1
|
Erezyilmaz D. The genetic determination of alternate stages in polyphenic insects. Evol Dev 2024; 26:e12485. [PMID: 38867484 DOI: 10.1111/ede.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors broad-complex (br) and Ecdysone inducible protein 93 (E93), respectively. A probable larval determinant, chronologically inappropriate metamorphosis (chinmo), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of chinmo, br, and E93 underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how chinmo, br, and E93 expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about chinmo, br, and E93 function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.
Collapse
Affiliation(s)
- Deniz Erezyilmaz
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behavior, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Sankar K, Lee KY, Kwak KW, Lee SJ, Lee YB. Seasonal Stability Assessment of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Normalization in Bombus terrestris. Curr Issues Mol Biol 2024; 46:1335-1347. [PMID: 38392203 PMCID: PMC10887669 DOI: 10.3390/cimb46020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Bumblebees (B. terrestris) play a crucial role as highly efficient biological agents in commercial pollination. Understanding the molecular mechanisms governing their adaptation to diverse seasonal environments may pave the way for effective management strategies in the future. With the burgeoning advancement in post-genetic studies focusing on B. terrestris, there is a critical need to normalize quantitative real-time PCR (qRT-PCR) data using suitable reference genes. To address this necessity, we employed RefFinder, a software-based tool, to assess the suitability of several candidate endogenous control genes, including actin (ACT), arginine kinase (AK), elongation factor 1 alpha (EF1), glyceraldehyde-3-phosphate (GAPDH), phospholipase (PLA2), and ribosomal proteins (S18, S28). These genes were evaluated for their efficacy as biological endogenous controls by examining their expression patterns across various environmental conditions corresponding to different seasons (Spring, Summer, Autumn, Winter) and tissues (ovary, fat body, thorax, head) in bumblebees. Moreover, the study investigated the significance of selecting appropriate reference genes for three key genes involved in the juvenile hormone (JH) signaling pathways: Krüppel homolog 1 (Kr-h1), methyl farnesoate epoxidase (MFE), and Vitellogenin (Vg). Our research identifies specific genes suitable for normalization in B. terrestris, thereby offering valuable insights into gene expression and functional metabolic genetics under varying seasonal conditions. This catalog of reference genes will serve as a valuable resource for future research endeavors.
Collapse
Affiliation(s)
- Kathannan Sankar
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Yong Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyu-Won Kwak
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Su-Jin Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Bo Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
4
|
Powell JE, Lau P, Rangel J, Arnott R, De Jong T, Moran NA. The microbiome and gene expression of honey bee workers are affected by a diet containing pollen substitutes. PLoS One 2023; 18:e0286070. [PMID: 37205696 PMCID: PMC10198554 DOI: 10.1371/journal.pone.0286070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Pollen is the primary source of dietary protein for honey bees. It also includes complex polysaccharides in its outer coat, which are largely indigestible by bees but can be metabolized by bacterial species within the gut microbiota. During periods of reduced availability of floral pollen, supplemental protein sources are frequently provided to managed honey bee colonies. The crude proteins in these supplemental feeds are typically byproducts from food manufacturing processes and are rarely derived from pollen. Our experiments on the impact of different diets showed that a simplified pollen-free diet formulated to resemble the macronutrient profile of a monofloral pollen source resulted in larger microbial communities with reduced diversity, reduced evenness, and reduced levels of potentially beneficial hive-associated bacteria. Furthermore, the pollen-free diet sharply reduced the expression of genes central to honey bee development. In subsequent experiments, we showed that these shifts in gene expression may be linked to colonization by the gut microbiome. Lastly, we demonstrated that for bees inoculated with a defined gut microbiota, those raised on an artificial diet were less able to suppress infection from a bacterial pathogen than those that were fed natural pollen. Our findings demonstrate that a pollen-free diet significantly impacts the gut microbiota and gene expression of honey bees, indicating the importance of natural pollen as a primary protein source.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Pierre Lau
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
- USDA-ARS, Pollinator Health in Southern Crop Ecosystem Research Unit, Stoneville, MS, United States of America
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Ryan Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Tyler De Jong
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
5
|
Zhang Y, He XJ, Barron AB, Li Z, Jin MJ, Wang ZL, Huang Q, Zhang LZ, Wu XB, Yan WY, Zeng ZJ. The diverging epigenomic landscapes of honeybee queens and workers revealed by multiomic sequencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103929. [PMID: 36906046 DOI: 10.1016/j.ibmb.2023.103929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Meng Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China.
| |
Collapse
|
6
|
Zhang Y, Li Z, He X, Wang Z, Zeng Z. H3K4me1 Modification Functions in Caste Differentiation in Honey Bees. Int J Mol Sci 2023; 24:ijms24076217. [PMID: 37047189 PMCID: PMC10094490 DOI: 10.3390/ijms24076217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Honey bees are important species for the study of epigenetics. Female honey bee larvae with the same genotype can develop into phenotypically distinct organisms (sterile workers and fertile queens) depending on conditions such as diet. Previous studies have shown that DNA methylation and histone modification can establish distinct gene expression patterns, leading to caste differentiation. It is unclear whether the histone methylation modification H3K4me1 can also impact caste differentiation. In this study, we analyzed genome-wide H3K4me1 modifications in both queen and worker larvae and found that H3K4me1 marks are more abundant in worker larvae than in queen larvae at both the second and fourth instars, and many genes associated with caste differentiation are differentially methylated. Notably, caste-specific H3K4me1 in promoter regions can direct worker development. Thus, our results suggest that H3K4me1 modification may act as an important regulatory factor in the establishment and maintenance of caste-specific transcriptional programs in honey bees; however, the potential influence of other epigenetic modifications cannot be excluded.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Z.L.); (X.H.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
7
|
Corona M, Branchiccela B, Alburaki M, Palmer-Young EC, Madella S, Chen Y, Evans JD. Decoupling the effects of nutrition, age, and behavioral caste on honey bee physiology, immunity, and colony health. Front Physiol 2023; 14:1149840. [PMID: 36994419 PMCID: PMC10040860 DOI: 10.3389/fphys.2023.1149840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.
Collapse
Affiliation(s)
- Miguel Corona
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Miguel Corona,
| | - Belen Branchiccela
- Sección Apicultura, Programa de Producción Familiar, Instituto Nacional de Investigación Agropecuaria (INIA) Colonia, Montevideo, Uruguay
| | - Mohamed Alburaki
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Evan C. Palmer-Young
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Shayne Madella
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Yanping Chen
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
8
|
Lewkowski O, Poehlein A, Daniel R, Erler S. In the battle of the disease: a transcriptomic analysis of European foulbrood-diseased larvae of the Western honey bee (Apis mellifera). BMC Genomics 2022; 23:837. [PMID: 36536278 PMCID: PMC9764631 DOI: 10.1186/s12864-022-09075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND European foulbrood is a significant bacterial brood disease of Apis sp. and can cause severe and devastating damages in beekeeping operations. Nevertheless, the epidemiology of its causative agent Melissococcus plutonius has been begun to uncover but the underlying mechanisms of infection and cause of disease still is not well understood. Here, we sought to provide insight into the infection mechanism of EFB employing RNAseq in in vitro reared Apis mellifera larvae of two developmental stages to trace transcriptional changes in the course of the disease, including Paenibacillus alvei secondary infected individuals. RESULTS In consideration of the progressing development of the larva, we show that infected individuals incur a shift in metabolic and structural protein-encoding genes, which are involved in metabolism of crucial compounds including all branches of macronutrient metabolism, transport protein genes and most strikingly chitin and cuticle associated genes. These changes underpin the frequently observed developmental retardation in EFB disease. Further, sets of expressed genes markedly differ in different stages of infection with almost no overlap. In an earlier stage of infection, a group of regulators of the melanization response cascade and complement component-like genes, predominantly C-type lectin genes, are up-regulated while a differential expression of immune effector genes is completely missing. In contrast, late-stage infected larvae up-regulated the expression of antimicrobial peptides, lysozymes and prominent bacteria-binding haemocyte receptor genes compared to controls. While we clearly show a significant effect of infection on expressed genes, these changes may partly result from a shift in expression timing due to developmental alterations of infection. A secondary infection with P. alvei elicits a specific response with most of the M. plutonius associated differential immune effector gene expression missing and several immune pathway genes even down-regulated. CONCLUSION We conclude that with progressing infection diseased individuals undergo a systemic response with a change of metabolism and their activated immune defence repertoire. Moreover, larvae are capable of adjusting their response to a secondary invasion in late stage infections.
Collapse
Affiliation(s)
- Oleg Lewkowski
- Molecular Ecology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, 37077, Göttingen, Germany
| | - Silvio Erler
- Molecular Ecology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany.
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, 38104, Braunschweig, Germany.
- Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
9
|
Schilcher F, Hilsmann L, Ankenbrand MJ, Krischke M, Mueller MJ, Steffan-Dewenter I, Scheiner R. Honeybees are buffered against undernourishment during larval stages. FRONTIERS IN INSECT SCIENCE 2022; 2:951317. [PMID: 38468773 PMCID: PMC10926507 DOI: 10.3389/finsc.2022.951317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 03/13/2024]
Abstract
The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lioba Hilsmann
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus J. Ankenbrand
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Ilyasov RA, Rašić S, Takahashi J, Danilenko VN, Proshchalykin MY, Lelej AS, Sattarov VN, Thai PH, Raffiudin R, Kwon HW. Genetic Relationships and Signatures of Adaptation to the Climatic Conditions in Populations of Apis cerana Based on the Polymorphism of the Gene Vitellogenin. INSECTS 2022; 13:1053. [PMID: 36421957 PMCID: PMC9694869 DOI: 10.3390/insects13111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Apis cerana and Apis mellifera are important honey bee species in Asia. A. cerana populations are distributed from a cold, sharply continental climate in the north to a hot, subtropical climate in the south. Due to the Sacbrood virus, almost all A. cerana populations in Asia have declined significantly in recent decades and have recovered over the past five years. This could lead to a shift in the gene pool of local A. cerana populations that could affect their sustainability and adaptation. It was assumed that adaptation of honey bees could be observed by comparative analysis of the sequences of genes involved in development, labor division, and caste differentiation, such as the gene Vitellogenin VG. The VG gene nucleotide sequences were used to assess the genetic structure and signatures of adaptation of local populations of A. cerana from Korea, Russia, Japan, Nepal, and China. A. mellifera samples from India and Poland were used as the outgroup. The signatures of adaptive selection were found in the local population of A. cerana using VG gene sequence analysis based on Jukes−Cantor genetic distances, cluster analysis, dN/dS ratio evaluation, and Tajima’s D neutrality test. Based on analysis of the VG gene sequences, Apis cerana koreana subspecies in the Korean Peninsula were subdivided into three groups in accordance with their geographic localization from north to south. The VG gene sequences are acceptable tools to study the sustainability and adaptation of A. cerana populations.
Collapse
Affiliation(s)
- Rustem A. Ilyasov
- Scientific and Educational Center, Bashkir State Agrarian University, 50-Letiya Oktyabrya Str. 34, 450001 Ufa, Russia
- Department of Life Sciences, Convergence Research Center for Insect Vectors, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Slađan Rašić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Junichi Takahashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ward, Kyoto 603-8555, Japan
| | - Valery N. Danilenko
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Maxim Y. Proshchalykin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Prospekt 100-let Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Arkady S. Lelej
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Prospekt 100-let Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Vener N. Sattarov
- Department of Bioecology and Biological Education, Bashkir State Pedagogical University Named after M. Akmulla, 3a October Revolution Street, 450008 Ufa, Russia
| | - Pham Hong Thai
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Rika Raffiudin
- Department of Biology, Bogor Agricultural University, Darmaga, Bogor 16680, Indonesia
| | - Hyung Wook Kwon
- Department of Life Sciences, Convergence Research Center for Insect Vectors, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
11
|
Lago DC, Hasselmann M, Hartfelder K. Sex- and caste-specific transcriptomes of larval honey bee (Apis mellifera L.) gonads: DMRT A2 and Hsp83 are differentially expressed and regulated by juvenile hormone. INSECT MOLECULAR BIOLOGY 2022; 31:593-608. [PMID: 35524973 DOI: 10.1111/imb.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The gonads of honey bee, Apis mellifera, queens and drones are each composed of hundreds of serial units, the ovarioles and testioles, while the ovaries of the adult subfertile workers consist of only few ovarioles. We performed a comparative RNA-seq analysis on early fifth-instar (L5F1) larval gonads, which is a critical stage in gonad development of honey bee larvae. A total of 1834 genes were identified as differentially expressed (Padj < 0.01) among the three sex and caste phenotypes. The Gene Ontology analysis showed significant enrichment for metabolism, protein or ion binding, and oxidoreductase activity, and a KEGG analysis revealed metabolic pathways as enriched. In a principal component analysis for the total transcriptomes and hierarchical clustering of the DEGs, we found higher similarity between the queen and worker ovary transcriptomes compared to the drone testis, despite the onset of programmed cell death in the worker ovaries. Four DEGs were selected for RT-qPCR analyses, including their response to juvenile hormone (JH), which is a critical factor in the caste-specific development of the ovaries. Among these, DMRT A2 and Hsp83 were found upregulated by JH and, thus, emerged as potential molecular markers for sex- and caste-specific gonad development in honey bees.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Klaus Hartfelder
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Yang Z, Wu Y, Yan Y, Xu G, Yu N, Liu Z. Regulation of juvenile hormone and ecdysteroid analogues on the development of the predatory spider, Pardosa pseudoannulata, and its regulatory mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113847. [PMID: 35809399 DOI: 10.1016/j.ecoenv.2022.113847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Insecticides harm the beneficial organisms, such as predatory spiders, through direct killing or regulation of the development and reproduction. In this study, the bioassay showed that the treatment of juvenile hormone (JH) analogue fenoxycarb delayed the moulting of Pardosa pseudoannulata, a dominant predatory spider in paddy fields. In order to figure out the regulatory mechanism of fenoxycarb on the spider development, we systematically analyzed JH biosynthesis in P. pseudoannulata. All genes involved in JH biosynthesis pathway were retrieved from the genome of P. pseudoannulata, except for CYP15A1. The absence of CYP15A1 was in agreement with the identification of methyl farnesoate (MF) rather than JH III in the spider. The delayed moulting and decreased expression of JH biosynthesis-related genes in the MF-applied spiderlings supported that MF was an active JH. Fenoxycarb treatment significantly upregulated the transcriptional level of JH biosynthesis-related genes and consequently delayed the spiderling moulting. In the spider development, ecdysteroid played the opposite role, in contrast to MF, to accelerate the development, as our previous study. Here we found that the treatment of ecdysteroid analogue tebufenozide accelerated P. pseudoannulata spiderling moulting, which resulted from the expressional suppression of ecdysteroid biosynthesis-related genes. In total, the JH and ecdysteroid analogues affected the development of P. pseudoannulata by the expressional regulation of biosynthesis-related genes, which would be helpful for the evaluation of hormone analogue insecticides in environmental safety, and useful for the protection and application of P. pseudoannulate and related spider species.
Collapse
Affiliation(s)
- Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Guangming Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Ortiz-Alvarado Y, Giray T. Antibiotics Alter the Expression of Genes Related to Behavioral Development in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35389490 PMCID: PMC8988713 DOI: 10.1093/jisesa/ieac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Honey bees, as many species of social insects, display a division of labor among colony members based on behavioral specializations related to age. Adult worker honey bees perform a series of tasks in the hive when they are young (such as brood care or nursing) and at ca. 2-3 wk of age, shift to foraging for nectar and pollen outside the hive. The transition to foraging involves changes in metabolism and neuroendocrine activities. These changes are associated with a suite of developmental genes. It was recently demonstrated that antibiotics influence behavioral development by accelerating or delaying the onset of foraging depending on timing of antibiotic exposure. To understand the mechanisms of these changes, we conducted a study on the effects of antibiotics on expression of candidate genes known to regulate behavioral development. We demonstrate a delay in the typical changes in gene expression over the lifetime of the individuals that were exposed to antibiotics during immature stage and adulthood. Additionally, we show an acceleration in the typical changes in gene expression on individuals that were expose to antibiotics only during immature stage. These results show that timing of antibiotic exposure alter the typical regulation of behavioral development by metabolic and neuroendocrine processes.
Collapse
Affiliation(s)
- Yarira Ortiz-Alvarado
- Department of Biology, University of Puerto Rico, Rio Piedras, SJ 00925, Puerto Rico
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, Rio Piedras, SJ 00925, Puerto Rico
| |
Collapse
|
14
|
Bian HX, Chen DB, Li YP, Tan EG, Su X, Huang JC, Su JF, Liu YQ. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene 2021; 813:146095. [PMID: 34902509 DOI: 10.1016/j.gene.2021.146095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - En-Guang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xin Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
15
|
Li H, Liu S, Chen L, Luo J, Zeng D, Li X. Juvenile hormone and transcriptional changes in honey bee worker larvae when exposed to sublethal concentrations of thiamethoxam. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112744. [PMID: 34481358 DOI: 10.1016/j.ecoenv.2021.112744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Thiamethoxam, an insecticide with high usage and large amounts of environmental residues, has been reported to affect the pupation and survival of honey bee larvae at sublethal concentrations. The molecular mechanisms are not fully understood. In this study, we measured the response of juvenile hormone (JH) to environmental concentrations of thiamethoxam using liquid chromatography-tandem mass spectrometry (LC-MS/MS), monitored the dynamic changes in the transcription of genes encoding major JH metabolic enzymes (CYP15A1, FAMET, JHAMT and JHE) using RT-qPCR, and analysed the transcriptome changes in worker larvae under thiamethoxam stress using RNA-seq. Thiamethoxam significantly increased the levels of JH3 in honey bee larvae, but no significant changes in the transcript levels of the four major metabolic enzymes were observed. Thiamethoxam exposure resulted in 140 differentially expressed genes (DEGs). P450 CYP6AS5 was upregulated, and some ion-related, odourant-related and gustatory receptors for sugar taste genes were altered significantly. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that amino acid metabolism and protein digestion and absorption were influenced by thiamethoxam. These changes may do harm to honey bee caste differentiation, foraging behaviour related to sensory perception and nutrient levels of bee colonies. These results represent the first assessment of the effects of thiamethoxam on JH in honey bee larvae and provides a new perspective and molecular basis for the study of JH regulation and thiamethoxam toxicity to honey bees.
Collapse
Affiliation(s)
- Honghong Li
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China
| | - Sheng Liu
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China
| | - Lichao Chen
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China
| | - Jie Luo
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China
| | - Dongqiang Zeng
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China
| | - Xuesheng Li
- Key Laboratory of Agricultural Environment and Agricultural Product Safety, Guangxi University, China.
| |
Collapse
|
16
|
Uy FMK, Jernigan CM, Zaba NC, Mehrotra E, Miller SE, Sheehan MJ. Dynamic neurogenomic responses to social interactions and dominance outcomes in female paper wasps. PLoS Genet 2021; 17:e1009474. [PMID: 34478434 PMCID: PMC8415593 DOI: 10.1371/journal.pgen.1009474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.
Collapse
Affiliation(s)
- Floria M. K. Uy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Christopher M. Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Natalie C. Zaba
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Eshan Mehrotra
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Sara E. Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Michael J. Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Brito DV, da Silva CGN, Rêgo LCN, Carvalho-Zilse GA. Expression of methyl farnesoate epoxidase (mfe) and juvenile hormone esterase (jhe) genes and their relation to social organization in the stingless bee Melipona interrupta (Hymenoptera: Apidae). Genet Mol Biol 2021; 44:e20200367. [PMID: 34387298 PMCID: PMC8361248 DOI: 10.1590/1678-4685-gmb-2020-0367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
Social organization in highly eusocial bees relies upon two important processes: caste differentiation in female larvae, and age polyethism in adult workers. Juvenile Hormone (JH) is a key regulator of both processes. Here we investigated the expression of two genes involved in JH metabolism - mfe (biosynthesis) and jhe (degradation) - in the context of social organization in the stingless bee Melipona interrupta. We found evidence that the expression of mfe and jhe genes is related to changes in JH levels during late larval development, where caste determination occurs. Also, both mfe and jhe were upregulated when workers engage in intranidal tasks, but only jhe expression was downregulated at the transition from nursing to foraging activities. This relation is different than expected, considering recent reports of lower JH levels in foragers than nurses in the closely related species Melipona scutellaris. Our findings suggest that highly eusocial bees have different mechanisms to regulate JH and, thus, to maintain their level of social organization.
Collapse
Affiliation(s)
- Diana Vieira Brito
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| | | | - Livia Cristina Neves Rêgo
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| | - Gislene Almeida Carvalho-Zilse
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| |
Collapse
|
18
|
Dostálková S, Dobeš P, Kunc M, Hurychová J, Škrabišová M, Petřivalský M, Titěra D, Havlík J, Hyršl P, Danihlík J. Winter honeybee ( Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. J Exp Biol 2021; 224:jeb232595. [PMID: 33288532 DOI: 10.1242/jeb.232595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
In the temperate climates of central Europe and North America, two distinct honeybee (Apis mellifera) populations are found in colonies: short-living summer bees emerge in spring and survive until summer, whereas long-living winter bees emerge in late August and overwinter. Besides the difference in their life spans, each of these populations fulfils a different role in the colonies and individual bees have distinct physiological and immunological adaptations depending on their roles. For instance, winter worker bees have higher vitellogenin levels and larger reserves of nutrients in the fat body than summer bees. The differences between the immune systems of both populations are well described at the constitutive level; however, our knowledge of its inducibility is still very limited. In this study, we focus on the response of 10-day-old honeybee workers to immune challenges triggered in vivo by injecting heat-killed bacteria, with particular focus on honeybees that emerge and live under hive conditions. Responses to bacterial injections differed between summer and winter bees. Winter bees exhibited a more intense response, including higher expression of antimicrobial genes and antimicrobial activity, as well as a significant decrease in vitellogenin gene expression and its concentration in the hemolymph. The intense immune response observed in winter honeybees may contribute to our understanding of the relationships between colony fitness and infection with pathogens, as well as its association with successful overwintering.
Collapse
Affiliation(s)
- Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dalibor Titěra
- Bee Research Institute, Libčice nad Vltavou 252 66, Czech Republic
| | - Jaroslav Havlík
- Department of Food Quality and Safety, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, Prague 252 63, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
19
|
Sun Y, Dai L, Kang X, Fu D, Gao H, Chen H. Isolation and expression of five genes in the mevalonate pathway of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21760. [PMID: 33231898 DOI: 10.1002/arch.21760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.
Collapse
Affiliation(s)
- Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Aurori CM, Giurgiu A, Conlon BH, Kastally C, Dezmirean DS, Routtu J, Aurori A. Juvenile hormone pathway in honey bee larvae: A source of possible signal molecules for the reproductive behavior of Varroa destructor. Ecol Evol 2021; 11:1057-1068. [PMID: 33520186 PMCID: PMC7820148 DOI: 10.1002/ece3.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
The parasitic mite Varroa destructor devastates honey bee (Apis mellifera) colonies around the world. Entering a brood cell shortly before capping, the Varroa mother feeds on the honey bee larvae. The hormones 20-hydroxyecdysone (20E) and juvenile hormone (JH), acquired from the host, have been considered to play a key role in initiating Varroa's reproductive cycle. This study focuses on differential expression of the genes involved in the biosynthesis of JH and ecdysone at six time points during the first 30 hr after cell capping in both drone and worker larvae of A. mellifera. This time frame, covering the conclusion of the honey bee brood cell invasion and the start of Varroa's ovogenesis, is critical to the successful initiation of a reproductive cycle. Our findings support a later activation of the ecdysteroid cascade in honey bee drones compared to worker larvae, which could account for the increased egg production of Varroa in A. mellifera drone cells. The JH pathway was generally downregulated confirming its activity is antagonistic to the ecdysteroid pathway during the larva development. Nevertheless, the genes involved in JH synthesis revealed an increased expression in drones. The upregulation of jhamt gene involved in methyl farnesoate (MF) synthesis came into attention since the MF is not only a precursor of JH but it is also an insect pheromone in its own right as well as JH-like hormone in Acari. This could indicate a possible kairomone effect of MF for attracting the mites into the drone brood cells, along with its potential involvement in ovogenesis after the cell capping, stimulating Varroa's initiation of egg laying.
Collapse
Affiliation(s)
- Cristian M. Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Alexandru‐Ioan Giurgiu
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Benjamin H. Conlon
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Chedly Kastally
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Department of Ecology and Genetics and Biocenter OuluUniversity of OuluOuluFinland
| | - Daniel S. Dezmirean
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Jarkko Routtu
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Adriana Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
- Advanced Horticultural Research Institute of TransylvaniaUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
21
|
First Draft Genome Assembly of the Malaysian Stingless Bee, Heterotrigona itama (Apidae, Meliponinae). DATA 2020. [DOI: 10.3390/data5040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Malaysian stingless bee industry is hugely dependent on wild colonies. Nevertheless, the availability of new queens to establish new colonies is insufficient to meet the growing demand for hives in the industry. Heterotrigona itama is primarily utilized for honey production in the region and the major source of stingless bee colonies comes from the wild. To propagate new colonies domestically, a fundamental understanding of the biology of queen development, especially from the genomics aspect, is necessary. The whole genome was sequenced using a paired-end 150 strategy on the Illumina HiSeq X platform. The shotgun sequencing generated approximately 89 million raw pair-end reads with a total output of 13.37 Gb and a GC content of 37.31%. The genome size of the species was estimated to be approximately 272 Mb. Phylogenetic analysis showed H. itama are much more closely related to the bumble bee (Bombus spp.) than they are to the modern honey bee (Apis spp.). The genome data provided here are expected to contribute to a better understanding of the genetic aspect of queen differentiation as well as of important molecular pathways which are crucial for stingless bee biology, management and conservation.
Collapse
|
22
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
23
|
Tsang SSK, Law STS, Li C, Qu Z, Bendena WG, Tobe SS, Hui JHL. Diversity of Insect Sesquiterpenoid Regulation. Front Genet 2020; 11:1027. [PMID: 33133135 PMCID: PMC7511761 DOI: 10.3389/fgene.2020.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.
Collapse
Affiliation(s)
- Stacey S K Tsang
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean T S Law
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Development of fly tolerance to consuming a high-protein diet requires physiological, metabolic and transcriptional changes. Biogerontology 2020; 21:619-636. [PMID: 32468146 DOI: 10.1007/s10522-020-09880-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Mortality in insects consuming high-protein-and-low-carbohydrate diets resembles a type III lifespan curve with increased mortality at an early age and few survivors that live a relatively long lifespan. We selected for a Drosophila line able to live for a long time on an imbalanced high-protein-low-carbohydrate diet by carrying out five rounds of breeding to select for the most long-lived survivors. Adaptation to this diet in the selected line was studied at the biochemical, physiological and transcriptomic levels. The selected line of flies consumed less of the imbalanced food but also accumulated more storage metabolites: glycogen, triacylglycerides, and trehalose. Selected flies also had a higher activity of alanine transaminase and a higher urea content. Adaptation of the selected line on the transcriptomic level was characterized by down-regulation of genes encoding serine endopeptidases (Jon25i, Jon25ii, betaTry, and others) but up-regulation of genes encoding proteins related to the immune system, such as antimicrobial peptides, Turandot-family humoral factors, hexamerin isoforms, and vitellogenin. These sets of down- and up-regulated genes were similar to those observed in fruit flies with suppressed juvenile hormone signaling. Our data show that the physiological adaptation of fruit flies to a high-protein-low-carbohydrate diet occurs via intuitive pathways, namely a decrease in food consumption, conversion of amino acids into ketoacids to compensate for the lack of carbohydrate, and accumulation of storage metabolites to eliminate the negative effects of excess amino acids. Nevertheless, transcriptomic adaptation occurs in a counter-intuitive way likely via an influence of gut microbiota on food digestion.
Collapse
|
25
|
Kamruzzaman ASM, Mikani A, Mohamed AA, Elgendy AM, Takeda M. Crosstalk among Indoleamines, Neuropeptides and JH/20E in Regulation of Reproduction in the American Cockroach, Periplaneta americana. INSECTS 2020; 11:insects11030155. [PMID: 32121505 PMCID: PMC7143859 DOI: 10.3390/insects11030155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/29/2023]
Abstract
Although the regulation of vitellogenesis in insects has been mainly discussed in terms of ‘classical’ lipid hormones, juvenile hormone (JH), and 20-hydroxyecdysone (20E), recent data support the notion that this process must be adjusted in harmony with a nutritional input/reservoir and involvement of certain indoleamines and neuropeptides in regulation of such process. This study focuses on crosstalks among these axes, lipid hormones, monoamines, and neuropeptides in regulation of vitellogenesis in the American cockroach Periplaneta americana with novel aspects in the roles of arylalkylamine N-acetyltransferase (aaNAT), a key enzyme in indoleamine metabolism, and the enteroendocrine peptides; crustacean cardioactive peptide (CCAP) and short neuropeptide F (sNPF). Double-stranded RNA against aaNAT (dsRNAaaNAT) was injected into designated-aged females and the effects were monitored including the expressions of aaNAT itself, vitellogenin 1 and 2 (Vg1 and Vg2) and the vitellogenin receptor (VgR) mRNAs, oocyte maturation and changes in the hemolymph peptide concentrations. Effects of peptides application and 20E were also investigated. Injection of dsRNAaaNAT strongly suppressed oocyte maturation, transcription of Vg1, Vg2, VgR, and genes encoding JH acid- and farnesoate O-methyltransferases (JHAMT and FAMeT, respectively) acting in the JH biosynthetic pathway. However, it did not affect hemolymph concentrations of CCAP and sNPF. Injection of CCAP stimulated, while sNPF suppressed oocyte maturation and Vgs/VgR transcription, i.e., acting as allatomedins. Injection of CCAP promoted, while sNPF repressed ecdysteroid (20E) synthesis, particularly at the second step of Vg uptake. 20E also affected the JH biosynthetic pathway and Vg/VgR synthesis. The results revealed that on the course of vitellogenesis, JH- and 20E-mediated regulation occurs downstream to indoleamines- and peptides-mediated regulations. Intricate mutual interactions of these regulatory routes must orchestrate reproduction in this species at the highest potency.
Collapse
Affiliation(s)
- A. S. M. Kamruzzaman
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran;
| | - Amr A. Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| | - Azza M. Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| |
Collapse
|
26
|
Orlova M, Starkey J, Amsalem E. A small family business: synergistic and additive effects of the queen and the brood on worker reproduction in a primitively eusocial bee. J Exp Biol 2020; 223:jeb217547. [PMID: 31953359 DOI: 10.1242/jeb.217547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
The mechanisms that maintain reproductive division of labor in social insects are still incompletely understood. Most studies focus on the relationship between adults, overlooking another important stakeholder - the juveniles. Recent studies show that not only the queen but also the brood regulate worker reproduction. However, how the two coordinate to maintain reproductive monopoly remained unexplored. Here, we disentangled the roles of the brood and the queen in primitively eusocial bees (Bombus impatiens) by examining their separated and combined effects on worker behavioral, physiological and brain gene expression. We found that young larvae produce a releaser effect on workers, decreasing oviposition and aggression, while the queen produces both releaser and primer effects, modifying worker behavior and reproductive physiology. The expression of reproduction- and aggression-related genes was altered in the presence of both queen and brood but was stronger or the same in the presence of the queen. We identified two types of interactions between the queen and the brood in regulating worker reproduction: (1) synergistic interactions regulating worker physiology, where the combined effect of the queen and the brood on worker physiology was greater than their separate effects; (2) additive interactions, where the combined effect of the queen and the brood on worker behavior was similar to the sum of their separate effects. Our results suggest that the queen and the brood interact synergistically and additively to regulate worker behavior and reproduction, and this interaction exists at multiple regulatory levels.
Collapse
Affiliation(s)
- Margarita Orlova
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse Starkey
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Taylor BA, Reuter M, Sumner S. Patterns of reproductive differentiation and reproductive plasticity in the major evolutionary transition to superorganismality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:40-47. [PMID: 31247416 DOI: 10.1016/j.cois.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Major evolutionary transitions in individuality are characterised by the formation of new levels of biological complexity from the cooperation of previously independent lower-level units. The evolution of superorganismality in insects is one such major transition, and is characterised by an extreme division of reproductive labour between ancestrally autonomous units, in the form of queen and worker castes. Here, we discuss the nature of plasticity in the emergence of castes across the major transition to superorganismality in insects. We identify key changes in plasticity which act at different levels of selection: a loss of reproductivity plasticity at the individual level is matched by a gain in plasticity at the colony level. Taking multi-level selection into consideration has important implications for formulating testable hypotheses regarding the nature of plasticity in a major transition from a lower to a higher level of biological complexity.
Collapse
Affiliation(s)
- Benjamin A Taylor
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
28
|
Branchiccela B, Castelli L, Corona M, Díaz-Cetti S, Invernizzi C, Martínez de la Escalera G, Mendoza Y, Santos E, Silva C, Zunino P, Antúnez K. Impact of nutritional stress on the honeybee colony health. Sci Rep 2019; 9:10156. [PMID: 31300738 PMCID: PMC6626013 DOI: 10.1038/s41598-019-46453-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Honeybees Apis mellifera are important pollinators of wild plants and commercial crops. For more than a decade, high percentages of honeybee colony losses have been reported worldwide. Nutritional stress due to habitat depletion, infection by different pests and pathogens and pesticide exposure has been proposed as the major causes. In this study we analyzed how nutritional stress affects colony strength and health. Two groups of colonies were set in a Eucalyptus grandis plantation at the beginning of the flowering period (autumn), replicating a natural scenario with a nutritionally poor food source. While both groups of colonies had access to the pollen available in this plantation, one was supplemented with a polyfloral pollen patty during the entire flowering period. In the short-term, colonies under nutritional stress (which consumed mainly E. grandis pollen) showed higher infection level with Nosema spp. and lower brood and adult bee population, compared to supplemented colonies. On the other hand, these supplemented colonies showed higher infection level with RNA viruses although infection levels were low compared to countries were viral infections have negative impacts. Nutritional stress also had long-term colony effects, because bee population did not recover in spring, as in supplemented colonies did. In conclusion, nutritional stress and Nosema spp. infection had a severe impact on colony strength with consequences in both short and long-term.
Collapse
Affiliation(s)
- B Branchiccela
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, CP 11,600, Montevideo, Uruguay
| | - L Castelli
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, CP 11,600, Montevideo, Uruguay
| | - M Corona
- Bee Research Laboratory United Stated Department of Agriculture, United States of America, Center Road 306, CP 20,705, Beltsville, Maryland, United States of America
| | - S Díaz-Cetti
- Sección Apicultura, Instituto de Investigación Agropecuaria, Route 50 km 11, CP 39173, Colonia, Uruguay
| | - C Invernizzi
- Sección Etología, Instituto de Biología, Facultad de Ciencias, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - G Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, CP 11,600, Montevideo, Uruguay
| | - Y Mendoza
- Sección Apicultura, Instituto de Investigación Agropecuaria, Route 50 km 11, CP 39173, Colonia, Uruguay
| | - E Santos
- Sección Etología, Instituto de Biología, Facultad de Ciencias, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - C Silva
- Sección Apicultura, Instituto de Investigación Agropecuaria, Route 50 km 11, CP 39173, Colonia, Uruguay
| | - P Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, CP 11,600, Montevideo, Uruguay
| | - K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, CP 11,600, Montevideo, Uruguay.
| |
Collapse
|
29
|
Cheng YJ, Li ZX. Spatiotemporal expression profiling of the farnesyl diphosphate synthase genes in aphids and analysis of their associations with the biosynthesis of alarm pheromone. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:398-407. [PMID: 30269691 DOI: 10.1017/s0007485318000706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The alarm behavior plays a key role in the ecology of aphids, but the site and molecular mechanism for the biosynthesis of aphid alarm pheromone are largely unknown. Farnesyl diphosphate synthase (FPPS) catalyzes the synthesis of FPP, providing the precursor for the alarm pheromone (E)-β-farnesene (EβF), and we speculate that FPPS is closely associated with the biosynthetic pathway of EβF. We firstly analyzed the spatiotemporal expression of FPPS genes by using quantitative reverse transcription-polymerase chain reaction, showing that they were expressed uninterruptedly from the embryonic stage to adult stage, with an obvious increasing trend from embryo to 4th-instar in the green peach aphid Myzus persicae, but FPPS1 had an overall significantly higher expression level than FPPS2; both FPPS1 and FPPS2 exhibited the highest expression in the cornicle area. This expression pattern was verified in Acyrthosiphon pisum, suggesting that FPPS1 may play a more important role in aphids and the cornicle area is most likely the site for EβF biosynthesis. We thus conducted a quantitative measurement of EβF in M. persicae by gas chromatography-mass spectrometry. The data obtained were used to perform an association analysis with the expression data, revealing that the content of EβF per aphid was significantly correlated with the mean weight per aphid (r = 0.8534, P = 0.0307) and the expression level of FPPS1 (r = 0.9134, P = 0.0109), but not with that of FPPS2 (r = 0.4113, P = 0.4179); the concentration of EβF per milligram of aphid was not correlated with the mean weight per aphid or the expression level of FPPS genes. These data suggest that FPPS1 may play a key role in the biosynthesis of aphid alarm pheromone.
Collapse
Affiliation(s)
- Y-J Cheng
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests,College of Plant Protection, China Agricultural University,Beijing 100193,China
| | - Z-X Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests,College of Plant Protection, China Agricultural University,Beijing 100193,China
| |
Collapse
|
30
|
Bian HX, Chen DB, Zheng XX, Ma HF, Li YP, Li Q, Xia RX, Wang H, Jiang YR, Liu YQ, Qin L. Transcriptomic analysis of the prothoracic gland from two lepidopteran insects, domesticated silkmoth Bombyx mori and wild silkmoth Antheraea pernyi. Sci Rep 2019; 9:5313. [PMID: 30926938 PMCID: PMC6440963 DOI: 10.1038/s41598-019-41864-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
The prothoracic gland (PG) is an important endocrine organ of synthesis and secretion of ecdysteroids that play critical roles in insects. Here, we used a comparative transcriptomic approach to characterize some common features of PGs from two lepidopteran species Bombyx mori and Antheraea pernyi. Functional and pathway annotations revealed an overall similarity in gene profile between the two PG transcriptomes. As expected, almost all steroid hormone biosynthesis genes and the prothoracicitropic hormone receptor gene (Torso) were well represented in the two PGs. Impressively, two ecdysone receptor genes, eleven juvenile hormone related genes, more than 10 chemosensory protein genes, and a set of genes involved in circadian clock were also presented in the two PGs. Quantitative real time -PCR (qRT-PCR) validated the expression of 8 juvenile hormone and 12 clock related genes in B. mori PG, and revealed a different expression pattern during development in whole fifth larval instar. This contribution to insect PG transcriptome data will extend our understanding of the function and regulation of this important organ.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.,College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Xi-Xi Zheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Hong-Fang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Run-Xi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yi-Ren Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| |
Collapse
|
31
|
Molecular evolution of juvenile hormone esterase-like proteins in a socially exchanged fluid. Sci Rep 2018; 8:17830. [PMID: 30546082 PMCID: PMC6293014 DOI: 10.1038/s41598-018-36048-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Socially exchanged fluids are a direct means by which an organism can influence conspecifics. It was recently shown that when workers of the carpenter ant Camponotus floridanus feed larval offspring via trophallaxis, they transfer Juvenile Hormone III (JH), a key developmental regulator, as well as paralogs of JH esterase (JHE), an enzyme that catalyzes the hydrolysis of JH. Here we combine proteomic, phylogenetic and selection analyses to investigate the evolution of this esterase subfamily. We show that Camponotus JHE-like proteins have undergone multiple duplications, experienced positive selection, and changed tissue localization to become abundantly and selectively present in trophallactic fluid. The Camponotus trophallactic esterases have maintained their catalytic triads and contain a number of positively-selected amino acid changes distributed throughout the protein, which possibly reflect an adaptation to the highly acidic trophallactic fluid of formicine ants. To determine whether these esterases might regulate larval development, we fed workers with a JHE-specific pharmacological inhibitor to introduce it into the trophallactic network. This inhibitor increased the likelihood of pupation of the larvae reared by these workers, similar to the influence of food supplementation with JH. Together, these findings suggest that JHE-like proteins have evolved a new role in the inter-individual regulation of larval development in the Camponotus genus.
Collapse
|
32
|
Dominguez CV, Maestro JL. Expression of juvenile hormone acid O-methyltransferase and juvenile hormone synthesis in Blattella germanica. INSECT SCIENCE 2018; 25:787-796. [PMID: 28374493 DOI: 10.1111/1744-7917.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O-methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3'-UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi-triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH-specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.
Collapse
Affiliation(s)
- Claudia V Dominguez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose L Maestro
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
33
|
Jongepier E, Kemena C, Lopez-Ezquerra A, Belles X, Bornberg-Bauer E, Korb J. Remodeling of the juvenile hormone pathway through caste-biased gene expression and positive selection along a gradient of termite eusociality. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:296-304. [PMID: 29845724 DOI: 10.1002/jez.b.22805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Abstract
The evolution of division of labor between sterile and fertile individuals represents one of the major transitions in biological complexity. A fascinating gradient in eusociality evolved among the ancient hemimetabolous insects, ranging from noneusocial cockroaches through the primitively social lower termites-where workers retain the ability to reproduce-to the higher termites, characterized by lifetime commitment to worker sterility. Juvenile hormone (JH) is a prime candidate for the regulation of reproductive division of labor in termites, as it plays a key role in insect postembryonic development and reproduction. We compared the expression of JH pathway genes between workers and queens in two lower termites (Zootermopsis nevadensis and Cryptotermes secundus) and a higher termite (Macrotermes natalensis) to that of analogous nymphs and adult females of the noneusocial cockroach Blattella germanica. JH biosynthesis and metabolism genes ranged from reproductive female-biased expression in the cockroach to predominantly worker-biased expression in the lower termites. Remarkably, the expression profile of JH pathway genes sets the higher termite apart from the two lower termites, as well as the cockroach, indicating that JH signaling has undergone major changes in this eusocial termite. These changes go beyond mere shifts in gene expression between the different castes, as we find evidence for positive selection in several termite JH pathway genes. Thus, remodeling of the JH pathway may have played a major role in termite social evolution, representing a striking case of convergent molecular evolution between the termites and the distantly related social hymenoptera.
Collapse
Affiliation(s)
- Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Carsten Kemena
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Xavier Belles
- Institut de Biologia Evolutiva, CSIC-University Pompeu Fabra, Barcelona, Spain
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Zhang W, Ma L, Xiao H, Liu C, Chen L, Wu S, Liang G. Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera. Sci Rep 2017; 7:16542. [PMID: 29185447 PMCID: PMC5707400 DOI: 10.1038/s41598-017-16319-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Juvenile hormones (JHs) are crucial regulators for multiple physiological processes in insects. In the current study, 10 genes in mevalonate pathway involved in JH biosynthesis were identified from Helicoverpa armigera. Tissue-specific expression analysis showed that six genes were highly expressed in the head which contained the JH biosynthetic gland (corpora allata). Temporal expression pattern showed that 10 of 12 genes were highly transcribed in the late 2nd-instar when the in vivo JH titer reached the peak, indicating a tight correlation between JH titer and the transcription of JH synthetic pathway genes. Moreover, ingestion of methoprene, a JH analogue, significantly suppressed the transcription of nine JH biosynthetic genes and caused a feedback upregulation of the JH degradation enzyme. Particularly, the Acetoacetyl CoA thiolase (HaAce) and Farnesyl diphosphate synthase gene 4 (HaFpps4) showed high transcript abundance, and their temporal expressions keep pace with JH fluctuations. Further study by RNAi showed that knockdown of HaFpps4 caused the decrease of JH titer, led to a negative effect on the transcript levels of other genes in JH pathway, and resulted in molting disturbance in larvae. Altogether, these results contribute to our understanding of JH biosynthesis in H. armigera and provide target genes for pest control based on JH-dependent regulation.
Collapse
Affiliation(s)
- Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaolong Wu
- China Tobacco Midsouth Agricultural Experimental Station, Changsha, 410128, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Xu B, Qian K, Zhang N, Miao L, Cai J, Lu M, Du Y, Wang J. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis. PEST MANAGEMENT SCIENCE 2017; 73:2111-2117. [PMID: 28382786 DOI: 10.1002/ps.4586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. RESULTS Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). CONCLUSION Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beibei Xu
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Kun Qian
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Nan Zhang
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Lijun Miao
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Jingxuan Cai
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Mingxing Lu
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Yuzhou Du
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, China
| |
Collapse
|
36
|
Abstract
The study of insect social behavior has offered tremendous insight into the molecular mechanisms mediating behavioral and phenotypic plasticity. Genomic applications to the study of eusocial insect species, in particular, have led to several hypotheses for the processes underlying the molecular evolution of behavior. Advances in understanding the genetic control of social organization have also been made, suggesting an important role for supergenes in the evolution of divergent behavioral phenotypes. Intensive study of social phenotypes across species has revealed that behavior and caste are controlled by an interaction between genetic and environmentally mediated effects and, further, that gene expression and regulation mediate plastic responses to environmental signals. However, several key methodological flaws that are hindering progress in the study of insect social behavior remain. After reviewing the current state of knowledge, we outline ongoing challenges in experimental design that remain to be overcome in order to advance the field.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| |
Collapse
|
37
|
Cardoso-Júnior CAM, Silva RP, Borges NA, de Carvalho WJ, Walter SL, Simões ZLP, Bitondi MMG, Ueira Vieira C, Bonetti AM, Hartfelder K. Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:185-194. [PMID: 28800885 DOI: 10.1016/j.jinsphys.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Júnior
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Renato Pereira Silva
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Naiara Araújo Borges
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Washington João de Carvalho
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - S Leal Walter
- Department of Molecular and Cellular Biology, College of Biological Sciences University of California at Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirãp Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Marcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirãp Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Carlos Ueira Vieira
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Ana Maria Bonetti
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
38
|
Xu Y, Zhao M, Deng Y, Yang Y, Li X, Lu Q, Ge J, Pan J, Xu Z. Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:46-53. [DOI: 10.1016/j.cbpb.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
|
39
|
Okada Y, Watanabe Y, Tin MMY, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol 2017; 26:2922-2938. [DOI: 10.1111/mec.13989] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yasukazu Okada
- Department of General Systems Studies; Graduate School of Arts and Sciences; The University of Tokyo; 3-8-1 Komaba Tokyo Japan
| | - Yutaka Watanabe
- Ecology and Evolution Unit; Okinawa Institute of Science and Technology; 1919-1 Tancha Onna-son Kunigami Okinawa 904-0495 Japan
| | - Mandy M. Y. Tin
- Ecology and Evolution Unit; Okinawa Institute of Science and Technology; 1919-1 Tancha Onna-son Kunigami Okinawa 904-0495 Japan
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences; Faculty of Agriculture; University of the Ryukyus; Nishihara Okinawa 903-0213 Japan
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit; Okinawa Institute of Science and Technology; 1919-1 Tancha Onna-son Kunigami Okinawa 904-0495 Japan
- Research School of Biology; Australian National University; Canberra ACT 0200 Australia
| |
Collapse
|
40
|
Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris. Front Physiol 2016; 7:574. [PMID: 27932998 PMCID: PMC5121236 DOI: 10.3389/fphys.2016.00574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023] Open
Abstract
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Ulrich R Ernst
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | | | - Robert Hanus
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Irena Valterová
- Research Group of Infochemicals, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| |
Collapse
|
41
|
Eyer M, Dainat B, Neumann P, Dietemann V. Social regulation of ageing by young workers in the honey bee, Apis mellifera. Exp Gerontol 2016; 87:84-91. [PMID: 27865886 DOI: 10.1016/j.exger.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/23/2022]
Abstract
Organisms' lifespans are modulated by both genetic and environmental factors. The lifespan of eusocial insects is determined by features of the division of labor, which itself is influenced by social regulatory mechanisms. In the honey bee, Apis mellifera, the presence of brood and of old workers carrying out foraging tasks are important social drivers of ageing, but the influence of young adult workers is unknown, as it has not been experimentally teased apart from that of brood. In this study, we test the role of young workers in the ageing of their nestmates. We measured the impact of different social contexts characterized by the absence of brood and/or young adults on the lifespan of worker nestmates in field colonies. To acquire insight into the physiological processes occurring under these contexts, we analyzed the expression of genes known to affect honey bee ageing. The data showed that young workers significantly reduced the lifespan of nestmate workers, similar to the effect of brood on its own. Differential expression of vitellogenin, major royal jelly protein-1, and methylase transferase, but not methyl farneosate epoxidase genes suggests that young workers and brood influence ageing of adult nestmate workers via different physiological pathways. We identify young workers as an essential part of the social regulation of ageing in honey bee colonies.
Collapse
Affiliation(s)
- Michael Eyer
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland.
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Swiss Bee Health Service, Bienengesundheitsdienst, Apiservice, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vincent Dietemann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Social Insect Research Group, Zoology and Entomology Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Wallberg A, Pirk CW, Allsopp MH, Webster MT. Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genet 2016; 12:e1006097. [PMID: 27280405 PMCID: PMC4900560 DOI: 10.1371/journal.pgen.1006097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| | - Christian W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Mike H. Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, South Africa
| | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| |
Collapse
|
44
|
Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say). Gene 2016; 584:136-47. [DOI: 10.1016/j.gene.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
|
45
|
Xu Q, Tang B, Zou Q, Zheng H, Liu X, Wang S. Effects of Pyriproxyfen on Female Reproduction in the Common Cutworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae). PLoS One 2015; 10:e0138171. [PMID: 26444432 PMCID: PMC4596617 DOI: 10.1371/journal.pone.0138171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/27/2015] [Indexed: 01/11/2023] Open
Abstract
The common cutworm, Spodoptera litura, is a rapidly reproducing pest of numerous agricultural ecosystems worldwide. The use of pesticides remains the primary means for controlling S. litura, despite their negative ecological impact and potential threat to human health. The use of exogenous hormone analogs may represent an alternative to insecticides. Juvenile hormones (JHs) play an important role in the reproductive systems of female insects, but the effects of pyriproxyfen, a JH analog, on reproduction in S. litura were poorly understood. In this paper, we topically treated the newly emerged females with 20, 60, or 100 μg of pyriproxyfen to determine its effects on reproduction. Then, we examined the expression of vitellogenin (Vg) and three hormone receptors, USP, HR3, and EcR, using quantitative reverse transcription and real-time polymerase chain reaction (qRT-PCR), and found that pyriproxyfen up-regulated the expression of Vg, USP, and HR3, whereas the expression of EcR was unaffected. An analysis of fecundity showed that the peak oviposition day, lifespan, and oviposition period were progressively shortened as the pyriproxyfen dosage increased. We also found that pyriproxyfen decreased egg laying amount, whereas the number of mature eggs that remained in the ovarioles of dead females increased as the pyriproxyfen dosage increased. We examined oocytes using transmission electron microscopy and found that treatment with 100 μg of pyriproxyfen increased the metabolism by increasing the amount of rough endoplasmic reticulum and mitochondria in the primary oocytes. Our results suggest that the topical application of pyriproxyfen on newly emerged females can efficiently reduce reproduction in S. litura and may represent an alternative to the use of insecticides for controlling the agricultural pest.
Collapse
Affiliation(s)
- Qi Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Qi Zou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Huizhen Zheng
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
- * E-mail:
| |
Collapse
|
46
|
Morandin C, Dhaygude K, Paviala J, Trontti K, Wheat C, Helanterä H. Caste-biases in gene expression are specific to developmental stage in the ant Formica exsecta. J Evol Biol 2015; 28:1705-18. [PMID: 26172873 DOI: 10.1111/jeb.12691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023]
Abstract
Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co-opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of 'toolkit' genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA-Seq to compare caste-biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste-biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste-biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste-biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste-biased at least in some life stages in F. exsecta, and the caste-biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.
Collapse
Affiliation(s)
- C Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - K Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - J Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - K Trontti
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - C Wheat
- Department of Zoology, Population Genetics, Stockholm University, Stockholm, Sweden
| | - H Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
47
|
Steinmann N, Corona M, Neumann P, Dainat B. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees. PLoS One 2015; 10:e0129956. [PMID: 26121358 PMCID: PMC4486728 DOI: 10.1371/journal.pone.0129956] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.
Collapse
Affiliation(s)
- Nadja Steinmann
- Agroscope—Swiss Bee Research Center—Liebefeld, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- Institute of Bee Health, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Bremgartenstr. 109a, 3001 Bern, Switzerland
| | - Miguel Corona
- Bee Research Laboratory USDA-ARS, Beltsville, MD 20705, United States of America
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Bremgartenstr. 109a, 3001 Bern, Switzerland
| | - Benjamin Dainat
- Agroscope—Swiss Bee Research Center—Liebefeld, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- Swiss Bee Health Service, apiservice, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PLoS One 2015; 10:e0117291. [PMID: 25706877 PMCID: PMC4338245 DOI: 10.1371/journal.pone.0117291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/23/2014] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormones (JHs) are key regulators of insect development and reproduction. The JH biosynthetic pathway is known to involve 13 discrete enzymatic steps. In the present study, we have characterized the JH biosynthetic pathway in the cockroach Diploptera punctata. The effect of exogenous JH precursors on JH biosynthesis was also determined. Based on sequence similarity, orthologs for the genes directly involved in the pathway were cloned, and their spatial and temporal transcript profiles were determined. The effect of shutting down the JH pathway in adult female cockroaches was studied by knocking down genes encoding HMG-CoA reductase (HMGR) and Juvenile hormone acid methyltransferase (JHAMT). As a result, oocyte development slowed as a consequence of reduction in JH biosynthesis. Oocyte length, fat body transcription of Vg and ovarian vitellin content significantly decreased. In addition, silencing HMGR and JHAMT resulted in a decrease in the transcript levels of other genes in the pathway.
Collapse
|
49
|
Niu D, Zheng H, Corona M, Lu Y, Chen X, Cao L, Sohr A, Hu F. Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. INSECT MOLECULAR BIOLOGY 2014; 23:668-681. [PMID: 25039886 DOI: 10.1111/imb.12114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.
Collapse
Affiliation(s)
- D Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|