load was determined in those animals that developed cancerous lesions. In all groups were determined: serum concentration of IgE, IFNγ, IL-10, IL-5 and malondialdehyde (MDA). The inflammatory infiltrate was analyzed from skin samples and the expression of the main eosinophilic protein and myeloperoxidase was determined. RESULTS The group previously infected with H. nana had a reduced amount of tumors with smaller size, in comparison to the group that received only DMBA; this reduction was associated with lower levels of IFNγ and IL-10, while levels of IgE, IL-5 and MDA were higher. Further, the number of eosinophils and neutrophils was statistically higher in the animals that were previously infected with the helminth and developed less tumors. CONCLUSION The immune response induced by H. nana infection is associated with the reduction of tumors probably due to the activity of eosinophils and neutrophils.
Collapse
Affiliation(s)
- E Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - J Rojas-Serrano
- Servicio Clínico de enfermedades del Intersticio del Pulmón y Reumatología Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de México, Mexico
| | - O García-Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F J García-Vázquez
- Instituto Nacional de Pediatría, Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, México, DF, Mexico
| | - W A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - G Avila
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, Mexico
| | - L Salinas-Pasquier
- Servicio de Anatomía Patológica, Unidad de Citopatología. Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - M R López-Vancell
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
30
|
Fasciola Hepatica Isolates Induce Different Immune Responses in Unmaturated Bovine Macrophages. J Vet Res 2019; 63:63-70. [PMID: 30989136 PMCID: PMC6458565 DOI: 10.2478/jvetres-2019-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction Fasciola hepatica (liver fluke) is a parasite of great socioeconomic importance. A number of fluke isolates have been identified; however, to date the differences between the immunomodulatory properties of different parasite isolates have not been sufficiently investigated. The aim of this study was to explore differences between the immunomodulatory properties of two F. hepatica isolates using unmaturated bovine macrophages. Material and Methods A cell line of bovine macrophages was stimulated with excretory/secretory products released by adult flukes from either a laboratory (Fh-WeyES) or wild (Fh-WildES) strain and subsequently subjected to microarray and ELISA analyses. Results: Both Fh-WeyES and Fh-WildES dampened the release of interleukin-10 by bovine macrophages, but only Fh-WildES dampened the release of proinflammatory tumour necrosis factor-α. Microarray analysis revealed that Fh-WildES down- and upregulated 90 and 18 genes, respectively, when compared to Fh-WeyES. Conclusion The results indicated different impacts of the isolates on macrophages. A number of researchers use flukes obtained from local slaughterhouses for experiments. Our findings may explain some discrepancies between published results arising from parasite strain choice. The findings indicate that consideration should be given to the use of different strains, and open new and currently unexplored avenues in parasitology for controlling the parasite.
Collapse
|
31
|
Tang CL, Zou JN, Zhang RH, Liu ZM, Mao CL. Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol Res 2019; 118:1087-1094. [PMID: 30758662 DOI: 10.1007/s00436-019-06247-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system destroy pancreatic β cells, which secrete insulin. The high prevalence of T1D in developed societies may be explained by environmental changes, including lower exposure to helminths. Indeed, infection by helminths such as Schistosoma, Filaria, and Heligmosomoides polygyrus and their by-products has been reported to ameliorate or prevent the development of T1D in human and animal models. Helminths can trigger distinct immune regulatory pathways, often involving adaptive immune cells that include T helper 2 (Th2) cells and regulatory T cells (Tregs) and innate immune cells that include dendritic cells, macrophages, and invariant natural killer T cells, which may act synergistically to induce Tregs in a Toll-like receptor-dependent manner. Cytokines such as interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-β also play an important role in protection from T1D. Herein, we provide a comprehensive review of the effects and mechanisms underlying protection against T1D by helminths.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jie-Ning Zou
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhi-Ming Liu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Cun-Lan Mao
- Department of Obstetrics and Gynecology, People's Hospital of Songzi City, Songzi, 434200, Hubei, China.
| |
Collapse
|
32
|
Ramos-Benitez MJ, Ruiz-Jimenez C, Rosado-Franco JJ, Ramos-Pérez WD, Mendez LB, Osuna A, Espino AM. Fh15 Blocks the Lipopolysaccharide-Induced Cytokine Storm While Modulating Peritoneal Macrophage Migration and CD38 Expression within Spleen Macrophages in a Mouse Model of Septic Shock. mSphere 2018; 3:e00548-18. [PMID: 30567900 PMCID: PMC6300687 DOI: 10.1128/msphere.00548-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis caused by Gram-negative bacteria is the consequence of an unrestrained infection that continuously releases lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to multiorgan failure and death. After scrutinizing the immune modulation exerted by a recombinant Fasciola hepatica fatty acid binding protein termed Fh15, our group demonstrated that addition of Fh15 to murine macrophages 1 h prior to LPS stimulation significantly suppresses the expression of proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL1-β). The present study aimed to demonstrate that Fh15 could exert a similar anti-inflammatory effect in vivo using a mouse model of septic shock. Among the novel findings reported in this article, (i) Fh15 suppressed numerous serum proinflammatory cytokines/chemokines when injected intraperitoneally 1 h after exposure of animals to lethal doses of LPS, (ii) concurrently, Fh15 increased the population of large peritoneal macrophages (LPMs) in the peritoneal cavity (PerC) of LPS-injected animals, and (iii) Fh15 downregulated the expression on spleen macrophages of CD38, a cell surface ectoenzyme with a critical role during inflammation. These findings present the first evidence that the recombinant parasitic antigen Fh15 is an excellent modulator of the PerC cell content and in vivo macrophage activation, endorsing Fh15's potential as a drug candidate against sepsis-related inflammatory response.IMPORTANCE Sepsis is a potentially life-threatening complication of an infection. Sepsis is mostly the consequence of systemic bacterial infections leading to exacerbated activation of immune cells by bacterial products, resulting in enhanced release of inflammatory mediators. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a critical factor in the pathogenesis of sepsis, which is sensed by Toll-like receptor 4 (TLR4). The scientific community highly pursues the development of antagonists capable of blocking the cytokine storm by blocking TLR4. We report here that a recombinant molecule of 14.5 kDa belonging to the Fasciola hepatica fatty acid binding protein (Fh15) is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock when administered by the intraperitoneal route 1 h after a lethal LPS injection. These results suggest that Fh15 is an excellent candidate for drug development against endotoxemia.
Collapse
Affiliation(s)
- Marcos J Ramos-Benitez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Caleb Ruiz-Jimenez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Jose J Rosado-Franco
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Willy D Ramos-Pérez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Loyda B Mendez
- School of Science & Technology Universidad del Este, Carolina, Puerto Rico
| | - Antonio Osuna
- Instituto de Biotecnologia, Grupo de Bioquimica y Parasitología Molecular, Departamento de Parasitologia, Universidad de Granada, Granada, Spain
| | - Ana M Espino
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| |
Collapse
|
33
|
Alexandre-Silva GM, Brito-Souza PA, Oliveira AC, Cerni FA, Zottich U, Pucca MB. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Trop 2018; 188:16-26. [PMID: 30165069 DOI: 10.1016/j.actatropica.2018.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis was proposed almost three decades ago. Nevertheless, its mechanism still remains with relevant controversies. Some studies defend that early exposures during childhood to microbes and parasites are key determinants to prevent allergies and autoimmune diseases; however, other studies demonstrated that these early exposures can even potentiate the clinical scenario of the diseases. Based on several studies covering the influences of microbiome, parasites, related theories and others, this review focuses on recent advances in the hygiene hypothesis field. In addition, the main immunological mechanisms underlying the hygiene hypothesis are also discussed. We also strongly encourage that researchers do not consider the hygiene hypothesis as a theory based strictly on hygiene habits, but a theory combining diverse influences, as illustrated in this review as the hygiene hypothesis net.
Collapse
|
34
|
Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis 2018; 78:297-310. [PMID: 30389690 PMCID: PMC6390030 DOI: 10.1136/annrheumdis-2018-214024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/22/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The current management of autoimmunity involves the administration of immunosuppressive drugs coupled to symptomatic and functional interventions such as anti-inflammatory therapies and hormone replacement. Given the chronic nature of autoimmunity, however, the ideal therapeutic strategy would be to reinduce self-tolerance before significant tissue damage has accrued. Defects in, or defective regulation of, key immune cells such as regulatory T cells have been documented in several types of human autoimmunity. Consequently, it has been suggested that the administration of ex vivo generated, tolerogenic immune cell populations could provide a tractable therapeutic strategy. Several potentially tolerogenic cellular therapies have been developed in recent years; concurrent advances in cell manufacturing technologies promise scalable, affordable interventions if safety and efficacy can be demonstrated. These therapies include mesenchymal stromal cells, tolerogenic dendritic cells and regulatory T cells. Each has advantages and disadvantages, particularly in terms of the requirement for a bespoke versus an ‘off-the-shelf’ treatment but also their suitability in particular clinical scenarios. In this review, we examine the current evidence for these three types of cellular therapy, in the context of a broader discussion around potential development pathway(s) and their likely future role. A brief overview of preclinical data is followed by a comprehensive discussion of human data.
Collapse
Affiliation(s)
- Chijioke H Mosanya
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK .,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Abstract
Helminth parasites are complex metazoans that belong to different taxonomic families but that collectively share the capacity to downregulate the host immune response directed toward themselves (parasite-specific immunoregulation). During long-standing chronic infection, these helminths appear able to suppress immune responses to bystander pathogens/antigens and atopic, autoimmune, and metabolic disorders. Helminth-induced immunoregulation occurs through the induction of regulatory T cells or Th2-type cells (or both). However, secreted or excreted parasite metabolites, proteins, or extracellular vesicles (or a combination of these) may also directly induce signaling pathways in host cells. Therefore, the focus of this review will be to highlight recent advances in understanding the immune responses to helminth infection, emphasizing the strategies/molecules and some of the mechanisms used by helminth parasites to modulate the immune response of their hosts.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| |
Collapse
|
36
|
Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, Bell KS, Fairlie-Clarke KJ, Suckling CJ, Michelsen KS, Jiang HR, Cooke A, Harnett MM, Harnett W. Failure of the Anti-Inflammatory Parasitic Worm Product ES-62 to Provide Protection in Mouse Models of Type I Diabetes, Multiple Sclerosis, and Inflammatory Bowel Disease. Molecules 2018; 23:E2669. [PMID: 30336585 PMCID: PMC6222842 DOI: 10.3390/molecules23102669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Parasitic helminths and their isolated secreted products show promise as novel treatments for allergic and autoimmune conditions in humans. Foremost amongst the secreted products is ES-62, a glycoprotein derived from Acanthocheilonema viteae, a filarial nematode parasite of gerbils, which is anti-inflammatory by virtue of covalently-attached phosphorylcholine (PC) moieties. ES-62 has been found to protect against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus, and airway hyper-responsiveness. Furthermore, novel PC-based synthetic small molecule analogues (SMAs) of ES-62 have recently been demonstrated to show similar anti-inflammatory properties to the parent molecule. In spite of these successes, we now show that ES-62 and its SMAs are unable to provide protection in mouse models of certain autoimmune conditions where other helminth species or their secreted products can prevent disease development, namely type I diabetes, multiple sclerosis and inflammatory bowel disease. We speculate on the reasons underlying ES-62's failures in these conditions and how the negative data generated may help us to further understand ES-62's mechanism of action.
Collapse
Affiliation(s)
- James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - David Thomas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Michelle H Wong
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hazel J Ramage
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Kara S Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Karen J Fairlie-Clarke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
37
|
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol 2017; 8:1677. [PMID: 29238348 PMCID: PMC5712593 DOI: 10.3389/fimmu.2017.01677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Taenia crassiceps Antigens Control Experimental Type 1 Diabetes by Inducing Alternatively Activated Macrophages. Mediators Inflamm 2017; 2017:8074329. [PMID: 29249872 PMCID: PMC5698814 DOI: 10.1155/2017/8074329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the selective destruction of the pancreatic β-cells, causing inability to produce insulin. Proinflammatory cytokines such as IL-1β, IL-6, TNF-α, IFN-γ, IL-12, IL-17, and NO can be released by CD4 and CD8+ lymphocytes as well as by classically activated macrophages (CAMϕs), which are important in the development of T1D. Helminth infections have been shown to prevent T1D, mainly through Th2-biased responses and increased recruitment of regulatory cell populations. Previously, we have shown that Taenia crassiceps infection in mice significantly reduces hyperglycemia, insulitis, and the incidence of T1D. In this study, we determined whether T. crassiceps-derived products such as soluble (TcS) or excreted/secreted (TcES) antigens might have a beneficial influence on the development of experimental T1D. Treatment with different doses before or after induction of T1D was analyzed. Mice that were pretreated with TcS were unable to develop T1D, whereas those receiving TcES early after T1D induction displayed significantly reduced insulitis and hyperglycemia along with increased recruitment of alternatively activated macrophages (AAMϕs) and myeloid-derived suppressor cells (MDSCs). Finally, we examined the modulatory role of AAMϕs on T1D by depleting macrophages with clodronate-loaded liposomes, demonstrating that AAMϕs are key cells in T1D regulation.
Collapse
|
39
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
40
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
41
|
Excretory/secretory products from two Fasciola hepatica isolates induce different transcriptional changes and IL-10 release in LPS-activated bovine "BOMA" macrophages. Parasitol Res 2017; 116:2775-2782. [PMID: 28823007 DOI: 10.1007/s00436-017-5588-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023]
Abstract
Fasciola hepatica are trematodes that reside in the bile ducts of mammals. Infection causes US$3 billion in losses annually in animal production and is considered a zoonosis of growing importance. An under-represented area in F. hepatica research has been the examination of the different immunomodulatory abilities of various parasite isolates on the host immune system. In this paper, this issue was explored, with the bovine macrophage cell line "BOMA". The cells were matured by LPS treatment and stimulated with excretory/secretory antigens (ES) from two Fasciola hepatica isolates: a laboratory isolate "Weybridge" (Fh-WeyES) and a wild isolate (Fh-WildES). As expected, stimulation with antigen mixtures with highly similar compositions resulted in mild transcriptomic differences. However, there were significant differences in cytokine levels. Compared to Fh-WeyES, exposure to Fh-WildES upregulated 27 and downregulated 30 genes. Fh-ES from both isolates diminished the release of TNF-α, whereas only Fh-WildES decreased IL-10 secretion. Neither Fh-WeyES nor Fh-WildES had an impact on IL-12 release. Our results indicate that various isolates can have different immunomodulatory abilities and impacts on the bovine immune system.
Collapse
|
42
|
Lerner A, Arleevskaya M, Schmiedl A, Matthias T. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes? Front Microbiol 2017; 8:1392. [PMID: 28824555 PMCID: PMC5539691 DOI: 10.3389/fmicb.2017.01392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.
Collapse
Affiliation(s)
- Aaron Lerner
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of TechnologyHaifa, Israel.,Department of Research, AESKU.KIPP InstituteWendelsheim, Germany
| | - Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy KazanKazan, Russia
| | - Andreas Schmiedl
- Department of Research, AESKU.KIPP InstituteWendelsheim, Germany
| | - Torsten Matthias
- Department of Research, AESKU.KIPP InstituteWendelsheim, Germany
| |
Collapse
|
43
|
Wang M, Wu L, Weng R, Zheng W, Wu Z, Lv Z. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance. Parasitol Res 2017; 116:2065-2074. [PMID: 28664463 DOI: 10.1007/s00436-017-5544-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.
Collapse
Affiliation(s)
- Meng Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Linxiang Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Rennan Weng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Weihong Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
44
|
van Crevel R, van de Vijver S, Moore DAJ. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol 2017; 5:457-468. [PMID: 27499355 PMCID: PMC7104099 DOI: 10.1016/s2213-8587(16)30081-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
Tropical countries are experiencing a substantial rise in type 2 diabetes, which is often undiagnosed or poorly controlled. Since diabetes is a risk factor for many infectious diseases, this increase probably adds to the large infectious disease burden in tropical countries. We reviewed the literature to investigate the interface between diabetes and infections in tropical countries, including the WHO-defined neglected tropical diseases. Although solid data are sparse, patients with diabetes living in tropical countries most likely face increased risks of common and health-care-associated infections, as well as infected foot ulcers, which often lead to amputation. There is strong evidence that diabetes increases the severity of some endemic infections such as tuberculosis, melioidosis, and dengue virus infection. Some HIV and antiparasitic drugs might induce diabetes, whereas helminth infections appear to afford some protection against future diabetes. But there are no or very scarce data for most tropical infections and for possible biological mechanisms underlying associations with diabetes. The rise in diabetes and other non-communicable diseases puts a heavy toll on health systems in tropical countries. On the other hand, complications common to both diabetes and some tropical infections might provide an opportunity for shared services-for example, for eye health (trachoma and onchocerciasis), ulcer care (leprosy), or renal support (schistosomiasis). More research about the interaction of diabetes and infections in tropical countries is needed, and the infectious disease burden in these countries is another reason to step up global efforts to improve prevention and care for diabetes.
Collapse
Affiliation(s)
- Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, Netherlands.
| | - Steven van de Vijver
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam Medical Center, University of Amsterdam, Netherlands
| | - David A J Moore
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
45
|
Parande Shirvan S, Ebrahimby A, Dousty A, Maleki M, Movassaghi A, Borji H, Haghparast A. Somatic extracts of Marshallagia marshalli downregulate the Th2 associated immune responses in ovalbumin-induced airway inflammation in BALB/c mice. Parasit Vectors 2017; 10:233. [PMID: 28494800 PMCID: PMC5427607 DOI: 10.1186/s13071-017-2159-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently the role of gastrointestinal nematodes in modulating the immune responses in inflammatory and immune-mediated conditions such as allergy and autoimmune diseases has been introduced. This is mainly due to the suppressive effects of somatic and excretory secretory (ES) products of nematodes on the immune responses. In this study, we evaluated the immunomodulatory potentials of somatic products of Marshallagia marshalli, a gastrointestinal nematodes of sheep, to suppress the immune-mediated responses in a murine model of allergic airway inflammation. BALB/c mice were intraperitoneally (IP) sensitized with ovalbumin (OVA)/Alum and then challenged with 1% OVA. Somatic products of M. marshalli were administered during each sensitization. The effects of somatic products on development of allergic airway inflammation were evaluated by analyzing inflammatory cells recruitment, histopathological changes, cytokines production (IL-4, IL-13, IL-10, TGF-β) and serum antibody titers (IgG1, IgG2a). Results Somatic products of M. marshalli were able to suppress the induction of allergic airway inflammation in mice. Modulation of Th2 type responses (IL-4, IL-13, IgG1) via upregulations of IL-10 and TGF-β production was observed after injection of somatic products of M. marshalli. In addition, inflammatory cells infiltration and pathological disorders were significantly diminished following administration of somatic products. Conclusions Our data raised the possibility that helminths could be a potential therapeutic candidate to alleviate the inflammatory conditions in allergic asthma. According to these results, we concluded that M. marshalli may contain immune-modulatory molecules that attenuate allergic airway inflammation via induction of regulatory cytokines. Further investigations are required to identify molecules that might have potentials for development of novel therapeutic targets.
Collapse
Affiliation(s)
- Sima Parande Shirvan
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Azadeh Ebrahimby
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Arezoo Dousty
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Ahmadreza Movassaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran.
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran. .,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran.
| |
Collapse
|
46
|
Surendar J, Indulekha K, Hoerauf A, Hübner MP. Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol 2017; 39. [PMID: 27862000 DOI: 10.1111/pim.12401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
The incidence of both type 1 (T1D) and type 2 diabetes (T2D) is drastically increasing, and it is predicted that the global prevalence of diabetes will reach almost 600 million cases by 2035. Even though the pathogenesis of both types of diabetes is distinct, the immune system is actively involved in both forms of the disease. Genetic and environmental factors determine the risk to develop T1D. On the other hand, sedentary life style, surplus of food intake and other lifestyle changes contribute to the increase of T2D incidence. Improved sanitation with high-quality medical treatment is such an environmental factor that has led to a continuous reduction of infectious diseases including helminth infections over the past decades. Recently, a growing body of evidence has implicated a negative association between helminth infections and diabetes in humans as well as animal models. In this review, we discuss studies that have provided evidence for the beneficial impact of helminth infections on T1D and T2D. Possible mechanisms are presented by which helminths prevent T1D onset by mitigating pancreatic inflammation and confer protection against T2D by improving insulin sensitivity, alleviating inflammation, augmenting browning of adipose tissue and improving lipid metabolism and insulin signalling.
Collapse
Affiliation(s)
- J Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - K Indulekha
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Osada Y, Fujiyama T, Kamimura N, Kaji T, Nakae S, Sudo K, Ishiwata K, Kanazawa T. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Exp Parasitol 2017; 177:1-12. [PMID: 28363777 DOI: 10.1016/j.exppara.2017.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 02/05/2023]
Abstract
Schistosoma mansoni (Sm) is known to exert protective effects against various allergic and autoimmune disorders. It has been reported that this parasite protects NOD mice from spontaneous type 1 diabetes (T1D) and ameliorates streptozotocin (STZ)-induced T1D in wild-type mice. Here, we tried to clarify the anti-diabetic mechanisms of Sm in the latter model. Sm infection partially prevented the degradation of pancreatic islets and hyperglycemia in multiple low-dose (MLD) STZ-treated mice. Neither Treg cell depletion nor genetic absences of IL-10 and/or STAT6 abrogated the anti-hyperglycemic effects of Sm. Among M2 macrophage markers, Arg-1 and Ym1, but not Retnla, remained up-regulated in the pancreatic lymph nodes and in the spleens of STAT6/IL-10 double deficient (DKO) mice. Collectively, it is suggested that Sm exerts anti-diabetic effects on this experimental T1D model via Treg/IL-4/IL-13/IL-10-independent mechanisms. Augmented expressions of Arg-1 and Ym1 in the lymphoid organs adjacent to pancreas may be relevant to the anti-diabetic effects of Sm.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Tomohiro Fujiyama
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Naoto Kamimura
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Tsukushi Kaji
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
48
|
Crowe J, Lumb FE, Harnett MM, Harnett W. Parasite excretory-secretory products and their effects on metabolic syndrome. Parasite Immunol 2017; 39. [PMID: 28066896 DOI: 10.1111/pim.12410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.
Collapse
Affiliation(s)
- J Crowe
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - F E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - M M Harnett
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - W Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
49
|
Lund ME, Greer J, Dixit A, Alvarado R, McCauley-Winter P, To J, Tanaka A, Hutchinson AT, Robinson MW, Simpson AM, O'Brien BA, Dalton JP, Donnelly S. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep 2016; 6:37789. [PMID: 27883079 PMCID: PMC5121616 DOI: 10.1038/srep37789] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Helminth parasites secrete molecules that potently modulate the immune responses of their hosts and, therefore, have potential for the treatment of immune-mediated human diseases. FhHDM-1, a 68-mer peptide secreted by the helminth parasite Fasciola hepatica, ameliorated disease in two different murine models of autoimmunity, type 1 diabetes and relapsing-remitting immune-mediated demyelination. Unexpectedly, FhHDM-1 treatment did not affect the proliferation of auto-antigen specific T cells or their production of cytokines. However, in both conditions, the reduction in clinical symptoms was associated with the absence of immune cell infiltrates in the target organ (islets and the brain tissue). Furthermore, after parenteral administration, the FhHDM-1 peptide interacted with macrophages and reduced their capacity to secrete pro-inflammatory cytokines, such as TNF and IL-6. We propose this inhibition of innate pro-inflammatory immune responses, which are central to the initiation of autoimmunity in both diseases, prevented the trafficking of autoreactive lymphocytes from the periphery to the site of autoimmunity (as opposed to directly modulating their function per se), and thus prevented tissue destruction. The ability of FhHDM-1 to modulate macrophage function, combined with its efficacy in disease prevention in multiple models, suggests that FhHDM-1 has considerable potential as a treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Maria E Lund
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia
| | - Judith Greer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Aakanksha Dixit
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Raquel Alvarado
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia
| | | | - Joyce To
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia
| | - Akane Tanaka
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia
| | - Andrew T Hutchinson
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia.,The Centre for Health Technology, University of Technology Sydney, New South Wales, Australia
| | - Mark W Robinson
- Medical Biology Center, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Ann M Simpson
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia.,The Centre for Health Technology, University of Technology Sydney, New South Wales, Australia
| | - Bronwyn A O'Brien
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia.,The Centre for Health Technology, University of Technology Sydney, New South Wales, Australia
| | - John P Dalton
- Medical Biology Center, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Amdare N, Khatri V, Yadav RSP, Tarnekar A, Goswami K, Reddy MVR. Brugia malayi soluble and excretory-secretory proteins attenuate development of streptozotocin-induced type 1 diabetes in mice. Parasite Immunol 2016; 37:624-34. [PMID: 26434489 DOI: 10.1111/pim.12283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022]
Abstract
Understanding the modulation of the host-immune system by pathogens-like filarial parasites offers an alternate approach to prevent autoimmune diseases. In this study, we have shown that treatment with filarial proteins prior to or after the clinical onset of streptozotocin-induced type-1 diabetes (T1D) can ameliorate the severity of disease in BALB/c mice. Pre-treatment with Brugia malayi adult soluble (Bm A S) or microfilarial excretory-secretory (Bm mf ES) or microfilarial soluble (Bm mf S) antigens followed by induction of diabetes led to lowering of fasting blood glucose levels with as many as 57.5-62.5% of mice remaining nondiabetic. These proteins were more effective when they were used to treat the mice with established T1D as 62.5-71.5% of the mice turned to be nondiabetic. Histopathological examination of pancreas of treated mice showed minor inflammatory changes in pancreatic islet cell architecture. The therapeutic effect was found to be associated with the decreased production of cytokines TNF-α & IFN-γ and increased production of IL-10 in the culture supernatants of splenocytes of treated mice. A switch in the production of anti-insulin antibodies from IgG2a to IgG1 isotype was also seen. Together these results provide a proof towards utilizing the filarial derived proteins as novel anti-diabetic therapeutics.
Collapse
Affiliation(s)
- N Amdare
- Department of Biochemistry & JB Tropical Disease Research Institute, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - V Khatri
- Department of Biochemistry & JB Tropical Disease Research Institute, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - R S P Yadav
- Department of Biochemistry & JB Tropical Disease Research Institute, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - A Tarnekar
- Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - K Goswami
- Department of Biochemistry & JB Tropical Disease Research Institute, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - M V R Reddy
- Department of Biochemistry & JB Tropical Disease Research Institute, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| |
Collapse
|